6 research outputs found

    POTENTIAL APPLICATION OF NOVEL HYPERSPECTRAL LIDAR FOR MONITORING CROPS NITROGEN STRESS

    Get PDF

    Multispectral terrestrial lidar : State of the Art and Challenges

    Get PDF
    The development of multispectral terrestrial laser scan-ning (TLS) is still at the very beginning, with only four instruments worldwide providing simultaneous three-dimensional (3D) point cloud and spectral measurement. Research on multiwavelength laser returns has been carried out by more groups, but there are still only about ten research instruments published and no commercial availability. This chapter summarizes the experiences from all these studies to provide an overview of the state of the art and future developments needed to bring the multispectral TLS technology into the next level. Alt-hough the current number of applications is sparse, they already show that multispectral lidar technology has po-tential to disrupt many fields of science and industry due to its robustness and the level of detail available

    Data quality analysis after hyperspectral LiDAR sequentially mapping trees

    Get PDF
    Light detection and ranging (LiDAR), as an innovative remote sensing tool, not only captures target reflectance but also provides its morphological parameters. Traditional single/multi-band LiDAR and multispectral LiDAR (MSL) are presently employed in applications such as 3D modeling and plant biochemical parameter inversion albeit with effectiveness limited. Moreover, hyperspectral LiDAR (HSL) distinguished by its expanded array of spectral detection channels and enhanced spectral resolution, has proven more effective in meeting these requirements and also exhibits superior capabilities in both feature and land cover classification tasks. Nevertheless, point clouds acquired through HSL frequently exhibit quality deficiencies, including uneven density and excessive noise. Meanwhile, there exists a notable absence of technical specifications and operational standards governing the measurement protocols for HSL systems globally. To address this gap, this study constructed a systematic analysis framework of data quality in hyperspectral point clouds and endeavors to qualitatively analyse 30 tree point clouds continuously scanned with Finnish Geospatial Research Institute (FGI) 8-band hyperspectral laser scanner. Furthermore, this research validated the theoretical feasibility of employing the 8-band HSL system for inversion processes aimed at quantifying chlorophyll leaf content. Apart from detecting the time-varying patterns of reflectance within birch canopy point clouds, the results of this study also effectively pinpointed the band exhibiting heightened noise level of the HSL system, demonstrating the efficacy of our proposed quality analysis methodology. The endeavor presented in this study can serve as a cornerstone for advancing hyperspectral LiDAR across a diverse array of related remote sensing and earth observation applications

    Three dimensional estimation of vegetation moisture content using dual-wavelength terrestrial laser scanning

    Get PDF
    PhD ThesisLeaf Equivalent Water Thickness (EWT) is a water status metric widely used in vegetation health monitoring. Optical Remote Sensing (RS) data, spaceborne and airborne, can be used to estimate canopy EWT at landscape level, but cannot provide information about EWT vertical heterogeneity, or estimate EWT predawn. Dual-wavelength Terrestrial Laser Scanning (TLS) can overcome these limitations, as TLS intensity data, following radiometric corrections, can be used to estimate EWT in three dimensions (3D). In this study, a Normalized Difference Index (NDI) of 808 nm wavelength, utilized in the Leica P20 TLS instrument, and 1550 nm wavelength, employed in the Leica P40 and P50 TLS systems, was used to produce 3D EWT estimates at canopy level. Intensity correction models were developed, and NDI was found to be able to minimize the incidence angle and leaf internal structure effects. Multiple data collection campaigns were carried out. An indoors dry-down experiment revealed a strong correlation between NDI and EWT at leaf level. At canopy level, 3D EWT estimates were generated with a relative error of 3 %. The method was transferred to a mixed-species broadleaf forest plot and 3D EWT estimates were generated with relative errors < 7 % across four different species. Next, EWT was estimated in six short-rotation willow plots during leaf senescence with relative errors < 8 %. Furthermore, a broadleaf mixed-species urban tree plot was scanned during and two months after a heatwave, and EWT temporal changes were successfully detected. Relative error in EWT estimates was 6 % across four tree species. The last step in this research was to study the effects of EWT vertical heterogeneity on forest plot reflectance. Two virtual forest plots were reconstructed in the Discrete Anisotropic Radiative Transfer (DART) model. 3D EWT estimates from TLS were utilized in the model and Sentinel-2A bands were simulated. The simulations revealed that the top four to five metres of canopy dominated the plot reflectance. The satellite sensor was not able to detect severe water stress that started in the lower canopy layers. This study showed the potential of using dual-wavelength TLS to provide important insights into the EWT distribution within the canopy, by mapping the EWT at canopy level in 3D. EWT was found to vary vertically within the canopy, with EWT and Leaf Mass per Area (LMA) being highly correlated, suggesting that sun leaves were able to hold more moisture than shade leaves. The EWT vertical profiles varied between species, and trees reacted in different ways during drought conditions, losing moisture from different canopy layers. The proposed method can provide time series of the change in EWT at very high spatial and temporal resolutions, as TLS instruments are active sensors, independent of the solar illumination. It also has the potential to provide EWT estimates at the landscape level, if coupled with automatic tree ii segmentation and leaf-wood separation techniques, and thus filling the gaps in the time series produced from satellite data. In addition, the technique can potentially allow the characterisation of whole-tree leaf water status and total water content, by combining the EWT estimates with Leaf Area Index (LAI) measurements, providing new insights into forest health and tree physiology.Egyptian Ministry of Higher Educatio
    corecore