5,630 research outputs found

    Smart Traction Control Systems for Electric Vehicles Using Acoustic Road-type Estimation

    Full text link
    The application of traction control systems (TCS) for electric vehicles (EV) has great potential due to easy implementation of torque control with direct-drive motors. However, the control system usually requires road-tire friction and slip-ratio values, which must be estimated. While it is not possible to obtain the first one directly, the estimation of latter value requires accurate measurements of chassis and wheel velocity. In addition, existing TCS structures are often designed without considering the robustness and energy efficiency of torque control. In this work, both problems are addressed with a smart TCS design having an integrated acoustic road-type estimation (ARTE) unit. This unit enables the road-type recognition and this information is used to retrieve the correct look-up table between friction coefficient and slip-ratio. The estimation of the friction coefficient helps the system to update the necessary input torque. The ARTE unit utilizes machine learning, mapping the acoustic feature inputs to road-type as output. In this study, three existing TCS for EVs are examined with and without the integrated ARTE unit. The results show significant performance improvement with ARTE, reducing the slip ratio by 75% while saving energy via reduction of applied torque and increasing the robustness of the TCS.Comment: Accepted to be published by IEEE Trans. on Intelligent Vehicles, 22 Jan 201

    Performance of first and second-order sliding mode observers for nonlinear systems

    Full text link
    This paper presents a brief study on the design and performance comparison of conventional first-order and super-twisting second-order sliding mode observers for some nonlinear control systems. Estimation accuracy, fast response, chattering effect, peaking phenomenon and robustness are considered for nonlinear ystems under observer-based output feedback control and state feedback control

    Unstable Slope Management Program

    Get PDF
    INE/AUTC 11.1

    Wheel Forces Estimation via Adaptive Sub-Optimal Second Order Sliding Mode Observers

    Get PDF
    In this work a system for the estimation of the forces (both longitudinal and lateral) exerted between the tires and the road is presented. Starting from two of the most commonly used descriptions of the vehicle dynamics, the single-corner and the single-track models, a system composed of Sub-Optimal Second Order Sliding Mode observers in a cascade structure plus an adaptive element is developed and verified to be effective in conditions in which the effect of the weight transfer can be neglected. One notable property of this approach is that only standard sensors, which are present in most of the stock cars, are exploited. The practical implementation is done using a switched/time-based adaptation law for the gains of the observers, in order to be able to track the quantities in a wide range of conditions while keeping the chattering low. Simulation results are presented in IPG Car-Maker

    Advanced suspension system using magnetorheological technology for vehicle vibration control

    Get PDF
    In the past forty years, the concept of controllable vehicle suspension has attracted extensive attention. Since high price of an active suspension system and deficiencies on a passive suspension, researchers pay a lot attention to semi-active suspension. Magneto-rheological fluid (MRF) is always an ideal material of semi-active structure. Thanks to its outstanding features like large yield stress, fast response time, low energy consumption and significant rheological effect. MR damper gradually becomes a preferred component of semi-active suspension for improving the riding performance of vehicle. However, because of the inherent nonlinear nature of MR damper, one of the challenging aspects of utilizing MR dampers to achieve high levels of performance is the development of an appropriate control strategy that can take advantage of the unique characteristics of MR dampers. This is why this project has studied semi-active MR control technology of vehicle suspensions to improve their performance. Focusing on MR semi-active suspension, the aim of this thesis sought to develop system structure and semi-active control strategy to give a vehicle opportunity to have a better performance on riding comfort. The issues of vibration control of the vehicle suspension were systematically analysed in this project. As a part of this research, a quarter-car test rig was built; the models of suspension and MR damper were established; the optimization work of mechanical structure and controller parameters was conducted to further improve the system performance; an optimized MR damper (OMRD) for a vehicle suspension was designed, fabricated, and tested. To utilize OMRD to achieve higher level of performance, an appropriate semi-active control algorithm, state observer-based Takagi-Sugeno fuzzy controller (SOTSFC), was designed for the semi-active suspension system, and its feasibility was verified through an experiment. Several tests were conducted on the quarter-car suspension to investigate the real effect of this semiactive control by changing suspension damping. In order to further enhance the vibration reduction performance of the vehicle, a fullsize variable stiffness and variable damping (VSVD) suspension was further designed, fabricated, and tested in this project. The suspension can be easily installed into a vehicle suspension system without any change to the original configuration. A new 3- degree of freedom (DOF) phenomenological model to further accurately describe the dynamic characteristic of the VSVD suspension was also presented. Based on a simple on-off controller, the performance of the variable stiffness and damping suspension was verified numerically. In addition, an innovative TS fuzzy modelling based VSVD controller was designed. The TS fuzzy modelling controller includes a skyhook damping control module and a state observer based stiffness control module which considering road dominant frequency in real-time. The performance evaluation of the VSVD control algorithm was based on the quarter-car test rig which equipping the VSVD suspension. The experiment results showed that this strategy increases riding comfort effectively, especially under off-road working condition. The semi-active control system developed in this thesis can be adapted and used on a vehicle suspension in order to better control vibration

    Response-based methods to measure road surface irregularity: a state-of-the-art review

    Get PDF
    "jats:sec" "jats:title"Purpose"/jats:title" "jats:p"With the development of smart technologies, Internet of Things and inexpensive onboard sensors, many response-based methods to evaluate road surface conditions have emerged in the recent decade. Various techniques and systems have been developed to measure road profiles and detect road anomalies for multiple purposes such as expedient maintenance of pavements and adaptive control of vehicle dynamics to improve ride comfort and ride handling. A holistic review of studies into modern response-based techniques for road pavement applications is found to be lacking. Herein, the focus of this article is threefold: to provide an overview of the state-of-the-art response-based methods, to highlight key differences between methods and thereby to propose key focus areas for future research."/jats:p" "/jats:sec" "jats:sec" "jats:title"Methods"/jats:title" "jats:p"Available articles regarding response-based methods to measure road surface condition were collected mainly from “Scopus” database and partially from “Google Scholar”. The search period is limited to the recent 15 years. Among the 130 reviewed documents, 37% are for road profile reconstruction, 39% for pothole detection and the remaining 24% for roughness index estimation."/jats:p" "/jats:sec" "jats:sec" "jats:title"Results"/jats:title" "jats:p"The results show that machine-learning techniques/data-driven methods have been used intensively with promising results but the disadvantages on data dependence have limited its application in some instances as compared to analytical/data processing methods. Recent algorithms to reconstruct/estimate road profiles are based mainly on passive suspension and quarter-vehicle-model, utilise fewer key parameters, being independent on speed variation and less computation for real-time/online applications. On the other hand, algorithms for pothole detection and road roughness index estimation are increasingly focusing on GPS accuracy, data aggregation and crowdsourcing platform for large-scale application. However, a novel and comprehensive system that is comparable to existing International Roughness Index and conventional Pavement Management System is still lacking."/jats:p" "/jats:sec Document type: Articl

    A new model-free design for vehicle control and its validation through an advanced simulation platform

    Full text link
    A new model-free setting and the corresponding "intelligent" P and PD controllers are employed for the longitudinal and lateral motions of a vehicle. This new approach has been developed and used in order to ensure simultaneously a best profile tracking for the longitudinal and lateral behaviors. The longitudinal speed and the derivative of the lateral deviation, on one hand, the driving/braking torque and the steering angle, on the other hand, are respectively the output and the input variables. Let us emphasize that a "good" mathematical modeling, which is quite difficult, if not impossible to obtain, is not needed for such a design. An important part of this publication is focused on the presentation of simulation results with actual and virtual data. The actual data, used in Matlab as reference trajectories, have been obtained from a properly instrumented car (Peugeot 406). Other virtual sets of data have been generated through the interconnected platform SiVIC/RTMaps. It is a dedicated virtual simulation platform for prototyping and validation of advanced driving assistance systems. Keywords- Longitudinal and lateral vehicle control, model-free control, intelligent P controller (i-P controller), algebraic estimation, ADAS (Advanced Driving Assistance Systems).Comment: in 14th European Control Conference, Jul 2015, Linz, Austria. 201
    • …
    corecore