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Abstract 

Leaf Equivalent Water Thickness (EWT) is a water status metric widely used in vegetation 

health monitoring. Optical Remote Sensing (RS) data, spaceborne and airborne, can be used to 

estimate canopy EWT at landscape level, but cannot provide information about EWT vertical 

heterogeneity, or estimate EWT predawn. Dual-wavelength Terrestrial Laser Scanning (TLS) 

can overcome these limitations, as TLS intensity data, following radiometric corrections, can 

be used to estimate EWT in three dimensions (3D). In this study, a Normalized Difference 

Index (NDI) of 808 nm wavelength, utilized in the Leica P20 TLS instrument, and 1550 nm 

wavelength, employed in the Leica P40 and P50 TLS systems, was used to produce 3D EWT 

estimates at canopy level. Intensity correction models were developed, and NDI was found to 

be able to minimize the incidence angle and leaf internal structure effects. 

Multiple data collection campaigns were carried out. An indoors dry-down experiment revealed 

a strong correlation between NDI and EWT at leaf level. At canopy level, 3D EWT estimates 

were generated with a relative error of 3 %. The method was transferred to a mixed-species 

broadleaf forest plot and 3D EWT estimates were generated with relative errors < 7 % across 

four different species. Next, EWT was estimated in six short-rotation willow plots during leaf 

senescence with relative errors < 8 %. Furthermore, a broadleaf mixed-species urban tree plot 

was scanned during and two months after a heatwave, and EWT temporal changes were 

successfully detected. Relative error in EWT estimates was 6 % across four tree species. The 

last step in this research was to study the effects of EWT vertical heterogeneity on forest plot 

reflectance. Two virtual forest plots were reconstructed in the Discrete Anisotropic Radiative 

Transfer (DART) model. 3D EWT estimates from TLS were utilized in the model and Sentinel-

2A bands were simulated. The simulations revealed that the top four to five metres of canopy 

dominated the plot reflectance. The satellite sensor was not able to detect severe water stress 

that started in the lower canopy layers.  

This study showed the potential of using dual-wavelength TLS to provide important insights 

into the EWT distribution within the canopy, by mapping the EWT at canopy level in 3D. EWT 

was found to vary vertically within the canopy, with EWT and Leaf Mass per Area (LMA) 

being highly correlated, suggesting that sun leaves were able to hold more moisture than shade 

leaves. The EWT vertical profiles varied between species, and trees reacted in different ways 

during drought conditions, losing moisture from different canopy layers. The proposed method 

can provide time series of the change in EWT at very high spatial and temporal resolutions, as 

TLS instruments are active sensors, independent of the solar illumination. It also has the 

potential to provide EWT estimates at the landscape level, if coupled with automatic tree 
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segmentation and leaf-wood separation techniques, and thus filling the gaps in the time series 

produced from satellite data. In addition, the technique can potentially allow the 

characterisation of whole-tree leaf water status and total water content, by combining the EWT 

estimates with Leaf Area Index (LAI) measurements, providing new insights into forest health 

and tree physiology.   
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Chapter 1. Introduction 

1.1 Research context 

Climate change has been linked to the recent increase in frequency and intensity of heatwaves, 

with climate models predicting more heatwaves to occur in the future (Schär et al., 2004). 

Heatwaves, when accompanied by lack of rainfall, can trigger severe drought conditions with 

catastrophic effects on the agricultural and forestry sectors, reducing crop yields and increasing 

rates of forest fires and tree mortality (Allen et al., 2015). For instance, the record-breaking 

2003 European heatwave caused a fall in arable crop production by more than 10% (23 million 

tons, the highest recorded drop in a century) in comparison to the previous year (García-Herrera 

et al., 2010). In addition, more than 25,000 forest fires were reported across Europe, destroying 

approximately 730,000 hectares of forests (García-Herrera et al., 2010). A total estimated loss 

of approximately 13 billion Euros was reported, including losses in agricultural and livestock 

sectors (García-Herrera et al., 2010). Stott et al. (2004) estimated that the risk of occurrence of 

the 2003 European heatwave was doubled because of the increase in greenhouse gases 

concentrations in the atmosphere caused by human activities. Similarly, Vogel et al. (2019) 

rendered human-caused climate change as a factor that increased the magnitude of the 2018 

European heatwave. Recently, the  heatwave that hit Europe in June and July 2019 broke the 

highest temperature records set by the 2003 heatwave (Mitchell et al., 2019). 

During drought, plants use different survival mechanisms, one of which is closing leaf stomata 

(pores on the underside of leaves) to minimize water loss, thus allowing less water evaporation 

from leaves and reducing plant transpiration rate (Carter, 1993; Peñuelas et al., 1994; Ceccato 

et al., 2001). Transpiration refers to water movement through a plant from roots to leaves, to 

distribute water and nutrients needed for photosynthesis, before water gets evaporated through 

leaf stomata (Jarvis and McNaughton, 1986). Stomatal closure further affects plant 

photosynthetic rate by limiting carbon dioxide intake and exchange of gases with the 

atmosphere (Farquhar and Sharkey, 1982; Chaves et al., 2003; Zivcak et al., 2013). The drop 

in rates of transpiration, photosynthesis, and carbon gain cause a decline in the plant growth 

rate and productivity (Lawlor and Cornic, 2002; McDowell et al., 2008; Mendiguren et al., 

2015), and it also becomes more prone to burning (Bartlett et al., 2016). If drought conditions 

are prolonged, the plant may suffer from carbon starvation or hydraulic failure, eventually 

leading to its death (McDowell et al., 2013; Sevanto et al., 2014). Continuous monitoring of 
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vegetation water status can lead to early detection of vegetation stress, which can help in 

improving decision making during droughts, regarding crop irrigation and harvest scheduling 

(Sepulcre-Cantó et al., 2006), and preventing and fighting forest fires (Yebra et al., 2008). 

Furthermore, monitoring vegetation water status can help in the early detection of symptoms of 

disease and signs of pest infestations in forests and agricultural crops (Carter, 1993; Ferretti, 

1997; Jones and Tardieu, 1998; Datt, 1999; Meentemeyer et al., 2008; Trumbore et al., 2015; 

Große-Stoltenberg et al., 2016). 

A widely-used approach to determine vegetation water status and detect vegetation water stress 

is measuring the water potential (Ψ) of leaf or stem, typically predawn, expressed in bar or 

megapascal (Jarvis, 1976; Chone et al., 2001). Water potential is a direct measurement that can 

be conducted on a plant in the field using a pressure chamber (Scholander et al., 1965). It is 

directly linked to water movement through a plant from soil to foliage, and a drop in water 

potential can indicate a water deficit, as it indicates that loss of water in transpiration exceeds 

absorption of water via the roots (Jarvis, 1976; McCutchan and Shackel, 1992). However, 

measuring the water potential with the pressure chamber is a slow process that can be 

impractical if the aim is to determine the water status of a large number of plants (Vila et al., 

2011). Alternatively, thermal imagery can be used to estimate the water potential, as it can 

detect the increase in canopy temperature caused by leaf stomatal closure during water stress, 

which is inversely proportional to leaf water potential (Ehrler et al., 1978; Idso et al., 1981; 

Vila et al., 2011). 

Another approach to quantify water in vegetation is using vegetation water status metrics, 

including leaf Equivalent Water Thickness (EWT), Fuel Moisture Content (FMC), Canopy 

Water Content (CWC), Vegetation Water Content (VWC), and Relative Water Content (RWC). 

EWT (g cm-2) is the amount of liquid water in a given leaf area  (Danson et al., 1992), and is 

widely adopted in vegetation health monitoring as it can reflect the physiological status of 

vegetation and is related to the leaf tolerance to dehydration (Wright et al., 2004; Yilmaz et al., 

2008; Gaulton et al., 2013; Féret et al., 2018). FMC (%) is defined as the amount of liquid water 

in a leaf divided by leaf dry weight (Burgan, 1996). It is a key metric in forest fire modelling 

and is widely utilized in the early detection of wildfire risk (Danson and Bowyer, 2004; Aponte 

et al., 2016; Zhu et al., 2017). CWC (kg m-2) is the mass of water in a canopy per unit ground 

area (Clevers et al., 2010), and is a parameter of interest in studying the water cycle and its role 

in global climate change (Clevers et al., 2010; Mendiguren et al., 2015). VWC (kg m-2) is the 

total mass of water in leaves, branches, and stems, per unit ground area. VWC is used in 
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retrieving soil moisture content under vegetation canopies from active and passive microwave 

remote sensing (Njoku and Entekhabi, 1996; Yilmaz et al., 2008). RWC (%) is the ratio 

between liquid water volume in a leaf to maximum water volume when the same leaf is fully 

saturated with water (Hunt Jr et al., 1987). RWC can reflect how a plant responds to water 

stress, but is difficult to measure as it requires the measurement of leaf weight when the leaf is 

fully saturated with water, which is hard to obtain in the field (Maki et al., 2004). 

This research focuses mainly on EWT because it not only serves as a vegetation stress indicator, 

but can also be used to retrieve other key vegetation water status metrics. EWT, when coupled 

with canopy Leaf Area Index (LAI) measurements, the one-sided green leaf area per unit 

ground surface area (Jonckheere et al., 2004), can be used to estimate CWC, expressed as EWT 

multiplied by LAI (Clevers et al., 2010; Mendiguren et al., 2015). In the same manner, EWT 

can be linked to FMC, expressed as EWT divided by Leaf Mass per Area (LMA) (Danson and 

Bowyer, 2004). LMA (g cm-2) is the ratio of leaf dry weight to its surface area, and is an 

important trait in plant growth rate (Gutschick and Wiegel, 1988; Poorter et al., 2009). 

Furthermore, EWT can be used to estimate VWC using allometric relationships (Yilmaz et al., 

2008). Another important characteristic of EWT is that it is linked to water depth in the leaf, 

thus can be estimated directly from reflectance in the optical domain, allowing the use of optical 

Remote Sensing (RS) data in obtaining EWT estimates over large spatial scales (Ceccato et al., 

2002; Colombo et al., 2008). 

Methods that utilize spaceborne and airborne optical RS data, both multispectral and 

hyperspectral, to estimate EWT are considered a more efficient alternative to in-situ approaches 

(destructive methods and field spectroscopy), which are time and effort consuming and 

impractical for large areas (Pu et al., 2003; Dash et al., 2017). Such methods can not only 

provide estimates of canopy EWT at a landscape level, but are also useful for producing time 

series of data to monitor the change in vegetation moisture content (Foley et al., 1998; Colombo 

et al., 2008; Clevers et al., 2010). EWT estimation from optical RS data is primarily based on 

the interaction of radiation with foliage, with reflectance in the ShortWave InfraRed (SWIR) 

region in leaf spectra being dominated by absorption by water (Knipling, 1970; Zarco-Tejada 

et al., 2003). The two most common approaches to estimate EWT are using vegetation indices 

or inversion of physical Radiative Transfer Models (RTMs) (Serrano et al., 2000; Mirzaie et 

al., 2014). Vegetation indices combine the reflectance measured by the sensor in two or more 

spectral bands (wavelengths) in a simple ratio or a Normalized Difference Index (NDI) and link 

it to EWT using different types of regression analysis (Bannari et al., 1995; Jones and Vaughan, 
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2010). RTMs, on the other hand, simulate vegetation spectra at the leaf level, such as the 

PROSPECT model (Jacquemoud and Baret, 1990), or at canopy level, such as the SAIL model 

(Scattering by Arbitrarily Inclined Leaves) (Verhoef, 1984). By inverting these models, EWT 

and other canopy biochemical characteristics can be estimated (Ceccato et al., 2002; Zarco-

Tejada et al., 2003; Mendiguren et al., 2015). 

Estimating EWT from spaceborne and airborne optical RS data, despite its advantages over in-

situ approaches, has some limitations. Firstly, EWT can only be estimated at midday as the 

sensors are dependent on the solar illumination (Eitel et al., 2010). Detecting the vegetation 

water status at midday can be an unreliable indicator of water stress since leaves lose water 

during photosynthesis, and it is therefore better to conduct the measurements predawn when 

there is no transpiration (Améglio et al., 1999; Williams and Araujo, 2002). In addition, EWT 

estimation from optical remote sensing data is affected by canopy structure, understory 

vegetation and background soil reflectance, atmosphere, and shadows, as these factors affect 

the canopy reflectance and the signal received by the sensor (Baret and Guyot, 1991; Zarco-

Tejada et al., 2003; Ali et al., 2016). Furthermore, the vertical heterogeneity in the canopy 

biophysical and biochemical traits affects the light penetration and scattering within a canopy, 

and thus plays a role in the canopy reflectance; a role that is often ignored because such 

heterogeneity is difficult to measure and thus still needs to be investigated further (Valentinuz 

and Tollenaar, 2004; Ciganda et al., 2008; Wang and Li, 2013; Liu et al., 2015). There is a 

unique opportunity to address the aforementioned limitations using Terrestrial Laser Scanning 

(TLS). 

TLS instruments provide dense point clouds that include high-resolution information about the 

structure of the scanned objects. As a result, TLS instruments have been widely utilized in 

measuring vegetation canopy biophysical attributes, especially in forests, including but not 

limited to: tree height, diameter at breast height, forest biomass, and canopy LAI (Takeda et al., 

2008; Ramirez et al., 2013; Calders et al., 2015). Furthermore, TLS point clouds include 

intensity data in which the backscattered energy for each point is recorded, which can be linked 

to scanned target reflectance (Penasa et al., 2014). However, radiometric correction is needed 

for numerous factors that affect the TLS intensity data, including the instrumental effects, the 

effects of the target distance, and the effects of the incidence angle of the laser beam: the angle 

between the incident laser beam and the object’s surface normal (Kaasalainen et al., 2011; 

Krooks et al., 2013; Tan and Cheng, 2016). Such effects have been highlighted in numerous 

studies, and methods to calibrate the intensity to apparent reflectance have been successfully 
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developed for various TLS instruments (Höfle and Pfeifer, 2007; Jutzi and Gross, 2009; 

Kaasalainen et al., 2011; Krooks et al., 2013; Blaskow and Schneider, 2014; Anttila et al., 2016; 

Tan and Cheng, 2016; Zhu et al., 2017; Tan et al., 2018; Bolkas, 2019). The calibrated intensity 

data can then be used to provide estimates of vegetation biochemical characteristics in three 

dimensions (3D), if the TLS instrument operates at a suitable wavelength, such as the SWIR if 

estimating EWT (Eitel et al., 2010; Gaulton et al., 2013; Magney et al., 2014). 

One advantage of using TLS to estimate EWT is that the estimation can be carried out both at 

midday and predawn, as TLS instruments are active sensors that are independent of the solar 

illumination and cloud coverage. Another advantage is that the understory vegetation and soil 

can easily be separated from the canopy in the point cloud, using the spatial positioning 

information, thus removing their effect on the EWT estimation (Höfle, 2014). Furthermore, 3D 

estimates of EWT enable the vertical heterogeneity in EWT within canopy to be studied, 

including how it varies between species. In addition, more complex 3D RTMs that allow 

representation of the heterogeneity in tree structure have been developed and validated, e.g., 

DART (Discrete Anisotropic Radiative Transfer) (Gastellu-Etchegorry et al., 1996; Demarez 

and Gastellu-Etchegorry, 2000), SPRINT (Spreading of Photons for Radiation Interaction) 

(Goel and Thompson, 2000), FLIM (Forest Light Interaction Model) (Rosema et al., 1992), and 

FLIGHT (Three-dimensional Forest Light Interaction) (North, 1996), among others. Including 

the 3D EWT estimates in RTMs can lead to a better understanding of how the EWT 

heterogeneity affects canopy reflectance and received satellite signal. 

There have been a few successful attempts in recent years to utilize TLS intensity data in the 

estimation of EWT, using a single SWIR wavelength (Zhu et al., 2015; Zhu et al., 2017), or 

NDI of two laser wavelengths (Gaulton et al., 2013; Junttila et al., 2016; Junttila et al., 2018; 

Junttila et al., 2019). One advantage of using NDI over using a single SWIR wavelength is that 

it does not require radiometric correction for the incidence angle effects, if the two wavelengths 

involved in NDI were similarly affected (Eitel et al., 2014b; Hancock et al., 2017). Another 

advantage is that NDI can be insensitive to leaf internal structure effects (leaf thickness and 

LMA), while such effects can be significant when a single SWIR wavelength is used (Ceccato 

et al., 2001). Although the aforementioned studies showed the potential of using TLS intensity 

data in retrieving EWT, they investigated the relationship between TLS data and EWT at leaf 

level only, or at leaf and canopy level for small individual trees in a controlled environment. 

Only Junttila et al. (2019) recently used TLS to estimate EWT in a field campaign, but no 3D 

EWT estimates were generated. There remains a gap regarding the use of TLS to retrieve 3D 
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EWT estimates in complex vegetation environments such as forests. In addition, methods to 

model the EWT vertical heterogeneity in 3D RTMs are needed, as these models typically do 

not account for the heterogeneity in vegetation biochemical traits within the canopy. 

1.2 Research aim 

The main aim of this research is to estimate EWT at leaf and canopy level in 3D using the NDI 

of 808 nm Near InfraRed (NIR) wavelength (as utilized in Leica P20 commercial TLS 

instruments) and 1550 nm SWIR wavelength (as utilized in Leica P40 and P50 commercial 

TLS instruments), both in a laboratory setting and in multiple field campaigns (forest plot, 

willow crop site, and urban tree plot). This necessitates the development of methods to calibrate 

the intensity data from the different instruments used in the research to apparent reflectance, 

and also the investigation into the ability of NDI to minimize the incidence angle and leaf 

internal structure effects. Additional aims include: (1) investigating the potential of this EWT 

estimation approach for detecting temporal changes in EWT, and (2) utilising the 3D EWT 

estimates in the DART model to investigate how the vertical heterogeneity of EWT affects 

forest plot reflectance and received satellite signal. 

1.2.1 Research questions 

Key research questions include: 

1. Can intensity data from commercial dual-wavelength TLS be used to retrieve 3D 

estimates of EWT at leaf and canopy level in complex vegetation environments? 

2. Can the NDI of 808 nm and 1550 nm wavelengths minimize the incidence angle and 

leaf internal structure effects without the need for further radiometric corrections? 

3. How significant is the vertical heterogeneity of EWT within canopy and how does such 

heterogeneity vary between species?  

4. Can TLS detect temporal changes in EWT, and thus provide 4D EWT estimates?  

5. Can the 3D EWT estimates be utilised in 3D RTMs to study how such heterogeneity 

affects forest plot reflectance and received satellite signal? 

1.2.2 Research objectives 

The main research objectives are to: 
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1. Develop robust methods to calibrate the intensity data from commercially-available 

TLS instruments to apparent reflectance. 

2. Investigate the ability of NDI to minimize the effects of incidence angle and leaf internal 

structure without the need for further radiometric corrections. 

3. Examine the relationship between NDI and EWT at leaf level across a range of species. 

4. Use NDI to generate 3D EWT estimates at canopy level in a controlled laboratory 

experiment, as well as in field campaigns.  

5. Study EWT vertical heterogeneity within canopy and determine how it varies across 

different species and also between individual trees within each species. 

6. Investigate the potential of using TLS to detect temporal changes in EWT due to drought 

conditions. 

7. Develop methods to utilise the 3D EWT estimates in the DART model and simulate the 

effects of EWT vertical heterogeneity on satellite signal. 

1.3 Thesis structure  

This thesis consists of this introductory chapter and seven additional chapters. Chapter 2 

reviews relevant literature in the field of estimating EWT using optical RS and TLS data, 

discussing the advantages and limitations of such methods. Chapter 3 describes the different 

TLS instruments utilized in this research, the research method, the intensity correction models, 

and the incidence angle and leaf internal structure effects on NDI. Chapter 4 describes a dry-

down experiment conducted in a laboratory setting using four small trees from two different 

species to investigate the ability of NDI to estimate EWT at leaf and canopy level in a controlled 

environment. Chapter 5 describes the main data collection campaign conducted in a mixed-

species deciduous forest plot, aiming at estimating EWT in 3D in a real forest environment, and 

addressing the issues associated with the process. Chapter 6 describes two additional data sets, 

a willow crop plot and a mixed-species urban tree plot, with the first data set aiming at testing 

the transferability of the presented method to a different site, and the second focusing mainly 

on using TLS data to detect temporal changes in EWT. Chapter 7 describes methods to utilize 

the 3D EWT estimates in DART, aiming at studying the effects of EWT vertical heterogeneity, 

woody materials, and understory effects on forest plot reflectance. Finally, Chapter 8 presents 

a general discussion and conclusion, and highlights the key findings of the research.  
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Chapter 2. Remote sensing of leaf equivalent water thickness 

2.1 Introduction 

This chapter reviews previous literature related to estimating EWT from optical RS data, using 

vegetation indices and RTMs. Also, factors that affect the accuracy of the EWT estimation from 

optical RS data are discussed, including the effects of the canopy biochemical and biophysical 

traits vertical heterogeneity on canopy reflectance. Furthermore, the few previous studies that 

have looked into the use of TLS in estimating EWT and other vegetation biochemical traits are 

examined. 

2.2 Measuring EWT 

EWT can be measured on a small scale using in-situ approaches: destructive methods and field 

spectroscopy. In destructive methods, leaf samples are collected and their Fresh Weight (FW), 

Dry Weight (DW), and Surface Area (SA) are measured. EWT can then be expressed as follows 

(Danson et al., 1992): 

𝐸𝑊𝑇 (𝑔 𝑐𝑚−2) =
𝐹𝑊 −  𝐷𝑊

𝑆𝐴
 (2.1) 

Field spectroscopy, using portable spectroradiometers, measures leaf reflectance and 

transmittance and links them to leaf biochemical traits, such as EWT (Fourty and Baret, 1998). 

This is based on the interaction of radiation with leaves being dependant on the biochemical 

and biophysical characteristics of leaves (Jacquemoud and Baret, 1990) (Figure 2-1). Leaf 

spectra in the visible region of the electromagnetic spectrum (350 – 700 nm), characterized by 

low reflectance  and  transmittance, is mainly dominated by the influence of leaf pigments, 

including carotenoids, chlorophyll, and brown pigments (Gausman, 1977; Jacquemoud and 

Baret, 1990). Leaf internal structure dominates the spectra in the NIR region (700 – 1300 nm), 

where leaf spectral response is characterized by high reflectance and transmittance (Gausman, 

1977). In the SWIR region (1300 – 2500 nm), leaf water content is the main parameter that 

influences the leaf spectral response (Tucker, 1980). 

Measuring EWT using in-situ approaches is known to be time and effort consuming, in addition 

to being impractical for large areas (Peñuelas et al., 1993; Pu et al., 2003; Dash et al., 2017). 

An alternative approach to determine leaf EWT indirectly is by measuring leaf temperature, 

assuming that the difference between air and leaf surface temperatures is caused by 

transpiration, and thus can be linked to leaf water content (Chuvieco et al., 1999; Qi et al., 
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2005). However, using such an approach at the canopy level has limitations, as canopy 

temperature is not only affected by transpiration, but also by various metrological and 

environmental conditions, such as wind speed, air temperature, and humidity (Leinonen et al., 

2006; Zhao et al., 2016). As a result of the limitations of the aforementioned approaches, 

methods utilizing optical RS multispectral and hyperspectral data, airborne and spaceborne, 

have been widely adopted in EWT estimation. Such methods are more efficient, cost-effective, 

non-destructive, and can provide estimates of canopy EWT at a landscape level (Colombo et 

al., 2008; Clevers et al., 2010; Wangab et al., 2015; Dash et al., 2017). It is worth mentioning 

that radar remote sensing (wavelengths between 0.1 and 100 cm in the electromagnetic 

spectrum) can also be used as a non-destructive approach to estimate vegetation moisture 

content by measuring the leaf dielectric constant (leaf permittivity), which is directly 

proportional to its moisture content (Moghaddam and Saatchi, 1999). However, this is outside 

the scope of this research. 

 

Figure 2-1. Typical leaf spectra in the visible, NIR, and SWIR regions of the electromagnetic 

spectrum.  

2.3 Estimating EWT from optical RS data 

Optical RS sensors have a number of wavelength bands that record reflected energy in specific 

sections in the electromagnetic spectrum, between 350 to 2500 nm, covering visible, NIR, and 

SWIR regions. Multispectral sensors usually have three to 10 spectral bands, while 

hyperspectral sensors can have dozens to hundreds of wavelength bands (Thenkabail et al., 

2015). Satellite sensors can provide EWT estimates at a landscape level and are very useful for 

producing time series of comparable data (Foley et al., 1998). In addition, free access is 
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available to data from a number of the earth observation satellite sensors, such as Landsat, 

MODIS (Moderate-Resolution Imaging Spectroradiometer), Hyperion and Sentinel-2, reducing 

the cost needed for continuous monitoring of vegetation health. Figure 2-2 shows a time series 

of the change in CWC for natural vegetated areas in the USA generated from MODIS data. 

 

Figure 2-2. Multi-temporal change in CWC for 2005 for natural vegetated areas in the USA 

generated from MODIS data. Figure was adapted from Trombetti et al. (2008).  

Similar to field spectroscopy approaches, estimating EWT from optical RS data is primarily 

based on the interaction of radiation with foliage in the SWIR wavelengths, being dominated 

by absorption by water, where reflected energy is negatively related to leaf water content 

(Knipling, 1970; Tucker, 1980; Faurtyot and Baret, 1997; Datt, 1999; Zarco-Tejada et al., 2003; 

Féret et al., 2018). Figure 2-3 shows how the change in EWT mainly affects the leaf spectra in 

the SWIR region, while having less effect on the NIR and no effect on the visible wavelengths. 

However, SWIR reflectance alone is insufficient to accurately retrieve EWT, as leaf internal 

structure and LMA also affect the SWIR reflectance (Ceccato et al., 2001) (See Section 3.6 for 

more about the leaf internal structure effects). Combining NIR and SWIR reflectance in 

vegetation indices can minimize the leaf internal structure effects and thus lead to a more 

accurate estimation of EWT (Hunt and Rock, 1989; Ceccato et al., 2001; Ceccato et al., 2002). 
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In addition to vegetation indices, EWT can be estimated using inversion of physical RTMs 

(Serrano et al., 2000; Yebra et al., 2013; Mirzaie et al., 2014). 

 

Figure 2-3. The effects of changing EWT on leaf spectra. Water absorption bands can be seen, 

centred around 970, 1200, 1470, 1940, and 2500 nm.  

2.3.1 Vegetation indices 

Vegetation indices link the reflectance measured by the sensor in two or more spectral bands 

(wavelengths) to a specific vegetation biochemical trait, such as EWT, using different types of 

regression analysis (Bannari et al., 1995; Jones and Vaughan, 2010). Table 2-1 shows the 

widely used vegetation moisture content indices. 

Table 2-1. The widely used vegetation moisture content estimation indices.  

Index Formula Reference 

Normalised Difference 

Vegetation Index (NDVI) 
NDVI = (P858 – P648) / (P858 + P648) 

(Rouse Jr et 

al., 1974) 

Normalized Difference 

Infrared Index (NDII) 
NDII = (P820 – P1650) / (P820 + P1650) 

(Hardisky et 

al., 1983) 

Normalised Difference 

Water Index (NDWI) 
NDWI = (P860 – P1240) / (P860 + P1240) (Gao, 1996) 

Water Index (WI) WI = (P900) / (P970) 
(Peñuelas et 

al., 1993) 

Moisture Stress Index 

(MSI) 
MSI = (P1600) / (P820) 

(Hunt and 

Rock, 1989) 

 

The Normalized Difference Vegetation Index (NDVI) (Rouse Jr et al., 1974), derived from the 

reflectance in NIR and red wavelengths, mainly measures the vegetation greenness and 
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chlorophyll content, as red is a strong chlorophyll absorption region (Rouse Jr et al., 1974; 

Tucker, 1979; Gao, 1996; Pettorelli et al., 2005). Based on the assumption that the change in 

chlorophyll content is proportional to the leaf rate of drying and the change in leaf moisture 

content (Paltridge and Barber, 1988; Illera et al., 1996), NDVI has been linked to vegetation 

water status metrics, including FMC, EWT, and VWC (Peñuelas et al., 1994; Illera et al., 1996; 

Sims and Gamon, 2003; Jackson, 2004; Hunt et al., 2017). However, this assumption cannot 

be generalized to all species, limiting the use of NDVI in measuring vegetation moisture content 

(Ceccato et al., 2001; Sims and Gamon, 2003; Chen et al., 2005). Combining NDVI with leaf 

surface temperature measurements, derived from thermal imagery, was reported to lead to a 

more accurate estimation of leaf moisture content than using NDVI alone (Alonso et al., 1996; 

Chuvieco et al., 1999; Chuvieco et al., 2004b). 

Hardisky et al. (1983) introduced the Normalized Difference Infrared Index (NDII), which is a 

variation of NDVI that utilized SWIR reflectance instead of red, aiming at EWT retrieval from 

Landsat data. Gao (1996) introduced a similar index, the Normalized Difference Water Index 

(NDWI), which used a SWIR band centred at 1240 nm instead of 1650 nm as in NDII, as it has 

atmospheric transmittance similar to the NIR band used in the index. Both indices have been 

reported to be highly correlated to EWT (Maki et al., 2004; Cheng et al., 2008b; Colombo et 

al., 2008; De Jong et al., 2014; Yi et al., 2014; Hunt Jr et al., 2016), and numerous variations 

have been developed using different band combinations, e.g., (Ceccato et al., 2002; Fensholt 

and Sandholt, 2003; Van Niel et al., 2003; Chen et al., 2005; Rodríguez-Pérez et al., 2007). 

Hunt and Rock (1989) introduced the Moisture Stress Index (MSI), a simple ratio of reflectance 

at 1600 nm and 820 nm, while Peñuelas et al. (1993) proposed the Water Index (WI), a simple 

ratio of reflectance at 900 nm and 970 nm wavelengths. Both indices have also been 

successfully used to retrieve EWT (Colombo et al., 2008; De Jong et al., 2014; Yi et al., 2014; 

Liu et al., 2016; Neto et al., 2016).  

Vegetation indices can easily be parameterized and applied, thus have been widely utilized in 

estimating EWT at leaf and canopy levels. Ceccato et al. (2001) used the data of the Leaf 

Optical Properties Experiment 1993 (LOPEX93) (Hosgood et al., 1995), in which leaf samples 

from 50 species were collected in the area of Ispra, Italy, and their spectra and water content, 

in addition to other biochemical traits, were measured, to study the relationship between MSI 

and EWT, reporting high correlation (R2 = 0.92). Rodríguez-Pérez et al. (2007) reported a high 

correlation (R2 > 0.91) between WI, calculated from in-situ spectroradiometer data, and EWT 

of grapevines in commercial vineyards. De Jong et al. (2014) investigated the possibility of 
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estimating EWT for semi-natural vegetation and agricultural crops, including vineyards and 

pasture, in the Peyne catchment in Mediterranean southern France, using WI and NDWI derived 

from field spectroradiometer data. Good correlation was reported between EWT and the tested 

vegetation indices (R2 > 0.7). Yi et al. (2014) reported high correlation between EWT and NDII, 

NDWI, and WI (R2 > 0.9) in cotton plants during the growing season. Neto et al. (2016) studied 

the relationship between WI and EWT of sunflower plants during a controlled dry-down 

experiment for a duration of 12 days, reporting very high correlation (R2 > 0.94). Liu et al. 

(2016) used destructive sampling and field spectroradiometer data to examine the relationship 

between NDWI, NDII, WI, MSI, and EWT of winter wheat during the growing season, 

reporting high correlation for all indices (R2 > 0.8). Hunt Jr et al. (2016) tested different 

WorldView-3 NIR and SWIR band combinations and reported that the NDWI of 832 nm and 

2165 nm wavelengths was highly correlated to EWT of leaf samples from various species. 

Zhang et al. (2019) used the data of LOPEX93 to modify NDWI, and introduced a new 

vegetation index constructed with 1725 and 2200 nm wavelengths, reporting that it was more 

correlated to EWT than the original NDWI.  

At the landscape level, Cheng et al. (2008b) used NDVI, NDWI, and NDII to retrieve canopy 

EWT in sixteen plots of seven vegetation communities in south-eastern Arizona (grasslands, 

shrublands, riparian grasslands, riparian cottonwood, riparian mesquite, oak woodlands, and 

agriculture) from MODIS data. Due to the large pixel size of MODIS imagery (500 m × 500 m), 

it was not possible to directly link the data to the EWT measured from leaf sampling in the 

sixteen plots (40 m × 40 m). Thus, AVIRIS (Airborne Visible/Infrared  Imaging Spectrometer) 

data (20 m spatial resolution) was first linked to the ground truth data and EWT maps were 

generated and validated with high accuracy (R2 = 0.9). For this, the leaf samples had to be 

collected from canopy top layers. The AVIRIS EWT map was then degraded to MODIS 500 m 

spatial resolution and used to retrieve and validate EWT from MODIS data. R2 ranged between 

0.45 and 0.8 (R2 between 0.6 and 0.87 in the woodland plots). Colombo et al. (2008) estimated 

EWT in 12 poplar plantation stands located on the floodplain of the Ticino River in Northern 

Italy using numerous vegetation indices, including NDWI, NDII, and MSI, derived from 

MIVIS (airborne Multispectral Infrared and Visible Imaging Spectrometer) data. Leaf sampling 

was conducted on three trees from each stand, with the leaf samples being collected from the 

upper canopy, and the total number of leaf samples being  144 leaves. The relative error in the 

canopy EWT estimates was 20%.  
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Yilmaz et al. (2008) used NDII derived from Landsat-5 data to estimate canopy EWT in sites 

of corn, soybean, and deciduous woodlands in Iowa, USA, reporting high correlation between 

NDII and EWT (R2 = 0.85), and using the EWT estimates to retrieve the VWC. Landsat spatial 

resolution allowed direct validation of the estimated EWT and VWC using destructive sampling 

in 20 m × 20 m plots. However, the challenge of collecting leaf samples from the canopy top 

in the woodland plots was highlighted. Zhao et al. (2016) used NDWI derived from MODIS 

data to estimate canopy EWT in four 1 km2 winter wheat plots in Ningxia Plain, China. To 

build the estimation model and validate the estimations, leaf samples were collected from upper 

canopy layers from five locations in each 1 km2 plot, with each location consisting of ten trees. 

The total number of leaf samples from each location was 100 leaves. EWT was measured and 

the average EWT in each sampling location was considered the average of EWT of the leaf 

samples collected. Good agreement was reported between estimated and measured EWT (R2 = 

0.7). This study highlighted that using destructive sampling to fit EWT estimation models, and 

to validate the estimation, for MODIS data can be very challenging, as it would require 

collecting a large number of leaf samples from sampling plots, which have to be large enough 

to match the MODIS pixel size. 

Vegetation indices are sensor specific and dependant on site and sampling conditions, meaning 

that an index developed using a specific data set may not be transferable to other sites or 

applicable to different species (Tucker, 1980; Riaño et al., 2005; Yebra et al., 2008; Chuvieco 

et al., 2009; Al-Moustafa et al., 2012; Yebra et al., 2013). At the landscape level, the 

performance of vegetation indices is also influenced by canopy structure, understory vegetation, 

soil moisture content, non-photosynthetic components, atmospheric conditions, solar 

illumination and sensor viewing angles (Baret and Guyot, 1991; Serrano et al., 2000; Zarco-

Tejada et al., 2003; Eitel et al., 2010; Ali et al., 2016). Another limitation is that the indices not 

only depend on the vegetation moisture content but also on other vegetation parameters 

(Serrano et al., 2000). Zarco-Tejada et al. (2003) reported that NDWI was influenced, to an 

extent, by leaf thickness, LMA and canopy LAI. Yi et al. (2014) and Zhang and Zhou (2015) 

also reported that NDII, NDWI, and WI were affected by the canopy LAI. De Jong et al. (2014) 

further highlighted that the accuracy of EWT estimation using vegetation indices was heavily 

affected by canopy LAI.  

Furthermore, at the landscape level, it is possible to directly link the vegetation indices 

calculated from airborne and spaceborne optical RS data with high spatial resolution to canopy 

EWT measured from leaf sampling conducted in sampling plots. However, leaves have to be 
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collected from the upper canopy layers, which can be challenging in forest plots. For spaceborne 

sensors with low spatial resolution (large pixel size), such as MODIS, airborne imagery and/or 

extensive destructive sampling is needed to scale the EWT estimates from plot level to 

landscape level, and vegetation indices derived from the satellite imagery cannot be directly 

linked to ground truth data. 

2.3.2 Radiative transfer models 

RTMs simulate vegetation spectra using the radiative transfer equation (Ross, 1981; Ross, 

2012) and take the characteristics of leaf biophysical and biochemical traits, canopy structure, 

and background soil into consideration. By inverting these models, EWT and other canopy 

characteristics can be estimated (Jacquemoud et al., 1995; Ustin et al., 1998; Ceccato et al., 

2002; Zarco-Tejada et al., 2003; Kötz et al., 2004; Mendiguren et al., 2015). Another advantage 

of RTMs over vegetation indices is that they are not site-dependant as they are based on a 

physical principle, which means they can be applied at different locations and obtain good 

results, as long as they accurately represent the vegetation canopy (Yebra et al., 2008; Yebra et 

al., 2013; Quan et al., 2017). 

Among the existing RTMs, the SAIL (Verhoef, 1984), PROSPECT (Jacquemoud and Baret, 

1990; Jacquemoud et al., 2009), LIBERTY (Leaf Incorporating Biochemistry Exhibiting 

Reflectance and Transmittance Yields) (Dawson et al., 1998), PROSAIL (Baret et al., 1992), 

and GeoSail (Huemmrich, 2001) models are the most popular in retrieving biochemical and 

biophysical characteristics of vegetation from optical RS data (Yebra et al., 2008; Zhang and 

Zhou, 2015; Quan et al., 2017). PROSPECT simulates leaf optical properties for broadleaf 

species at leaf level by parametrizing a number of leaf traits, including EWT, LMA, and 

chlorophyll content, and modelling a leaf as a number of layers (plates), based on the plate 

model introduced by Allen et al. (1969) (Jacquemoud and Baret, 1990). For more about 

parameterizing PROSPECT, see Section 3.6. LIBERTY, on the other hand, was designed for 

conifer needles and simulates needles’ spectra by modelling them as spherical cells separated 

by airspace (Dawson et al., 1998). SAIL approximates the canopy as a turbid medium (a set of 

infinitely small flat surfaces), assuming a homogenous and continuous canopy, then simulates 

the canopy reflectance using canopy structural parameters, including LAI, leaf angle 

distribution, and relative leaf size (Verhoef, 1984). PROSAIL links PROSPECT and SAIL to 

describe the canopy reflectance as a function of leaf biochemistry and canopy structure 

parameters (Baret et al., 1992). GeoSAIL combines SAIL with the Jasinski geometric model 

(Jasinski and Eagleson, 1989), defining a vegetation plot as a number of trees modelled as 
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cylinders or cones distributed over a plane. GeoSAIL splits any scene into three components: 

illuminated canopy, shadowed background, and illuminated background, aiming at simulating 

canopy reflectance for discontinuous canopies (Huemmrich, 2001). 

RTMs can be used to select suitable wavelengths for vegetation biochemistry estimation and 

for developing and testing vegetation indices. For instance, Faurtyot and Baret (1997) used the 

PROSPECT and SAIL models to determine which wavelengths were suitable for estimating 

EWT, LMA, and LAI at canopy level from satellite data (900, 1100, 1190, 2040, and 2260 nm 

for canopy EWT). Ceccato et al. (2002) used PROSPECT simulations to develop the Global 

Vegetation Moisture Index (GVMI), a vegetation index optimized specifically to retrieve EWT 

at canopy level from the SPOT-VEGETATION sensor (SPOT: Satellite for observation of 

Earth, Satellite Pour l’Observation de la Terre). Sun et al. (2019) used PROSPECT simulations 

and the LOPEX93 dataset to determine the suitable wavelengths to be utilized in multispectral 

Lidar systems for EWT and chlorophyll content estimation, recommending the use of 680 nm 

and 716 nm wavelengths for chlorophyll estimation and 1882 nm and 1920 nm wavelengths for 

EWT. 

Furthermore, RTMs were widely adopted in estimating canopy EWT at the landscape level 

from optical RS data. Zarco-Tejada et al. (2003) found a high correlation (R2 > 0.7) between 

EWT estimated from MODIS data, by inversion of the PROSPECT and SAIL models, and 

actual EWT measured by destructive sampling in ten study sites of chaparral vegetation in 

California, USA. The study also highlighted that NDWI was influenced by leaf LMA and 

canopy LAI, and that inversion of RTMs, utilizing all MODIS bands, can minimize such effects, 

making this method suitable for generating time series of canopy EWT, independent of seasonal 

changes of LAI. Riaño et al. (2005) used the LOPEX93 dataset and inversion of PROSPECT 

to estimate EWT and LMA, then to investigate the accuracy of estimating FMC from EWT and 

LMA at leaf level, validating the estimates using destructive sampling of three trees (gall oak, 

rosemary, and rock rose) in a laboratory experiment. EWT was estimated with high accuracy 

(R2 = 0.94), while LMA was poorly estimated (R2 = 0.38), which affected the accuracy of FMC 

estimation as a result (R2 = 0.33). PROSPECT was then linked to the Lillesaeter infinitive 

reflectance canopy model (Lillesaeter, 1982) to estimate EWT and FMC at canopy level, 

reporting that canopy EWT can be retrieved more accurately than canopy FMC (R2 = 0.75 and 

0.62 respectively). This study further showed that inversion of RTMs can retrieve canopy EWT, 

insensitive to leaf and canopy structure effects. Colombo et al. (2008) estimated canopy EWT 

for 12 poplar plantation stands from MIVIS data by inversion of the PROSPECT and SAIL 
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models, validating the estimation using destructive sampling, and reporting a relative error of 

27% in the estimation. This study highlighted that the successful estimation of canopy EWT at 

landscape level using inversion of RTM requires prior knowledge of the model variables to 

improve the performance of the model.  

Trombetti et al. (2008) estimated canopy EWT in four sites in continental USA covering three 

major vegetation types: woodlands, shrublands, and grasslands, from MODIS data by inverting 

the PROSAIL model. Canopy EWT retrieved from AVIRIS data was used to calibrate the 

model and validate the estimates, and good correlation was reported between canopy EWT 

estimated from MODIS and AVIRIS data (R2 ranging between 0.57 and 0.71). The canopy 

EWT estimated from MODIS was not validated directly using destructive sampling, as it was 

considered extremely difficult and costly to collect a sufficient number of leaf samples in a 

large number of sampling plots to directly scale the EWT measurements to 500 m MODIS 

pixels.  

Jurdao et al. (2013) inverted PROSPECT and GeoSAIL models to estimate canopy FMC from 

canopy EWT using MODIS data in evergreen broadleaf, deciduous broadleaf, and coniferous 

woodlands in Eurosiberian (energy-limited environment) and Mediterranean (water-limited 

environment) regions in Spain. Leaf samples were collected from 19 sampling plots,  

500 × 500 m to be representative of a MODIS pixel, and used in parametrizing the RTMs and 

in validating the FMC estimates. Relative RMSE was reported to be < 30 %. Once again, the 

challenge of collecting a sufficient number of leaf samples to represent EWT/FMC in large 

sampling plots that matched MODIS pixel size was highlighted, and a total of 154 field 

measurements, each consisting of  80 to 100 g of randomly-selected leaves, were used in this 

study. Also, it was reported that collecting leaf samples from the canopy top was not always 

possible, as not all trees were accessible. 

Quan et al. (2017) showed that coupling different RTMs to invert Landsat 8 data to estimate 

FMC from EWT and LMA, by using PROSAIL to simulate understory spectra, and GeoSAIL 

to simulate canopy spectra, instead of using GeoSAIL alone, improved the accuracy of the 

estimation (R2 = 0.86 and 0.74 respectively), in four study areas in Sichuan province, China. 

The study areas consisted of evergreen broadleaf, deciduous broadleaf, and coniferous forests. 

A total of 572 leaves samples were collected from the upper canopy in 41 plots,  40 m × 40 m 

to be as close as possible to the pixel size of Landsat 8 (30 m × 30 m). FMC and EWT were 

overestimated, and this was explained as a result of the number of leaf samples collected to 
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calibrate and validate the models being insufficient to represent all canopy properties in the 

samples plots. This further highlighted the challenges associated with scaling up field 

measurements to the landscape level. Zhu et al. (2019) inverted the INvertible FOrest 

Reflectance Model (INFORM) to estimate canopy EWT in the southern part of the Bavarian 

Forest National Park in Germany from airborne hyperspectral data, using canopy structural 

parameters derived from airborne LiDAR data (Riegl LMS-Q 680i sensor) to parametrize the 

model. Leaf samples were collected from the canopy top in 26 forest plots to calibrate and 

validate the model. It was reported that using LiDAR data to parametrize the model improved 

the canopy EWT estimation accuracy (R2 = 0.87 and 0.82 respectively).  

One downside of using RTMs is the ill-posed nature of model inversion, that is, different 

combinations of inputs can produce almost identical spectra  (Combal et al., 2003; Baret et al., 

2007; Yebra and Chuvieco, 2009; Li and Wang, 2011). Solutions to this issue include the use 

of a priori information about canopy characteristics to optimize the accuracy of RTMs 

inversion, using look-up table based approaches (Weiss et al., 2000; Combal et al., 2003; 

Darvishzadeh et al., 2008) or artificial neural network approaches (Baret et al., 1995; Atzberger, 

2004). In addition, RTMs assume a homogenous canopy, using mean values of canopy 

biophysical and biochemical traits to parametrize the model, which can lead to errors in the 

simulated canopy reflectance in sites that exhibit large vertical and/or horizontal heterogeneity, 

such as forests (Kuusk, 2001; Wang and Li, 2013). To overcome this limitation, Kuusk (2001) 

developed a two-layer RTM that represents a vegetation plot as two different layers (a canopy 

layer and an understory layer), allowing biochemical and biophysical traits to be assigned to 

each layer separately, thus introducing some heterogeneity. However, the model did not account 

for the horizontal heterogeneity, or for the vertical heterogeneity within the canopy.  

More complex 3D RTMs have been developed, such as the DART (Gastellu-Etchegorry et al., 

1996; Demarez and Gastellu-Etchegorry, 2000), SPRINT (Goel and Thompson, 2000), FLIM 

(Rosema et al., 1992), and FLIGHT models (North, 1996), among others. 3D RTMs, despite 

being demanding in terms of computational time and the number of parameters that need to be 

accurately defined, allow 3D realistic representation of vegetation canopies and account for the 

horizontal and vertical heterogeneity in canopy structure. However, the models do not take the 

vertical heterogeneity in canopy biochemical traits in consideration. 

Overall, estimating EWT from spaceborne and airborne optical RS data, despite its advantages 

over in-situ approaches, has some limitations. The temporal resolution (revisit time) of 
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spaceborne sensors may not be suitable for monitoring rapid changes in vegetation water status 

(e.g. 16 days for Landsat, and 10 days for Sentinel-2 with one satellite, five days with two 

satellites). Cloud coverage can also further reduce the temporal resolution, preventing usable 

data collection on overcast days, and creating gaps in time series (White et al., 2014; Xue and 

Su, 2017). The spatial resolution can also be a limiting factor in some applications, such as 

precision agriculture and heterogeneous canopy areas where a single pixel may integrate 

spectral response of numerous species and land cover types with different characteristics 

(Eastman et al., 2013). Using data from very high resolution commercial sensors such as 

WorldView-2 and WorldView-3 is not cost effective. On the other hand, optical and thermal 

sensors mounted on Unmanned Aerial Vehicles (UAVs) can acquire data at very high temporal 

and spatial resolutions, overcoming some of the limitations associated with spaceborne sensors 

(Honkavaara et al., 2013; Ballesteros et al., 2015). However, some limitations associated with 

UAVs include their limited coverage, short flying time, and payload and airspace law 

constraints (Berni et al., 2009; Anderson and Gaston, 2013). 

Estimating canopy EWT from optical RS data is also limited by the effects of canopy structure, 

especially canopy LAI, and to reduce such effects, canopy EWT at landscape level is considered 

the product of EWT and LAI. Calibrating and validating the EWT estimation models, whether 

vegetation indices or RTMs are used in the estimation, requires collecting a large number of 

leaf samples from the upper canopy layers in sampling plots that match the pixel size of the 

spaceborne sensor. This is a challenging process, as the canopy top layers are not always 

accessible, and the leaf samples collected from a sampling plot do not necessarily represent the 

actual EWT in the whole plot. MODIS data is very popular in vegetation water status 

monitoring because of the large coverage and high temporal resolution of MODIS. However, 

scaling up the EWT measurements retrieved from destructive sampling to the landscape level 

is even more challenging with MODIS data because of its large pixel size. The studies reviewed 

in Section 2.3 showed that there is a need for a fast, non-destructive EWT estimation method 

that can retrieve canopy EWT in large sampling plots and can be used in calibrating and 

validating the EWT estimation models from spaceborne optical RS data. TLS can serve as such 

a tool because of the high speed and long range of the commercially-available modern 

instruments, making them suitable for collecting data at plot level. Also, TLS can easily provide 

information about the canopy top layers, even if these layers are not accessible from the ground, 

and EWT in such layers is crucial for calibrating and validating the EWT estimation models. 

Furthermore, TLS can fill the gap in the time series of canopy EWT estimates derived from 
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satellite data, because TLS instruments are active sensors. In addition, TLS can provide 

information about the vertical heterogeneity in canopy structure and biochemistry, which is 

covered in Section 2.3.3.   

2.3.3 Vertical heterogeneity in canopy biochemical traits 

Leaves at different heights within a canopy contribute differently to the total canopy 

photosynthesis, resulting in vertical heterogeneity in canopy biophysical and biochemical traits, 

which can be linked to the canopy foliage-height profile (Aber, 1979; Ellsworth and Reich, 

1993; Parker et al., 2001; Weerasinghe et al., 2014). Well-illuminated leaves in the canopy top, 

known as sun leaves, usually have a higher photosynthetic rate than shaded leaves in the canopy 

bottom, and plants tend to dedicate more nutrients and water to sun leaves to optimize 

photosynthesis (Hirose and Werger, 1987; Hikosaka, 2004; Coble et al., 2016). The canopy 

vertical heterogeneity affects the light penetration and scattering within the canopy, and thus 

affects the canopy reflectance (Valentinuz and Tollenaar, 2004; Ciganda et al., 2008; Tang et 

al., 2012; Wang and Li, 2013; Liu et al., 2015; He et al., 2016; Gara et al., 2018). Such vertical 

heterogeneity has been recognized and highlighted in a number of studies. 

Keating and Wafula (1992) found that a maize canopy has bell-shaped vertical distribution of 

LAI, while for the same canopy type, Ciganda et al. (2008) reported that it also has bell-shaped 

vertical distribution of chlorophyll content and leaf nitrogen content. Valentinuz and Tollenaar 

(2004) reported that during senescence, which changes leaf internal structure (Jacquemoud and 

Baret, 1990), leaves in the top and bottom canopy were the first to senesce, while leaves in the 

middle canopy were the last. Koetz et al. (2008) reported that the vertical heterogeneity of CWC 

can play a role in wildfire propagation. Tang et al. (2012) showed that canopy LAI varies 

vertically, with LAI in the top of canopy being higher than that in the bottom of the canopy, in 

a tropical rain forest. Liu et al. (2015) analysed the vertical distribution of EWT in winter wheat 

and reported it to be a near bell-shaped curve with the highest values in the middle canopy 

layers.  

Zhu et al. (2017) reported that EWT varied vertically in 20 small trees from five different 

species: Schefflera arboricola compacta (dwarf schefflera), Ficus benjamina twilight (weeping 

fig), Ficus microcarpa (Chinese banyan), Ficus benjamina Danielle (ficus), and Zamioculcas 

zamiifolia (Zanzibar gem), with EWT being higher in the top part of the canopy than the rest of 

the canopy. This was explained as a result of new leaves at the top of the canopy having higher 

water than older leaves (Mooney et al., 1977). Arellano et al. (2017) showed that canopy 
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biochemical and biophysical traits, including chlorophyll, EWT, and leaf thickness, varied 

vertically within the canopy in three plots in the Amazon forest of Ecuador, with EWT and leaf 

thickness being higher in canopy top layers, and chlorophyll being higher in middle canopy 

layers. A possible explanation for the observations was the top layers of canopy receiving the 

majority of irradiance (Chazdon and Fetcher, 1984). Ma and Upadhyaya (2018) reported 

vertical heterogeneity in chlorophyll content and LMA in a tomato crop, showing that such 

heterogeneity affected leaf spectra at different canopy heights. Gara et al. (2018) reported that 

nitrogen, carbon, chlorophyll, EWT, and LMA were higher in the canopy top than in the canopy 

bottom in four small trees (Camellia japonica, Ficus benjamina, Chamaedorea elegans, and 

Fatshedera lizei). 

Vegetation indices do not take into consideration the effects that vertical heterogeneity has on 

canopy reflectance, which can influence their EWT estimation accuracy (Liu et al., 2015; Zhu 

et al., 2017). RTMs assume that the canopy is vertically homogeneous in terms of the canopy 

biochemical and biophysical properties, including LAI, chlorophyll and EWT, using an average 

value to define each parameter in the model. The more complex 3D RTMs account for the 

vertical heterogeneity in the canopy structure, but do not consider the vertical heterogeneity in 

the biochemical characteristics, which can affect their canopy reflectance simulation accuracy 

(Wang and Li, 2013). Such heterogeneity cannot be measured using optical RS spaceborne and 

airborne data, as the reflectance measured by these sensors is dominated by the canopy top (Li 

et al., 2014; Liu et al., 2015). Destructive sampling and field spectroscopy can provide some 

information about the vertical distribution of canopy biochemical traits, by splitting the canopy 

into multiple layers, typically upper, middle, and bottom canopy, and taking measurements in 

each layer (Arellano et al., 2017; Gara et al., 2018). However, this is an impractical approach 

for large areas and also cannot provide detailed vertical profiles of canopy biochemical traits, 

which requires taking measurements in each canopy layer. TLS, being able to provide high-

resolution 3D information, can be a useful tool to measure such heterogeneity. 

2.4 Terrestrial laser scanning 

TLS instruments have the ability to determine the relative location of points in the surrounding 

environment quickly and accurately. They record the backscattered laser beam energy and 

measure the 3D coordinates of points on surfaces that reflected the laser signal. The 3D 

coordinates are stored in dense point clouds that represent the 3D structure of the scanned 

objects. In addition to the 3D coordinates of surrounding points, a point cloud includes an 

intensity image in which the magnitude of the recorded backscattered energy for each point is 
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recorded. Available TLS instruments can be divided into three categories: time-of-flight 

discrete pulse systems, continuous wave phase-shift systems, and time-of-flight full waveform 

systems. 

A time-of-flight discrete pulse scanner measures the time a pulse of light needs to travel to a 

surface, interact with it and reflect back to the scanner (Cote et al., 2009). The instrument then 

calculates the range to the target as follows:  

𝑅𝑎𝑛𝑔𝑒 (𝑚) =
𝑡 × 𝐶

2
 (2.2) 

Where t is the time of flight and C is the speed of light. 

The range and the angle at which the light pulse was emitted are used to determine the 3D 

coordinates of that specific point on the target’s surface in relation to the LiDAR scanner 

position. Modern time-of-flight scanners have high accuracy and also long range. A phase-shift 

scanner emits a sinusoidal laser pulse and determines the time of travel by calculating the phase-

shift between the emitted and returned pulse (Balduzzi et al., 2010). The instrument uses the 

calculated time to measure the range to the target and determine the 3D coordinates of that 

specific point on the target’s surface. Phase-shift scanners have a very high rate of points 

measured per second. However, this is at the expense of the instrument’s range which is 

relatively lower than that of discrete pulse time-of-flight scanners. A time-of-flight full 

waveform scanner emits laser pulses, then records the full time trace of the energy of the 

returned pulses, known as the full waveform (Lovell et al., 2011). The instrument then uses a 

similar approach as the time-of-flight discrete return scanners to measure the range to the points 

in the surrounding environment after post-processing the full waveforms. However, a major 

difference from the discrete pulse scanners is that full waveform scanners record the full 

intensity trace of the backscattered laser pulses. This leads to more information being available 

from the point clouds, which can be useful in analysing very complicated scan scenes. 

TLS instruments have been widely used for high resolution measurements of vegetation 

canopies during the last two decades, especially in forests, allowing a comprehensive 

description of forest biophysical characteristics (Henning and Radtke, 2006; Takeda et al., 

2008; Moskal and Zheng, 2011; Ramirez et al., 2013; Newnham et al., 2015; Disney, 2019). 

Forest biophysical attributes obtained using TLS data include, but are not limited to, tree height 

(Hilker et al., 2010; Olofsson et al., 2014; Laurin et al., 2019; Tian et al., 2019), stem diameter 

(Lovell et al., 2011; Pitkänen et al., 2019), above ground biomass (Yu et al., 2013; Kaasalainen 
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et al., 2014; Srinivasan et al., 2014; Calders et al., 2015; Greaves et al., 2015), leaf area density 

(Takeda et al., 2008), leaf area distribution (Béland et al., 2011), directional gap fraction 

(Danson et al., 2007; Ramirez et al., 2013; Chen and Wang, 2016; Zheng et al., 2016), and 

canopy LAI (Moorthy et al., 2008; Antonarakis et al., 2010; Zheng et al., 2013; Vincent et al., 

2015; Meng et al., 2019). Further applications include leaf – wood separation (Béland et al., 

2014; Douglas et al., 2015; Ma et al., 2016; Zhu et al., 2018), tree 3D modelling (Pfeifer et al., 

2004; Côté et al., 2009; Eysn et al., 2013; Hackenberg et al., 2015; Raumonen et al., 2015), 

and realistic 3D forest plot reconstruction (Calders et al., 2016; Calders et al., 2018). The former 

two applications allowed the realistic representation of trees in 3D RTMs (Widlowski et al., 

2015), which can improve the accuracy of their simulation of canopy reflectance (Zhu et al., 

2019). On the other hand, less attention has been paid to utilising intensity data recorded by the 

TLS instruments to estimate important vegetation biochemical characteristics, such as EWT, at 

leaf and canopy level. 

2.4.1 TLS intensity data 

TLS instruments not only provide information on canopy structure, but also record intensity 

data that is a function of the reflectance of the scanned object (Penasa et al., 2014). Thus, by 

using a shortwave infrared wavelength instrument, the recorded intensity can theoretically be 

used to provide 3D estimates of EWT at leaf and canopy level (Gaulton et al., 2013; Zhu et al., 

2017). However, the scanned object reflectance is not the only parameter that influences the 

TLS recorded intensity data. Numerous other factors influence the intensity, including 

instrumental effects, and the scan geometry (Krooks et al., 2013; Kashani et al., 2015). Thus, 

radiometric correction is needed prior to linking the intensity to EWT. The instrumental effects 

refer to the instrument internal processing that alters the intensity values to enhance the 

visualization of the point cloud and/or improve the range measurement using algorithms that 

are unknown to the end-user (Danson et al., 2014). The scan geometry effects include the range 

and the incidence angle effects. The laser equation (Höfle and Pfeifer, 2007), derived from the 

radar equation (Jelalian, 1992), summarizes the aforementioned factors as follows: 

𝑃𝑟 =
𝑃𝑡 𝐷

2𝜌 cos (𝜃)

4 𝑅2
 𝜂𝑠𝑦𝑠 𝜂𝑎𝑡𝑚 (2.3) 

Where Pr is the received backscattered signal, Pt is the emitted signal, D is the receiver aperture 

diameter, ρ is the target reflectance coefficient, θ is the incidence angle, ηsys corresponds to the 

instrumental effects, ηatm corresponds to the atmospheric effects, and R is the range to target. 
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Parameters Pt, D and ηsys, all being sensor-related, and ρ, being a characteristic of the scanned 

target, are theoretically constant during a single scan (Höfle and Pfeifer, 2007; Jutzi and Gross, 

2009), while ηatm can be neglected for close-range TLS (Kaasalainen et al., 2011; Fang et al., 

2015). Thus, in a single scan, the scan geometry remains the major element affecting the TLS 

recorded intensity (Krooks et al., 2013). 

The range effect refers to how the distance between the instrument and the scanned object 

affects the backscattered laser pulse magnitude, which is then recorded as intensity data 

(Kaasalainen et al., 2011; Tan et al., 2016). Typically, the farther the laser pulse travels, the 

more energy it loses, and the lower the recorded backscattered intensity will be, in comparison 

to similar objects nearer to the instrument (Kashani et al., 2015). According to the laser 

equation, the recorded intensity is inversely proportional to the square of the measured range. 

However, numerous authors reported that this relationship is only theoretical and that the actual 

relationship between intensity and range must be studied separately for each instrument. 

Kaasalainen et al. (2011) showed that the intensity-range relationship for the FARO LS880 and 

Leica HDS 6100 scanners only follow the 1/R2 relationship after 10 m. Blaskow and Schneider 

(2014) reported high deviation in the intensity-range relationship from the 1/R2 prediction for 

the Riegl LMS Z420i scanner, while the Z+F Imager 5006i scanner follows the 1/R2 

relationship only after 5 m. Fang et al. (2015) reported the same observation for the Z+F Imager 

5006i scanner. Tan et al. (2016) found a deviation from the laser equation at both near and far 

ranges for the Faro Focus3D 120 scanner. The deviation in the intensity-range relationship from 

the laser equation was explained to be a result of the instruments being equipped with a near-

distance intensity reducer to protect the optics and/or far-distance amplifiers to enhance the 

range measurements for far targets (Jutzi and Gross, 2009; Kaasalainen et al., 2011; Blaskow 

and Schneider, 2014; Fang et al., 2015; Tan et al., 2016; Calders et al., 2017). TLS instruments 

accurately record the coordinates of each point in the point cloud, which can be used to calculate 

the range of each point to be used in the radiometric calibration. Typically, external reference 

targets with known reflectance can be used to develop the intensity correction models (Pfeifer 

et al., 2008; Kaasalainen et al., 2009; Kaasalainen et al., 2011; Blaskow and Schneider, 2014; 

Kashani et al., 2015). 

The incidence angle of the laser beam is the angle between the incident laser beam and the 

object’s surface normal (Kaasalainen et al., 2016). According to the laser equation, the TLS 

recorded backscattered intensity is directly proportional to the cosine of the incidence angle for 

a Lambertian surface (Kaasalainen et al., 2016). The effect of the incidence angle primarily 
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depends on the target surface characteristics (Tan and Cheng, 2016). However, Lambertian 

cosine law (Equation (2.4)) can often sufficiently describe the incidence angle effect, whether 

the scanned target can be approximated as a Lambertian surface or not (Kaasalainen et al., 

2011). This does not apply for surfaces with high irregularity (Krooks et al., 2013). 

𝐼𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 = 𝐼𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 cos 𝜃 (2.4) 

Where Ireflected is the intensity reflected from the target’s surface and Iincident is the intensity 

incident on the target’s surface. 

Hancock et al. (2017) and Kaasalainen et al. (2018) showed the effects that incidence angle has 

on TLS recorded backscattered intensity of leaf samples, which can cause a significant bias in 

TLS estimation of leaf biochemical traits if no radiometric corrections are applied. To correct 

for such effects using the Lambertian law, the incidence angle of the laser beam for each point 

in the point cloud needs to be determined first. TLS instruments do not record the incidence 

angles automatically and the incidence angle needs to be determined by the end-user. This is 

achievable by fitting surface planes to the points and calculating the surface normal vector for 

each point, then calculating the incidence angle using the normal vector and the point vector 

between the point and the scanner. However, in a complex vegetation canopy, it is not trivial to 

use such an approach to  calculate the incidence angle for each leaf/needle in the point cloud 

(Hancock et al., 2017), making it a challenge to accurately calibrate for the incidence angle 

effect with a single wavelength (Béland et al., 2014). The approach is time and computational 

resource consuming, plus, the accuracy of the normal vector estimation can be of concern, 

especially at greater ranges where there might be insufficient points per leaf to fit a plane. 

Alternatively, the Normalized Difference Index (NDI) of two laser wavelengths, typically NIR 

and SWIR (Equation (2.5)), in the same context of NDWI and NDII used in optical RS data, 

can be used to minimize the incidence angle effect (Hancock et al., 2012; Hancock et al., 2017). 

Here the two wavelengths must be similarly affected by the incidence angle (Eitel et al., 2014b; 

Hancock et al., 2017), or else radiometric correction will still be needed (Zhu et al., 2015). 

𝑁𝐷𝐼 =
𝜌𝑁𝐼𝑅 −  𝜌𝑆𝑊𝐼𝑅

𝜌𝑁𝐼𝑅 +  𝜌𝑆𝑊𝐼𝑅
 (2.5) 

Where ρNIR is the reflectance at a NIR wavelength, and ρSWIR is the reflectance at a SWIR 

wavelength. 
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TLS instruments typically operate at a single wavelength, and despite successful attempts to 

calibrate the intensity data to apparent reflectance for various TLS instruments (Höfle and 

Pfeifer, 2007; Jutzi and Gross, 2009; Kaasalainen et al., 2011; Krooks et al., 2013; Blaskow 

and Schneider, 2014; Anttila et al., 2016; Tan and Cheng, 2016; Zhu et al., 2017; Tan et al., 

2018; Bolkas, 2019), using a single wavelength TLS instrument to estimate EWT at the canopy 

level remains a challenge as a result of the incidence angle effects. Another factor that 

complicates the use of single wavelength TLS in EWT estimation is leaf internal structure 

effects. Leaf thickness and LMA influence the shortwave infrared reflectance, and their 

variation within canopy and between different trees in a vegetation plot can complicate the 

retrieval of EWT (Ceccato et al., 2001). Also, the partial canopy hits (edge returns), which 

occur when a leaf does not fully occupy the laser beam footprint, can affect the accuracy of the 

TLS estimation of leaf biochemical characteristics (Eitel et al., 2010). Dual- and multi-

wavelength TLS systems, also known as multispectral and hyperspectral LiDAR systems, have 

recently been developed in an attempt to overcome the limitations of single-wavelength TLS 

(Danson et al., 2014). 

2.4.2 Multispectral and hyperspectral LiDAR 

Multispectral and hyperspectral LiDAR systems, typically non-commercial full-waveform 

instruments, have been developed specifically for use in vegetation applications. As the 

instruments record the full-waveform of the backscattered intensity, and thus can detect 

multiple objects on the laser beam path, they are capable of providing more detailed information 

about canopy structure, especially the canopy interior, than the commercial single-wavelength 

pulsed TLS systems (Danson et al., 2014; Douglas et al., 2015). Furthermore, as they operate 

at two or more wavelengths, spectral indices can be derived from the intensity data, similar to 

vegetation indices derived from multispectral and hyperspectral optical RS data. As discussed 

in Section 2.4.1, such spectral indices can minimize the incidence angle and leaf internal 

structure effects. This allows utilizing the data to measure EWT and other vegetation 

biochemical traits (Gaulton et al., 2013), and also allows better leaf – wood separation results 

than using a single wavelength (Danson et al., 2018), which can lead to more accurate 

estimation of forest above ground biomass. 

A number of multispectral and hyperspectral LiDAR instruments have been developed in the 

last decade, mainly for scientific research purposes. Chen et al. (2010) developed a prototype 

dual-wavelength instrument, operating at 600 nm and 800 nm wavelengths, with the purpose 

of deriving NDVI from the TLS data to distinguish between vegetation and non-living objects. 
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Wei et al. (2012) developed a four-wavelength instrument (555 nm, 670 nm, 700 nm, and 780 

nm) to measure vegetation nitrogen and chlorophyll content. Hakala et al. (2012) developed a 

hyperspectral TLS system that employs eight wavelengths between 500 nm and 1100 nm, 

optimized for measuring vegetation biochemical traits. The study showed the potential of 

deriving spectral indices from the TLS instrument data, including the modified chlorophyll 

absorption ratio index, NDVI, and WI. Eitel et al. (2014b) introduced a dual-wavelength TLS 

system that employed green (532 nm) and red (658 nm) wavelengths for leaf nitrogen content 

estimation. Li et al. (2014) designed a hyperspectral LiDAR system with 32 wavelength bands 

covering the range between 409 nm and 914 nm to estimate leaf chlorophyll, nitrogen, and 

carotenoid concentrations. Sun et al. (2014) and Du et al. (2016) developed similar 

hyperspectral LiDAR systems for the same purpose. Wang et al. (2018) developed an eight-

wavelength hyperspectral LiDAR instrument, covering the spectral range between 540 nm NIR 

to 1460 nm SWIR wavelengths. The development of the instrument aimed at including SWIR 

bands, as the majority of the available multi- and hyperspectral LiDAR systems operated at 

visible and NIR wavelengths only.  The aforementioned instruments have been mainly utilized 

in lab or small-scale experiments. 

Two dual-wavelength TLS instruments have been developed and then deployed, not only in lab 

experiments but also in field campaigns: the Dual Wavelength Echidna LiDAR (DWEL) 

(Douglas et al., 2015) and the Salford Advanced Laser Canopy Analyser (SALCA) (Danson et 

al., 2014). DWEL was developed by the University of Boston, University of Massachusetts, 

Boston, University of Massachusetts, Lowell, USA, and CSIRO, Australia (Douglas et al., 

2015), while SALCA was developed by the University of Salford, UK and Halo Photonics Ltd 

(Danson et al., 2014). Both instruments are full waveform TLS systems, with SALCA operating 

at 1064 nm NIR and 1545 nm SWIR wavelengths, and DWEL employing 1064 nm and 1548 

nm wavelengths. Spectral indices calculated using NIR and SWIR wavelengths, such as NDI, 

can minimize the incidence angle effects, as investigated and confirmed by Hancock et al. 

(2017) using leaf samples from a variety of species. NDI was also found to be sensitive to EWT 

(Gaulton et al., 2013). Thus, the instruments have been utilized for leaf-wood separation at 

single tree and forest stand levels, as using spectral indices such as NDI made leaves 

distinguishable from non-photosynthetic woody materials in the point cloud (Figure 2-4) 

(Brodu and Lague, 2012; Douglas et al., 2015; Newnham et al., 2015; Danson et al., 2018; Li 

et al., 2018). 
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Figure 2-4. NDI pointcloud derived from DWEL data in an open eucalyptus forest at 

Tumbarumba, Australia, showing the distinctive difference between leaves (blue) and wood 

(red). This figure was adapted from Newnham et al. (2015).  

Despite their potential in estimating the vegetation biochemical and biophysical characteristics, 

multispectral and hyperspectral TLS systems are still a proof-of-concept, not commercially 

available, and need further development of data extraction algorithms to make full use of the 

information they provide (Danson et al., 2014). 

2.4.3 TLS and vegetation biochemical traits 

A few recent successful attempts to utilize TLS intensity data to estimate vegetation 

biochemical traits can be found in the literature. Eitel et al. (2010) and (2011) showed the 

potential of using TLS intensity data to estimate vegetation biochemical characteristics at leaf 

and canopy level. Green laser (532 nm) intensity, utilized in the Leica ScanStation-2 TLS 

instrument, was found to be highly correlated (R2 = 0.77) to foliar chlorophyll content of bur 

oak (Quercus macrocarpa) and sugar maple (Acer saccharum) leaf samples (Eitel et al., 2010), 

and to total foliar nitrogen (R2 = 0.68) of spring wheat (Triticum aestivum L.) leaf samples (Eitel 

et al., 2011). Wei et al. (2012) used four-band multispectral LiDAR to estimate nitrogen content 

of leaf samples from seven different species, finding a strong relationship between three derived 

laser intensity indices and foliar nitrogen content (R2 = 0.72, 0.78 and 0.82 respectively). Eitel 

et al. (2014a) used a Leica ScanStation-2 TLS instrument (532 nm) to determine winter wheat 

crop nitrogen status during early season growth. Eitel et al. (2014b) used a green (532 nm) and 

red (658 nm) dual wavelength TLS and derived green-red intensity ratio spectral indices to 

estimate foliar nitrogen content, achieving good accuracy (R2 = 0.71). Magney et al. (2014) 

used 532 nm green wavelength utilized in the Leica ScanStation-2 TLS instrument to measure 

xanthophyll pigments (xanthophylls are pigments that play a role in photosynthesis and in 

autumn, when chlorophyll levels decline, give leaves their red, yellow, and brown colours) as 
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an early indicator of vegetation stress using leaves from five different plant species (winter 

wheat (Triticum aestivum L.), bur oak (Quercus macrocarpa), paper birch (Betula papyrifera 

Marshall), aspen (Populus tremuloides Michx.), and sunflowers (Helianthus annuus L.)). 

Nevalainen et al. (2014) used an eight-channel multispectral LiDAR (500 to 1300 nm), 

described in Hakala et al. (2012), to estimate chlorophyll concentrations in Scots pine shoots 

with high accuracy (R2 = 0.88). Hakala et al. (2015) used the same instrument to derive spectral 

indices to estimate chlorophyll content for pine plantation at leaf, branch and tree levels. Li et 

al. (2016) used vegetation indices derived from a 32-channel multispectral LiDAR, described 

in Li et al. (2014), to estimate leaf nitrogen content, chlorophyll content, and carotenoid content, 

finding a strong relationship between the indices and the biochemical characteristics (R2 = 0.71, 

0.83 and 0.77 respectively). Du et al. (2016) and (2018) used data from a 32-channel 

hyperspectral LiDAR to derive spectral indices and estimate leaf nitrogen content of rice under 

controlled lab conditions and four different levels of fertilization, reporting a strong correlation 

(R2 = 0.75). Using the 32-channel hyperspectral LiDAR described in Sun et al. (2014), Sun et 

al. (2018) reported that combining hyperspectral LiDAR data with inversion of PROSPECT 

can improve the accuracy of retrieving leaf chlorophyll content. 

A number of studies have successfully linked TLS intensity data to estimate EWT. Gaulton et 

al. (2013) found a strong relationship (R2 = 0.80) between EWT of leaf samples from three 

different species: Brassica oleracea (cabbage), Spathiphyllum (peace lily), and Fallopia 

japonica (Japanese knotweed), and the NDI of 1064 nm and 1545 nm wavelengths employed 

by the SALCA instrument.  Zhu et al. (2015) used a RIEGL VZ-400 scanner (1550 nm 

shortwave infrared) to investigate the relationship between EWT of leaf samples from eight 

species and the instrument intensity data, reporting a strong correlation (R2 = 0.76). Zhu et al. 

(2017) used data from the same instrument to retrieve the EWT vertical profiles for 20 plants 

from five different species: Schefflera arboricola compacta (dwarf schefflera), Ficus 

benjamina twilight (weeping fig), Ficus microcarpa (Chinese banyan), Ficus benjamina 

Danielle (ficus), and Zamioculcas zamiifolia (Zanzibar gem), reporting a good relationship at 

leaf level (R2 = 0.66) and at canopy level (mean error of 4.46%). Vertical heterogeneity in the 

canopy EWT was also reported, as all trees had higher EWT in the canopy top than in the 

canopy bottom. However, as a single wavelength was used, radiometric correction for the 

incidence angle effects on the intensity data was needed, which was achieved using reference 

targets with known reflectance.  
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Junttila et al. (2016) reported a very strong relationship (R2 = 0.93) between the NDI of red 

(690 nm) and shortwave infrared (1550 nm) wavelengths, utilized in phase-based Leica 

HDS6100 and FARO X330 instruments respectively, and EWT of 101 leaf and needle samples 

from five different species: Tilia cordata L. (small-leaved lime), Betula pendula L. (silver 

birch), Acer platanoides L. (Norway maple), Picea abies L. (Norway spruce), and Pinus 

sylvestris L. (scots pine). The relationship between EWT of Norway spruce seedlings and the 

NDI of 905 nm and 1550 nm wavelengths, utilized in the FARO S120 and the FARO X330 

TLS instruments respectively, was investigated by Junttila et al. (2018) and a strong 

relationship (R2 = 0.91) was reported. Junttila et al. (2019) used the same instruments to detect 

Ips typographus L. (European spruce bark beetle) infestation symptoms in 29 mature Norway 

spruce trees, successfully classifying the trees into three classes (no, low, and moderate 

infestation levels) with overall accuracy of 66%. Higher accuracy was obtained (90%) when 

the trees were classified into two classes only: infested or not infested. Additionally, FMC was 

reported to be a better indicator of European spruce bark beetle infestation symptoms than 

EWT. 

Although the aforementioned studies demonstrated the potential of using TLS intensity data to 

estimate vegetation biochemical traits, these studies, with the exception of Junttila et al. (2019), 

investigated the relationship between TLS data and vegetation biochemical traits at leaf level 

only, or at leaf and canopy levels in controlled environments. The multispectral and 

hyperspectral TLS systems used in these studies can still be considered a proof-of-concept, and 

are not commercially-available. Danson et al. (2014) highlighted that processing methods for 

accurate calibration and registration of the data from such systems are still needed in order for 

the data to be usable at larger scales. Furthermore, the majority of multispectral and 

hyperspectral TLS systems employ wavelengths that cover the visible and NIR regions only, 

making them more suitable for estimating leaf chlorophyll, nitrogen, and carotenoid contents.  

Commercial single-wavelength TLS systems that utilize SWIR wavelengths can be suitable for 

estimating EWT at leaf level, or at canopy level for small trees in laboratory settings. However, 

using such systems to estimate EWT at the canopy level in complex vegetation environments 

such as forests will be limited by the incidence angle and leaf internal structure effects. 

Combining the data from two different commercially-available TLS systems, operating at NIR 

and SWIR wavelengths, has the potential to minimize such effects, thus rendering this method 

applicable in a real forest environment. However, accurate aligning of the point clouds from 

the two different instruments can be challenging, and although Junttila et al. (2019) applied this 
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approach in a Norway spruce forest plot, no 3D EWT point clouds or EWT vertical profiles 

were generated, most likely as a result of the complications associated with aligning the point 

clouds and estimating EWT on a point-by-point basis. No successful attempts to utilize TLS 

data to generate 3D EWT estimates at the canopy level in forest stands, tree plots, or agricultural 

sites appear to have been reported in the literature to date. 

2.5 Summary 

This chapter has reviewed the use of optical RS data for estimating EWT, identified its 

limitations, and investigated the potential of using TLS to address such issues. Previous studies 

that used vegetation indices and/or RTMs to estimate EWT from optical RS data were 

examined. This revealed that vegetation indices were highly correlated to EWT at leaf level, 

and some studies showed that they can also be used to successfully retrieve canopy EWT at 

landscape level. However, vegetation indices were reported to be sensor- and site-specific, and 

their use cannot be generalized. For example, NDII was designed to retrieve EWT from Landsat 

data, while NDWI was designed for MODIS data. Thus, using these vegetation indices to 

retrieve EWT from other sensors required either modifying them to suit the spectral bands 

utilized in that sensor, or designing similar indices specifically for the sensor. In addition, 

numerous studies highlighted that the accuracy of use of vegetation indices for retrieval of 

canopy EWT at the landscape level was highly influenced by canopy structure, especially 

canopy LAI. 

RTMs were reported to be able to overcome these limitations, as they are based on physical 

principles and thus are transferrable to any vegetation site. RTMs also take the canopy structural 

parameters into account, and numerous studies showed that inverting the models can 

successfully retrieve canopy EWT at the landscape level, as a product of EWT and LAI. 

However, some authors showed that the use of RTMs must be accompanied by some previous 

knowledge of canopy biochemical and biophysical traits in the site of interest, in order to 

improve the accuracy of the model inversion. Complex 3D RTMs have been developed to 

account for the vertical and horizontal heterogeneity in canopy structure, instead of assuming a 

homogenous canopy. However, the vertical heterogeneity in canopy biochemical traits, 

including EWT, remained unaccounted for, with few studies attempting to measure it by 

destructive sampling and taking spectroscopy measurements at multiple canopy layers. These 

studies further showed that EWT, chlorophyll content, and nitrogen content exhibited vertical 

heterogeneity that varied between species. The effect of such heterogeneity on the canopy 

reflectance and on the accuracy of canopy EWT estimation still needs to be further investigated, 
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as the few studies found in the literature that looked into such effects reported that the vertical 

heterogeneity should not be ignored as it highly influences the canopy reflectance (Kuusk, 

2001; Wang and Li, 2013; Quan et al., 2017).  

Another issue that was highlighted in the literature, associated with the retrieval of EWT from 

optical RS data in general, was that collecting a sufficient number of leaf samples from the 

canopy top layers in sampling plots that match the sensor’s pixel size to calibrate and validate 

the estimation models can be very challenging. Two gaps were identified in the literature: (1) a 

fast, non-destructive approach to estimate canopy EWT at plot level, and to provide EWT 

estimates of the upper canopy layers, is needed, (2) a more practical method is needed to 

measure the vertical heterogeneity in canopy biochemical traits in order to investigate its effect 

on the canopy reflectance. 

Previous studies have shown that TLS can provide accurate measurements of canopy structure, 

but fewer studies have investigated using TLS intensity data to measure EWT and other 

vegetation biochemical traits. This is a result of the limitations associated with using a single-

wavelength TLS instrument to estimate vegetation biochemical traits, with the two main issues 

being correction of the intensity data for incidence angle effects and for the leaf internal 

structure effects at the canopy level. To overcome these limitations, a number of multi- and 

hyperspectral TLS instruments have been developed for scientific research and were 

successfully used to estimate EWT, chlorophyll content, nitrogen content, and carotenoid 

content. As these instruments are not available commercially, other studies used intensity data 

from commercially available TLS instruments, typically by combining the data from two 

different instruments into a spectral index, and successfully estimated EWT, chlorophyll 

content, and nitrogen content. However, the number of studies that used TLS to estimate EWT, 

and vegetation biochemical traits in general, is very low, and all the studies found in the 

literature were conducted in laboratory conditions at leaf level only, or at leaf level and small, 

individual canopy level. Only one recent study to date has used TLS to estimate EWT in a real 

forest environment to detect signs of pest infestation, but no 3D EWT point clouds or vertical 

profiles of EWT were generated. There remains a gap in the literature regarding the use of TLS, 

especially commercial instruments, in the 3D estimation of EWT at the canopy level in 

challenging vegetation environments, such as forest stands and agricultural sites, where the 

canopy structure, wind, and partial canopy hits can greatly complicate the process. 
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Chapter 3. Combining TLS intensity data from different instruments in the 

NDI  

3.1 Introduction 

Accurate estimation of EWT in 3D at the canopy level, using dual-wavelength terrestrial laser 

scanning, depends on a number of factors. Firstly, the intensity data from the two instruments 

need to be calibrated to apparent reflectance accurately. Secondly, the two wavelengths utilised 

in the NDI must be affected similarly by the incidence angle so that combining them in the NDI 

would minimize the incidence angle effects with no need for radiometric corrections. In 

addition, NDI needs to be able to minimize the leaf internal structure effects, or else, radiometric 

corrections will be needed for each wavelength separately. Finally, accurate alignment of the 

point clouds from the two different instruments is required, so that NDI can be calculated 

correctly on a point-by-point basis and 3D EWT point clouds can be generated with low errors.  

This chapter is dedicated to address the aforementioned factors. Firstly, the TLS instruments 

used in this study are described. Then, the method for combining the data from different TLS 

instruments to generate 3D estimates of EWT is described. Afterwards, details of the calibration 

work for each instrument are given. Finally, the ability of NDI to minimize the incidence angle 

and leaf internal structure effects is investigated. 

3.2 TLS instruments 

Four different TLS instruments were used in this research, a Leica P20, two different Leica P40 

instruments, named hereafter as Leica P40a and the Leica P40b, and a Leica P50 (Figure 3-1). 

The Leica P40a and the Leica P40b were different instruments of the same model, manufactured 

in two different years, 2016 and 2017. The specifications of each of the four instruments are 

described in Table 3-1.  

 

Figure 3-1. The TLS instruments used in this research: (a) the Leica P20, (b) the Leica P40a 

and P40b and (c) the Leica P50.  

(a) (b) (c) 
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Table 3-1. Nominal specifications of the TLS instruments used in this research.  

 Leica P20 Leica P40a and P40b Leica P50 

Measurement type Time-of-flight Time-of-flight Time-of-flight 

Wavelength 808 nm 1550 nm 1550 nm 

Beam divergence 0.20 mrad 0.23 mrad 0.23 mrad 

Beam diameter at exit 2.8 mm 3.5 mm 3.5 mm 

Beam diameter at 10 m 4.8 mm 5.8 mm 5.8 mm 

Beam diameter at 20 m 6.8 mm 8.1 mm 8.1 mm 

Maximum range 
120 m at 18% 

reflectivity 

120 m at 8% 

reflectivity 

180 m at 18% 

reflectivity 

270 m at 34% 

reflectivity 

 

120 m at 8% 

reflectivity 

270 m at 34% 

reflectivity 

570 m at 60% 

reflectivity 

1 km at 80% 

reflectivity 

Scan rate 
up to 1,000,000 

points/second 

up to 1,000,000 

points/second 

up to 1,000,000 

points/second 

Highest resolution 

(point spacing) 
0.8 mm at 10 m 0.8 mm at 10 m 0.8 mm at 10 m 

 

The Leica P20, operating at 808 nm NIR wavelength, was involved in all the experiments and 

data collection campaigns conducted in this research. The P20 wavelength lies in a region in 

the leaf reflectance spectra that is known to be insensitive to change in EWT but sensitive to 

changes in leaf structure (Hunt and Rock, 1989; Gao, 1996; Liu et al., 2014). The three other 

instruments operate at 1550 nm SWIR wavelength, which is very sensitive to the change in 

EWT (Gaulton et al., 2013; Junttila et al., 2016; Zhu et al., 2017). The data from the P20 was 

combined in the NDI with the data from each of the three SWIR instruments, depending on 

their availability, as shown in Table 3-2. The NDI of NIR and SWIR wavelengths was 

previously reported to be very sensitive to the change in EWT (Hunt and Rock, 1989; Ceccato 

et al., 2001; Gaulton et al., 2013), to be able to minimize the incidence angle effects (Hancock 

et al., 2017), and to be insensitive to the leaf internal structure effects (Ceccato et al., 2001). 

However, this has not been investigated for the two wavelengths involved in this study, the 

808 nm and 1550 nm wavelengths. 
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Table 3-2. The TLS instruments usage in the data collection campaigns.  

Data 

collection 

campaign 

Indoors dataset, 

Chapter 4 

Forest dataset, 

Chapter 5 

Willow dataset, 

Chapter 6 

Park dataset, 

Chapter 6 

Instruments 

used 

Leica P20 

Leica P40a 

Leica P20 

Leica P40b 

Leica P20 

Leica P40a 

Leica P20 

Leica P50 

 

In addition to having suitable wavelengths for a NDI highly correlated to EWT, the instruments 

have similar chassis and laser beam exit location (Figure 3-1). They use a similar scanning 

mechanism, with the ability to capture up to 1,000,000 points per second. Thus, consecutive 

scanning of a target with the P20 instrument, followed by one of the three SWIR instruments, 

mounted on the same tripod and occupying the same survey station, can result in very similar 

scan geometry. Although Table 3-1 shows some differences in beam diameter at exit and beam 

divergence between the P20 instrument and the SWIR instruments, the aforementioned 

similarities and scan setup can lead to achieving sufficient overlap between the laser beams. 

This can lead to a high registration accuracy of the point clouds from the different instruments, 

which is necessary for estimating EWT on a point-by-point basis. 

3.3 TLS data processing to generate 3D EWT point clouds 

3.3.1 Scan setup 

Combining the intensity data from the P20 and any of the three SWIR instruments required the 

correct scan setup to take advantage of the similarities between the instruments, to achieve the 

highest possible overlap between the point clouds. For this, a tripod was fixed on a survey point, 

and the P20 was mounted on the tripod to scan the object of interest, being a single tree or a 

group of trees. Afterwards, the P40a, the P40b or the P50 was mounted on the same tripod to 

scan the object of interest, adopting the same scanning resolution used with the P20. The tripod 

was then moved to the next survey point and the process was repeated. A minimum of three 

Leica black and white registration targets were placed around the object of interest, at different 

heights, in order to link each pair of scans. 

Figure 3-2 shows a 50% SphereOptics Spectralon panel scanned indoors by the P20 instrument, 

followed by the P40a instrument, using the aforementioned scan setup and scanning resolution 

(point spacing) of 0.8 mm at 10 m. The average distance between the points from the two point 

clouds, calculated using the cloud to cloud distance compute module in CloudCompare v. 2.6.2 

software, was 0.2 mm. For the tree canopies scanned indoors (Chapter 4), this distance was 
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found to be 1.3 mm, while it was found to be 5 mm for the scans conducted in a real forest 

environment (Chapter 5). 

 

Figure 3-2. A 50% Spectralon panel scanned by the P20 and the P40a instruments: (a) the point 

clouds, coloured in blue for the P20 and in red for the P40a and (b) a close up to show the point 

distance between each point in the P20 point cloud and the corresponding point in the P40a 

point cloud, with the average distance being 0.2 mm. 

Processing the data to generate the 3D EWT point cloud followed the steps shown in Figure 

3-3. 

 

Figure 3-3. A flowchart of the TLS data processing pipeline used to generate 3D EWT point 

clouds. 

3.3.2 Point cloud registration 

The point clouds were extracted from each instrument using Leica Cyclone 9.1 (Leica 

Geosystems HDS) software. To reduce the number of partial hits (edge returns) in the point 
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clouds, the mixed pixel filter in Leica Cyclone was used on medium (default) setting. The filter 

searched for points that had a measured range that was actually a mixture of various observed 

ranges. The filter then disregarded these points, as they occurred when the edge of the object 

partially occupied the laser footprint. 

Each scanner had its own local coordinate system, thus, the point clouds needed to be aligned. 

This was done in Leica Cyclone using the registration targets placed in the scans. The point 

cloud from the SWIR instrument was considered as the reference in the registration process. 

The Cyclone registration module detected the registration targets that co-existed in both scans 

and used them as constraints to derive a transformation matrix. For this, the targets needed to 

be labelled correctly while collecting the data so that the registration module could recognize 

them and use them to link the scans. The transformation matrix was then applied to the P20 

point cloud to align it to the corresponding SWIR point cloud. The accuracy of the registration 

was evaluated and reported by Leica Cyclone in a form of Root Mean Squared Error (RMSE). 

The registered point clouds were then exported as ASCII files for further processing. The next 

step was to separately calibrate the intensity from each instrument to apparent reflectance. This 

is described in details in Section 3.4 in this chapter. All of the processes described in the 

subsequent sections were implemented in MATLAB (The MathWorks Inc., USA, 2016). 

3.3.3 Point matching and NDI calculation 

Despite the similarities between the instruments, resulting point clouds did not have the same 

number of points. A P20 point cloud had more points than a corresponding point cloud collected 

by the P40a, the P40b or the P50 instruments, because of the presence of different number of 

partial hits and the slight differences in laser beam footprint and beam divergence. To account 

for this, two sets of point cloud filtering were applied as follows: 

(1) The P20 point cloud was filtered to match the same number of points in a corresponding 

SWIR point cloud. For this, a 3D nearest neighbour function was applied in MATLAB, using 

the SWIR point cloud as a reference. The function used an exhaustive search algorithm to 

compute the distances in 3D between each point in the SWIR point cloud and all the points in 

the corresponding P20 point cloud. The function then generated an index matrix that defined 

the nearest neighbour in the P20 point cloud to each point in the SWIR point cloud. The index 

matrix was then used to filter the P20 point cloud, retaining only the nearest neighbour points 

and disregarding the remaining points, and generating a conjugate point cloud containing the 

same number of points as the corresponding SWIR point cloud.  
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(2) A threshold of 3 cm was applied, that is, any pair of neighbour points > 3 cm apart was 

removed from the P20 point cloud and the corresponding SWIR point cloud. This was required 

because the nearest neighbour function tried to find the nearest neighbour in the P20 point cloud 

to each point in the SWIR point cloud, regardless of how far that nearest neighbour was. 

The 3 cm threshold was chosen on the basis of 97% of the nearest neighbour distances 

being < 3 cm apart, while 99% of distances were < 6 cm apart. Applying the threshold 

disregarded points from both the SWIR and P20 point clouds. Figure 3-4 shows a histogram of 

closest points within 3 cm after applying the two sets of filtering to a P20 point cloud and its 

corresponding P40b point cloud, collected in Wytham Woods forest plot (Chapter 5). 

 

Figure 3-4. Histogram of closest points within 3 cm after filtering a P20 point cloud and its 

corresponding P40b point cloud, collected in Wytham Woods forest plot (Chapter 5). 

NDI was then calculated on a point-by-point basis (Equation (2.5)) to generate the NDI point 

cloud. 

3.3.4 Building the NDI – EWT estimation model 

After generating the NDI point cloud, an NDI – EWT relationship was needed to convert the 

NDI point cloud to 3D EWT point cloud. For this, leaf samples were collected from the scanned 

trees in the data collection site. The number and species of the samples depended on the 

experiment. The leaf samples were labelled and the fresh weight of each sample was measured, 

immediately on collection, using a precise scale (0.001 g division). Afterwards, the leaf samples 

were suspended in a wooden frame with thin black threads, positioned at a fixed distance from 
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a tripod. The leaves were scanned by the P20 instrument, followed by the SWIR instrument 

used in the experiment. Throughout the scans, the vertical and horizontal incidence angle effects 

were minimized by ensuring the wooden frame was as normal as possible to the laser beam 

direction. The intensity values of each leaf sample were then extracted from the scans and 

calibrated to apparent reflectance, using the intensity correction models described in Section 

3.4. The NDI of each leaf was calculated according to Equation (2.5). 

Next step was to calculate the EWT of each leaf sample. For this, the surface area of each leaf 

sample was obtained using Image-J 1.50i software (Schneider et al., 2012) after dividing them 

into groups and scanning each group and a scale with an Epson Perfection photo scanner. 

Afterwards, the leaves were dried in an oven for 48 hours at 60° Celsius until no change in 

weight was recorded. The dry weight of each leaf was measured using the same precise scale 

used to obtain the fresh weight. The EWT of each leaf sample was calculated following 

Equation (2.1). 

NDI values of the leaf samples were plotted against the corresponding EWT values and reduced 

major axis regression was used to determine the NDI – EWT relationship. Reduced major axis 

regression was used instead of least squares regression because the latter assumes that only the 

dependent variable in the regression (EWT in this case) is subject to errors. Least squares 

regression then attempts to minimize the sum of squared errors of the vertical distance between 

the actual dependent variable values (y values) and their corresponding predictions. However, 

as both NDI and EWT were subject to errors, which violated the least squares regression 

assumptions, reduced major axis regression was considered a more suitable approach. Reduced 

major axis regression is a method specifically formulated to account for errors in both the 

dependent and independent variables by attempting to minimize both vertical and horizontal 

distances between data points and their predicted values (Smith, 2009). Furthermore, unlike 

least squares regression, reduced major axis regression is symmetric, meaning that the resulting 

regression equation can be back solved to predict the dependent variable from the independent 

variable if needed.   

3.3.5 Generating the EWT point cloud 

The NDI – EWT relationship derived at leaf level was then applied on a point-by-point basis to 

the NDI point cloud and the EWT point cloud was generated. Further processing was needed 

to remove the woody materials and noise, which depended on the type and size of dataset and 

thus is described in detail in the corresponding data collection chapters. 
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3.4 TLS intensity data calibration 

As discussed in Section 2.4.1, the range and incidence angle are the two main parameters that 

influence the TLS recorded backscattered intensity data. This section is dedicated to describing 

the range effect calibration models, while the incidence angle effects are covered in Section 3.5. 

3.4.1 Concept of range effect intensity calibration models 

The aim of the range effect calibration model was to calibrate the instrument’s recorded 

intensity to reflectance, as close as possible to the scanned target’s apparent reflectance, 

regardless of how far the target was from the scanner. The calibration model thus conducted 

two tasks: 1) calibrating the intensity data for the range effect and 2) transforming the calibrated 

intensity to apparent reflectance. To achieve the first task, the intensity-range relationship for 

each instrument was investigated by scanning a reference target with known reflectance at 

various ranges from the scanner. The target’s intensity at each range was extracted and plotted 

against the corresponding range to obtain the intensity-range curve. Polynomial functions were 

then fitted to the curve and considered a reference for the range calibration model. The next 

step was to choose an intensity value at any range to serve as a reference intensity for the 

calibration model (Iref), to which the intensity values at the remaining ranges were calibrated. 

To achieve the second calibration task, the intensity-reflectance relationship for each instrument 

needed to be determined at the range of Iref. This was achieved by scanning reference targets 

with different apparent reflectance, or a multi-step reference target, at Iref range. The targets’ 

intensity values were then plotted against the targets’ known reflectance to obtain the intensity-

reflectance relationship of the instrument. The intensity-reflectance relationship was used to 

transform the calibrated intensity at all ranges to apparent reflectance. 

In this research, five SphereOptics Spectralon panels, almost ideal Lambertian surfaces 

according to the manufacturer, were used to build and validate the calibration models of the 

P20 instrument, the P40a instrument and the P40b instrument. The nominal and true reflectance 

of the panels are shown in Table 3-3. The calibration experiments for the P50 instrument were 

conducted using a multi-step SphereOptics Zenith Lite Diffuse reflectance target (Table 3-4), 

as the Spectralon panels were not available. Throughout all the calibration experiments 

described in the upcoming sections of this chapter, the scanner’s laser beam exit location 

approximately faced the centre of the panel, while the surface of the panel was almost 

perpendicular to the laser beam direction. This aimed at minimizing the incidence angle effects, 

so that the backscattered intensity would be affected by the range only. 
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Table 3-3. Actual reflectance from Spectralon panels at P40 and P20 wavelengths.  

Spectralon 5% 20% 50% 90% 95% 

P40 (1550 nm) 4.7% 24.2% 41.8% 90.2% 94.7% 

P20 (808 nm) 4.5% 22.6% 43.5% 92.2% 96.1% 

 

Table 3-4. Actual reflectance of the multi-step reference target used for the P50 calibration.  

Panel 5% 20% 50% 90% 

P50 (1550 nm) 5.5% 20.5% 47.7% 91.8% 

3.4.2 Determining the intensity-range relationships 

The intensity-range relationship was investigated separately for each scanner. A range 

calibration experiment was conducted indoors for each instrument, by mounting a reference 

target on a tripod and scanning it at various ranges. Table 3-5 shows the details of the calibration 

experiment of each instrument. 

Table 3-5. Details of the range calibration experiments of the TLS instruments. 

Instrument Reference target Start range End range Step Iref range 

Leica P20 
50% Spectralon 

panel 
2 m 36 m 1 m 15 m 

Leica P40a 
50% Spectralon 

panel 
2 m 36 m 1 m 18 m 

Leica P40b 
50% Spectralon 

panel 
2 m 36 m 1 m 20 m 

Leica P50 50% panel* 2 m 22 m 1 m 15 m 

* Part of a multi-step panel. 

3.4.3 Determining the intensity-reflectance relationships 

An individual experiment was conducted for each instrument to determine the intensity-

reflectance relationship. The five Spectralon panels described in Table 3-3 were scanned 

consecutively using the P20, the P40a and the P40b instruments at Iref range from the scanner 

(Table 3-5). For the P50 instrument, the multi-step reference panel (Table 3-4) was scanned at 

Iref  range (15 m) away from the scanner. 

3.4.4 Validating the intensity calibration models 

For each instrument, an independent reference target was scanned indoors at various ranges, as 

shown in Table 3-6. The developed calibration models were used to calibrate the intensity 

values at each range for the range effect and to apparent reflectance. The accuracy of the models 

were evaluated by comparing the estimated reflectance at each range to the reference target’s 
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true reflectance. The relative error (E %, Equation (3.1)) and the RMSE (Equation (3.2)) were 

calculated.  For the P20, two different validation experiments were conducted, one prior to the 

indoors experiment (Chapter 4), and the other before the forest data collection campaign 

(Chapter 5). This aimed at a direct comparison between the accuracy achieved using the P20 

and that achieved using the corresponding P40 that was to be used in the data collection. 

Table 3-6. Details of the validation experiments of the TLS instruments. 

Instrument Reference target Start range End range Step 

Leica P20 90% Spectralon panel 2 m 15 m 1 m 

Leica P20 20% Spectralon panel 2 m 15 m 1 m 

Leica P40a 90% Spectralon panel 2 m 18 m 1 m 

Leica P40b 20% Spectralon panel 2 m 22 m 1 m 

Leica P50 20% panel* 2 m 22 m 1 m 

* Part of a multi-step panel. 

𝐸 % = (
�̂�  −  𝑦

𝑦
) × 100 (3.1) 

𝑅𝑀𝑆𝐸 =  √
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
 (3.2) 

Where �̂� and 𝑦 are the estimated and true values respectively. 

Prior to carrying out the main data collection campaign in a forest plot in Wytham Woods, 

Oxford, UK (Chapter 6), additional validation experiments were conducted for the two 

instruments that were to be used in the data collection, the P20 and the P40b instruments. The 

additional experiments were conducted using a wooden multi-step painted board. The board 

was 0.75 × 0.50 m, divided into six approximately equal panels, each of them painted in a 

different shade of grey. The shades of grey were obtained by mixing black and white matte 

emulsion paint with different ratios. Prior to painting the board, thirty different black and white 

combinations were painted on a test board. The reflectance of each combination was measured 

at the 1550 nm and 808 nm wavelengths using an ASD field Spectroradiometer with a contact 

probe, then six combinations were chosen and used to paint the multi-step board. The 

combinations were selected so that they would cover a reflectance range between 10% and 

70%. Afterwards, five ASD measurements were taken for each of the six panels of the multi-

step board, and the reflectance of each panel at each wavelength equalled the average of the 

measurements, as shown in Table 3-7. 
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Table 3-7. Actual reflectance of each of six panels in the multi-step painted board. 

Wavelength Panel 1 Panel 2 Panel 3 Panel 4 Panel 5 Panel 6 

1550 nm 12% 23.8% 36.5% 48.4% 57.7% 64.8% 

808 nm 14.6% 28.9% 42.9% 55.1% 64.3% 70.7% 

 

The multi-step painted board was scanned indoors by each scanner separately at a random range 

of 7.32 m. The board was also scanned outdoors at 4.4 m, 6 m and 8.6 m. The calibration models 

were used to calibrate the intensity values of each panel in the multi-step board for the range 

effect and to apparent reflectance. The estimated reflectance was compared to the panels’ actual 

reflectance for accuracy evaluation.  

3.5 The ability of NDI to minimize the incidence angle effects 

To investigate the ability of the NDI of the 808 nm and 1550 nm to minimize the incidence 

angle effects, an experiment was conducted in a laboratory setting using eighteen leaf samples 

from six different tree species, three samples from each species. The leaf samples included: 

grey alder (Alnus incana), common lime (Tilia x europaea), common alder (Alnus glutinosa), 

hornbeam (Carpinus betulus), poplar (Populus sp.) and cherry (Prunus avium). The leaf 

samples were collected from Peel Park in Salford, Manchester, UK. The experiment was 

conducted using the P20 and the P40a instruments. There was no need to repeat the experiments 

using the P40b and the P50 instruments, as the incidence angle effect is a factor of the 

wavelength and the scanned target surface characteristics, and not of the instrument itself. 

The leaf samples were divided into three groups, each group containing six leaf samples, one 

sample from each species. Each group of leaves was suspended in a wooden frame by thin black 

threads. The frame (Figure 3-5) was positioned at a fixed scan range of 6.5 m. A clear space of 

2 m was ensured behind the frame to avoid any influence of the energy reflected from the rear 

wall on the leaf sample’s backscattered intensity. The whole frame was rotated between scans, 

increasing the incidence angle from 0 to 60 degrees, with scans conducted at 20 degree 

intervals. A total of 24 scans were conducted. The intensity values of each leaf, at each 

incidence angle, for each scanner, were extracted. The points near the edges of the leaves were 

manually removed as they corresponded to partial hits. The intensity values were calibrated 

into apparent reflectance using the calibration models described in Section 3.4. NDI was 

calculated at each incidence angle for each leaf. 
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Figure 3-5. The wooden frame used in the leaf incidence angle experiment. 

3.6 The ability of NDI to minimize the leaf structure effects 

A leaf has a complicated internal structure, which significantly affects the interaction of 

radiation with foliage (Jacquemoud and Baret, 1990). The ability of NDI to minimize the leaf 

internal structure effects is a key parameter in successfully using NDI to estimate EWT at 

canopy level, especially in forest environments, as the leaf internal structure varies between 

different species and also within each individual species (Lichtenthaler et al., 1981). 

Figure 3-6 shows an example of the leaf internal structure. The mesophyll layers are where the 

photosynthesis take place. The palisade mesophyll cells are packed together and are responsible 

for the majority of the photosynthesis, while the spongy mesophyll cells contribute less to the 

photosynthesis and have gaps between them, filled with air or water. The number and thickness 

of the mesophyll layers, in addition to the cellular arrangement within them, varies between 

individual leaves within each species and also between different species (Jacquemoud and 

Baret, 1990). If the leaf is fully dry, that is, it has zero water content, the weight of the leaf can 

be considered the leaf dry weight, which when divided by the leaf surface area results in the 

LMA (Poorter et al., 2009) (Equation (3.3)). The leaf mesophyll structure and LMA, in addition 

to EWT, are the major elements affecting the interaction of NIR and SWIR wavelengths with 

foliage (Ceccato et al., 2001; Gaulton et al., 2013). Thus, these three elements were the focus 

of this research, while the remaining leaf structure components were ignored. To investigate 

the effects of the aforementioned elements on the 808 and 1550 nm wavelengths, and on the 

NDI, PROSPECT simulations were conducted. 
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Figure 3-6. Leaf internal structure and cellular arrangements. 

𝐿𝑀𝐴 (𝑔 𝑐𝑚−2) =
𝐿𝑒𝑎𝑓 𝐷𝑊

𝐿𝑒𝑎𝑓 𝑆𝐴
 (3.3) 

3.6.1 PROSPECT model 

PROSPECT (Jacquemoud and Baret, 1990) is a radiative transfer model capable of simulating 

the optical properties of plant leaves over the visible, near infrared and shortwave infrared 

regions of the electromagnetic spectrum (400 nm to 2500 nm). The version used in this research 

was PROSPECT-5 (Feret et al., 2008), which modelled the leaf optical properties using six 

parameters: leaf structure coefficient (N), chlorophyll a and b content (Cab), carotenoid content 

(Car), brown pigment content (Cb), leaf water content (Cw), and dry matter content (Cm). The 

values of Cab, Car and Cb were kept constant at the model defaults, 47.7 µg cm-2, 4.4 µg cm-2 

and 0 respectively, as they have minor effects on the NIR and SWIR wavelengths (Ceccato et 

al., 2001; Gaulton et al., 2013). Zarco-Tejada et al. (2003) also used generic, fixed values for 

the aforementioned variables while conducting PROSPECT and SAIL simulations to determine 

the suitability of MODIS data to estimate canopy EWT at the landscape level. Cw will be 

referred to as EWT in the upcoming sections. Cm represents the leaf dry matter content and is 

quantified in the model as LMA (Feret et al., 2008). Cm will be referred to as LMA hereafter. 

3.6.2 The effects of leaf structure coefficient on the NDI 

N is the leaf mesophyll structure coefficient and is related to number and thickness of the 

mesophyll cell layers and the cellular arrangement within them (Figure 3-6), covering a range 

of values between 1 and 3 (Jacquemoud and Baret, 1990). To study how N affected the NDI, 

the values of EWT and LMA were kept constant, each at an average value of 0.01 g cm-2, while 
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N was incrementally increased from 1.5 to 2.5, with an interval of 0.1. N values < 1.5 

correspond to monocot leaves, which were outside the interest of this research, while N 

values > 2.5 indicate that leaves are senescent (Jacquemoud and Baret, 1990). The NDI was 

calculated for each N value. 

3.6.3 The effects of LMA on the NDI 

N and EWT values were kept constant at 2 (dimensionless) and 0.01 g cm-2 respectively. LMA 

values covered the range between 0.0017 and 0.0157 g cm-2, based on the minimum and 

maximum values reported in the LOPEX93 dataset (Feret et al., 2008), with an interval of 

0.001 g cm-2. The NDI was calculated for each LMA value. 

3.6.4 The effects of leaf structure coefficient on the NDI-EWT relationship 

A total number of 111 EWT values, ranging between 0.0046 and 0.0162 g cm-2, which resulted 

from actual leaf sample EWT measurements conducted in this research and fully described in 

Chapters 4 and 5, were used. LMA was kept constant at 0.01 g cm-2, and for each EWT value, 

N was changed between 1.5 and 2.5, with an interval of 0.1, resulting in 1221 combinations of 

N and EWT. The NDI was calculated for each combination. 

3.6.5 The effects of LMA on the NDI-EWT relationship 

The same EWT dataset was used as described in Section 3.6.4. For each EWT value, LMA 

changed between 0.0017 and 0.0157 g cm-2, with an interval of 0.001 g cm-2. N was kept 

constant at 2 in all simulations. The NDI was calculated for each of the 1665 combinations of 

LMA and EWT. 

3.7 Results and discussion 

3.7.1 TLS intensity data calibration 

The intensity-range relationship for the four instruments deviated from the 1/R2 component of 

the laser equation (Figure 3-7). The intensity-range relationships also varied between the 

instruments, despite being built by the same manufacturer. Additionally, there was also a clear 

difference between the P40a and the P40b instruments, although they were of the same model. 

All instruments were found to be equipped with a near-distance intensity reducer to protect the 

optics, which reduced the intensity for ranges less than 4 m (5 m for the P50 instrument). A 

drop was seen in the intensity values up to around 7.5 m range for the P40a and the P50 

instruments, and 9 m for the P20 and the P40b instruments, after which the intensity values 

gradually increased. 
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Figure 3-7. The intensity-range relationships for the four instruments used in this study. 

The P20 and the P40b instruments then showed similar behaviour as the intensity values 

continued to gradually increase, before tending to level out after 15 m for the P20 and 20 m for 

the P40b. For the P40a and the P50 instruments, the intensity values increased more 

significantly, before starting to experience another drop after 12 m and 15 m respectively. The 

intensity values then tended to level out for the P40a instrument after 18 m range, with a slight 

increase at 20 m range. The intensity-range relationship was not investigated for the P50 

instrument beyond 22 m as it was not needed for the data collection campaign carried out with 

the instrument. For the remaining instruments, the intensity values remained constant until the 

end range of the experiment (36 m). The intensity levelling out suggested that the instruments 

were equipped with on-board range calibration adjustments that attempted to calibrate for the 

range effect after 15 m for the P20, 18 m for the P40a and 20 m for the P40b. Thus, these ranges 

were chosen for Iref in the range calibration model (Table 3-5). A similar observation was 

reported for the Faro Focus3D 120 scanner which internally calibrated for the range effect after 

15 m (Tan et al., 2016). 

For all of the instruments, it was not possible to fit a single polynomial function to the intensity-

range relationship. Thus, two polynomial functions were used for each instrument. The split 

point for the polynomial function was selected for each instrument to achieve a smooth 

transition between the two functions. The degrees of the polynomial functions were chosen so 

that the highest possible fitting accuracy could be achieved. Table 3-8 shows the degrees of the 

polynomial functions for each instrument. It is worth mentioning that for the P20 and the P40a 

instruments, polynomial functions were fitted only up to 15 m and 18 m ranges respectively, as 

the instruments were to be used in indoor experiments and outdoors to scan willow plots, both 
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involving scanning trees at near ranges, as described in Chapter 4 and Chapter 6 respectively. 

The P20 instrument was recalibrated and new polynomial functions were fitted up to 36 m range 

to use the instrument in the forest data collection campaign (Chapter 5). As shown in Table 3-8, 

a 3rd degree polynomial function was fitted between 2 and 5 m for the P40b instrument, unlike 

the other instruments, for which a 2nd degree polynomial function was sufficient. This was done 

to achieve a smooth transition between the two fitted polynomial function at the split point, and 

this could not be achieved for the P40b instrument when a 2nd degree function was fitted at near 

range. This difference between the instruments may be a result of them being equipped with 

different near-distance intensity reducers. Figure 3-8 shows the fitted polynomial functions for 

the P40b. 

Table 3-8. Properties of the polynomial functions for the calibration models. 

Scanner Polynomial function Split point Fitting accuracy (R2) 

P20 6th degree function between 2 and 15 m ---- 97% 

P20* 
2nd degree function between 2 and 5 m 

6th degree function between 5 and 36 m 
5 m 

99% 

99% 

P40a 
2nd degree function between 2 and 4 m 

6th degree function between 4 and 18 m 
4 m 

99% 

98% 

P40b 
3rd degree function between 2 and 5 m 

6th degree function between 5 and 36 m 
5 m 

99% 

97% 

P50 
2nd degree function between 2 and 5 m 

6th degree function between 5 and 22 m 
5 m 

99% 

99% 

*Recalibration for the forest data collection campaign. 

 

Figure 3-8. The P40b fitted polynomial functions for near ranges (red, 3rd degree function) and 

for remaining ranges (blue, 6th degree function) with 5 m range chosen as the split point.  



 51 

 

The polynomial functions can be described as follows: 

For the P20 instrument: 

IP = 0.0000005983 × R6 – 0.0000167105 × R5 – 0.0000791961 × R4 + 

0.0070609346 × R3 – 0.0854688734 × R2 + 0.3909688599 × R + 

0.0336314008 

(3.4) 

For the P20 recalibration: 

IP = -0.0014419055 × R2 + 0.0123301563 × R + 0.015072154, for R ≤ 5 m (3.5) 

IP = 0.0000000005 × R6 – 0.0000000751 × R5 + 0.0000041012 × R4 – 

0.0001139564 × R3 + 0.0016819488 × R2 – 0.0122517431 × R + 0.071853401,                                                                                   

for R > 5 m 

(3.6) 

For the P40a instrument: 

IP = -0.0167555733 × R2 + 0.2475767475 × R – 0.12114732, for R ≤ 4 m (3.7) 

IP = -0.0000033794 × R6 + 0.0002243391 × R5 – 0.0058804139 × R4 + 

0.0766866501 × R3 – 0.5126008324 × R2 + 1.6048373581 × R – 

1.2338424945, for R > 4 m 

(3.8) 

For the P40b instrument: 

IP = 0.0004042365 × R3 – 0.006086872 × R2 + 0.029380775 × R – 

0.0089245614, for R ≤ 5 m 
(3.9) 

IP = -0.00000000012 × R6 + 0.0000000133 × R5 – 0.0000004981 × R4 + 

0.0000045267 × R3 + 0.0001134455 × R2 – 0.0022367096 × R + 

0.0443796256, for R > 5 m 

(3.10) 

For the P50 instrument: 

IP = -0.0003583715 × R2 + 0.0048220578 × R + 0.01973043,  for R ≤ 5 m (3.11) 

IP = -0.000000023 × R6 + 0.0000018088 × R5 – 0.0000550102 × R4 + 

0.0008050998 × R3 – 0.0057017687 × R2 + 0.0170650149 × R + 

0.0204361395, for R > 5 m 

(3.12) 

Where IP is the intensity from the polynomial function at a range R. 

Figure 3-9 shows the relationship between the intensity values and the reference panels’ true 

reflectance for all instruments. In Figure 3-9a, which shows the relationships for the P40a and 

the P20 instruments, the intensity values cover the range between 0 and 1, as they were 

internally stretched by the instruments to enhance the visual appearance of the point clouds. 
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This intensity alteration was done automatically by the instruments and access to the original 

recorded intensity values before the alteration was not possible. According to the manufacturer, 

the intensity alteration was constant, and thus, the intensity-reflectance relationship can be used 

to calibrate the intensity to reflectance in any scan conducted by the same instrument. The 

intensity-reflectance relationships could only be described as non-linear, and a 2nd degree 

polynomial function was fitted to each intensity-reflectance curve with R2 > 0.99. 

 

Figure 3-9. The intensity-reflectance relationships of the instruments used in this study. 

Figure 3-9b shows the intensity-reflectance relationships for the P40b, the P20 (recalibration), 

and the P50 instruments, in which the intensity values were not altered by the instruments to 

enhance the visual appearance. This was achieved by using an intensity map editor provided by 

the manufacturer, Leica Geosystems, which reversed the intensity alteration and restored the 

original recorded intensity values. The relationship between the intensity values and the panels’ 

true reflectance, for the three instruments, can be described as linear (R2 > 0.99). However, 

there was a slight nonlinearity that could lead to overestimation of reflectance if a linear model 

was used, especially for the reflectance region less than 50%, where most of leaf reflectance 

was expected to be. An overestimation of reflectance can lead to a significant error in EWT 

estimation. It was therefore preferable to fit 2nd degree polynomial functions to the intensity-

reflectance relationships (R2 > 0.99) to better account for the nonlinearity. 

The polynomial functions that describes the intensity-reflectance relationships of the different 

instruments are as follows: 

For the P20 instrument: 

I = -0.9877937688 × ρ2 + 1.8706814918 × ρ – 0.0175632763 (3.13) 
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For the P20 recalibration: 

I = -0.0260691455 × ρ2 + 0.1067444694 × ρ + 0.0003190931 (3.14) 

For the P40a instrument: 

I = -0.4714314827 × ρ 2 + 1.3390038055 × ρ – 0.0092605544 (3.15) 

For the P40b instrument: 

I = -0.0225515506 × ρ 2 + 0.0997507219 × ρ – 0.0000788046 (3.16) 

For the P50 instrument: 

I = -0.010138882 × ρ 2 + 0.0816307988 × ρ + 0.0003966758 (3.17) 

Where I refers to the intensity and ρ is the reflectance. 

3.7.2 Validating the intensity calibration models 

Table 3-9 shows the errors in the reflectance estimation for each validation experiment. For the 

Spectralon panels experiments, the estimated reflectance at each range of the experiment was 

compared to the panel’s true reflectance and the relative error (E %) was calculated following 

Equation (3.1). The results revealed high errors at 2 m range, shown in Table 3-9 as max error(a), 

and generally higher errors at ranges ≤ 4 m than at the remaining ranges. This can be a result of 

the calibration models not being fully able to calibrate the intensity for the near-distance 

intensity reducer effects. The average of the relative errors at all ranges was the lowest for the 

P20, followed by the P40a and the P50, then the P40b, with all average errors being < 4%. When 

ranges ≤ 4 m were excluded, as no leaf-scanning experiments were planned at such near ranges, 

the max error dropped, shown in Table 3-9 as max error(b). RMSE was not used for direct 

comparison between all validation experiments, because the datasets had different mean and 

numerical scales as a result of using 90% and 20% reference targets for validation. However, 

RMSE was higher for the P40a than for the P20 (90% Spectralon panel used in both 

experiments). This can be a result of the high error in the reflectance estimation at 2 m range 

(12.3%). When measurements ≤ 4 m were excluded, RMSE was found to be equal in the two 

experiments. For the P20 recalibration, the P40b and the P50, for which a reference target with 

a nominal 20% reflectance was used, RMSE was higher for the P40b than the P50 and the P20 

and also dropped when ranges ≤ 4 m were excluded. 
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Table 3-9. Errors in the reflectance estimation in the validation experiments. For the Spectralon 

panels, Max error(a), average error(a) and RMSE(a) correspond to all ranges, while max error(b), 

average error(b) and RMSE(b) correspond to ranges > 4 m. For the painted board, max error(a), 

average error(a) and RMSE(a) correspond to all panels, while max error(b), average error(b) and 

RMSE(b) correspond to panels with reflectance < 60%. 

Scanner 
Validation 

experiment 

Min 

error 

(%) 

Max 

error(a) 

(%) 

Average 

error(a) 

(%) 

RMSE(a) 

Max 

error(b) 

(%) 

Average 

error(b) 

(%) 

RMSE(b) 

P20 90% panel 0.6 1.5 1.1 0.011 1.5 1.2 0.011 

P20* 

20% panel 

Painted 

board 

0 

1.1 

7.4 

8.3 

1.6 

5.1 

0.006 

0.043 

1.7 

5.3 

1 

3.6 

0.002 

0.020 

P40a 90% panel 0.3 12.3 1.7 0.025 1.7 1.2 0.011 

P40b 

20% panel 

Painted 

board 

1.7 

1.5 

8.3 

7.2 

3.4 

3.3 

0.009 

0.022 

4.6 

5 

2.9 

3.1 

0.007 

0.012 

P50 20% panel 0.1 6.9 1.8 0.005 3.2 1.1 0.003 

*Additional validation for the forest data collection campaign. 

For the additional validation experiments conducted for the P20 and P40b instruments using the 

multi-step painted board, the average of the relative errors was 3.3% and 5.1% for the P40b and 

the P20 instruments respectively. For the P40b, the error was consistent in the two different 

validation experiments, which suggested that the wavelength of the instrument was not affected 

by the change in the target surface properties between the Spectralon panel and the wooden 

painted board. However, for the P20, the error in the multi-step painted board validation 

experiment was higher than that in the Spectralon panel experiment, suggesting that the NIR 

wavelength utilized in the instrument was affected by the target surface characteristics. The 

errors were higher in the two panels with reflectance > 60% than the remaining four panels. 

When these panels were excluded, as reflectance > 60% was highly unlikely to be encountered 

when scanning foliage, the errors dropped to 3.1% and 3.6% for the P40b and the P20 

respectively. RMSE also dropped from 0.022 to 0.012 for the P40b and from 0.043 to 0.02 for 

the P20. 

The average of the relative errors observed in all the validation experiments was 2.6%, which 

dropped to 2% when ranges < 4 m and multi-step painted board panels with reflectance > 60% 

were excluded. Thus, the accuracy of the calibration was considered suitable for the purpose of 

this study. It is worth mentioning that the intensity correction models were developed using 

almost perfect Lambertian panels, while in reality leaf and canopy reflectance is bidirectional 

and can be described by the Bidirectional Reflectance Distribution Function (BRDF). Leaf 
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BRDF not only depends on leaf surface spectral characteristics, but also on the direction of the 

incident light and the direction of scattered light. This means that the laser beam incidence angle 

and the TLS instrument viewing angle affect the amount of reflected energy that will reach the 

sensor and then be recorded as backscattered intensity. Similar to the incidence angle effects, 

accounting for leaf BRDF effects will be mandatory when using a single wavelength to estimate 

EWT, as leaves in different parts of the canopy will have different reflectance, not only because 

they have different EWT, but also because of their orientation in space in relation to the sensor. 

However, the use of NDI can minimize such effects, similar to the use of vegetation indices to 

minimize the effects of sun position and sensor viewing angle on satellite estimation of EWT. 

Radiative transfer models also approximate leaves as Lambertian surfaces, considering that 

combining multiple spectral bands can minimize leaf BRDF effects. Based on this assumption, 

models such as PROSPECT, PROSAIL, and GeoSAIL have been successfully utilized in 

estimating EWT from optical remote sensing data, as discussed in Section 2.3.2.     

3.7.3 The ability of NDI to minimize the incidence angle effect 

The effect of the incidence angle on both wavelengths was large in all species sampled (Figure 

3-10), as the change in incidence angle between zero and 60 degrees reduced the SWIR 

reflectance by an average of 47% and the NIR reflectance by an average of 52%. The change 

in reflectance varied between species, with minimum and maximum changes being 29% 

(hornbeam) and 67% (poplar) respectively in SWIR reflectance, and 36% (hornbeam) and 68% 

(poplar) respectively in NIR reflectance. The effect of incidence angle was higher on NIR 

wavelength than in SWIR, agreeing to the observations reported in Hancock et al. (2017). Using 

NDI largely minimized the incidence angle effects for all six species (Figure 3-10c). Changing 

the incidence angle between zero and 40 degrees caused an average change in NDI of 6.7% 

across all leaf samples, with the change in NDI ranging between 0.2% (hornbeam) and 12% 

(grey alder). Changing the incidence angles between zero and 60 degrees caused an average 

change of 13.7% in NDI, with the change in NDI varying between 3.7%, and up to 19% in the 

grey alder leaf samples. One reason for the more significant change in NDI at 60 degrees 

incidence angle can be that leaves are not perfectly Lambertian surfaces, meaning they only 

follow the cosine law to an extent. Furthermore, at 60 degrees incidence angel it became very 

difficult to accurately distinguish between points corresponding to leaf samples and those 

corresponding to the edge of the frame, because of the partial hits between the leaves and the 

frame. This has contributed to the deviation observed.   
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Overall, the average change in NDI for all species and incidence angles, including the 

deviations at 60 degrees for the grey alder leaves, was 9%. For the same leaf samples, the 

change in NDI caused by the change in EWT between minimum and maximum was 53%, 

showing that EWT had more significant impact on NDI than the remaining effects of the 

incidence angle. Hancock et al. (2017) reported similar observations for NDI of 1064 nm and 

1545 nm, also observing deviations at 10, 40, and 60 degrees incidence angles for some leaf 

samples, which was more than the deviation observed at 60 degrees in this study, and 

concluding that the change in NDI caused by the change in EWT was more significant than that 

caused by the incidence angle effects. 

 

Figure 3-10. The reflectance-incidence angle relationship for leaf samples for the 1550 nm 

wavelength: (A1) group 1, (A2) group 2 and (A3) group 3; the reflectance-incidence angle 

relationship for the 808 nm wavelength: (B1) group 1, (B2) group 2 and (B3) group 3, and the 

NDI-incidence angle relationship: (C1) group 1, (C2) group 2 and (C3) group 3. 

3.7.4 The ability of NDI to minimize the leaf structure effects 

Changing N affected the modelled leaf reflectance in the visible, NIR and SWIR regions of the 

electromagnetic spectrum, with higher values of N leading to an increasing reflectance (Figure 

3-11a). The two wavelengths in the scope of this study, 808 nm and 1550 nm, showed similar 

sensitivity to the change in N (Figure 3-11b). Combining the two wavelengths in the NDI 
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minimized the effects of N. However, it did not entirely eliminate these effects (Figure 3-11b). 

A leaf with a more compact mesophyll structure would have a slightly higher NDI value than 

a leaf with a more differentiated structure, even if they both had an identical EWT. 

LMA affected the leaf reflectance in the NIR and SWIR regions only, with the least effect being 

around the water absorption wavelengths of 1400 nm, 2500 nm, and especially 1900 nm. 

Increasing LMA resulted in a lower leaf reflectance (Figure 3-12a). The 808 nm and the 

1550 nm wavelengths were both sensitive to the change in LMA, and combining them in the 

NDI minimized, but did not eliminate, the effects (Figure 3-12b). A leaf with respectively lower 

dry matter content would have a slightly lower NDI than a leaf with higher dry matter content 

that has the same surface area and EWT value. 

 

Figure 3-11. (a) Effects of N on the leaf reflectance in the visible, NIR and SWIR regions of 

the electromagnetic spectrum, and (b) effects of N on 808 nm wavelength, 1550 nm wavelength 

and NDI. 

 

Figure 3-12. (a) Effects of LMA on the leaf reflectance in the visible, NIR and SWIR regions 

of the electromagnetic spectrum and (b) effects of LMA on 808 nm wavelength, 1550 nm 

wavelength and NDI. 
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The NDI – EWT relationship was affected by the change in N, with an increase in N leading to 

a shift in the trendline of the NDI – EWT relationship downwards (Figure 3-13). The effects of 

N appeared to be larger for higher EWT values. The relationship was also affected by the LMA 

value, with an increase in LMA value causing the trendline of the NDI – EWT relationship to 

be shifted up (Figure 3-14). Unlike N, the effects of LMA were slightly larger for lower EWT 

values. It is worth mentioning that although N and LMA were considered uncorrelated 

parameters in the simulations, for the sake of studying their effects on NDI individually, they 

are highly correlated in reality. N is correlated to the Specific Leaf Area (SLA) parameter, 

which is the leaf surface area divided by the leaf dry mass, and an increase in SLA leads to a 

decrease in N (Jacquemoud and Baret, 1990). Thus, N is also highly correlated to LMA, as 

LMA is the reciprocal of SLA. A thinner leaf would frequently have a lower N value than a 

thicker leaf, and correspondingly a lower LMA value. Although the PROSPECT simulations 

revealed that both N and LMA individually slightly affected NDI, when their effects were 

combined they would be minimized as they would cancel each other out. Thus, a change in NDI 

would be mainly caused by a change in EWT, with some minor influence of N and LMA. Thus, 

the NDI has the potential to be used to estimate EWT at canopy level in forest plots with mixed 

species, as the leaf internal structure would have a minimal effect on the estimation. 

 

Figure 3-13. Effects of leaf structure coefficient on the NDI – EWT relationship. 
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Figure 3-14. Effects of LMA on the NDI – EWT relationship. 

3.8 Summary 

This chapter described the characteristics of the TLS instruments used in this study and the 

method for combining their data to produce 3D EWT estimations. The details of the calibration 

work for each instrument were given, then the ability of the NDI of 808 nm and 1550 nm 

wavelengths to minimize the incidence angle and leaf internal structure effects was 

investigated. 

The intensity data from the four TLS instruments involved in this research was found to be 

heavily affected by the range effect. None of the intensity – range relationships followed the 

laser equation. In addition, each TLS instrument was found to have its unique intensity-range 

relationship, thus, each instrument needed its own calibration model. The instruments were 

found to be equipped with a near-distance intensity reducer. Plus, they also seemed to be 

equipped with far-distance intensity amplifiers and on-board range calibration adjustments, 

which attempted to calibrate the intensity for the range effect starting from a specific range, 

which differed between the instruments. The calibration models developed were found to be 

able to calibrate the intensity for the range effect and to apparent reflectance with low errors. 

Although the errors observed at ranges < 4 m were higher than the remaining ranges, this was 

not considered a problem as none of the scans planned in the data collection campaigns were to 

be conducted at such near ranges. 

The incidence angle had a severe influence on the intensity data of both the near and the 

shortwave infrared wavelengths. Using NDI minimized the incidence angle effect with no need 

for further radiometric calibration for a variety of leaf samples from different tree species. Some 

deviation, however, was observed at 60 degrees incidence angle, which may introduce some 
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errors while applying this method at the canopy level in real forest environments, as laser beams 

will hit the leaves at all possible incidence angles (Kaasalainen et al., 2018). 

PROSPECT simulations revealed that the leaf internal structure, defined in the model as the 

leaf mesophyll structure coefficient (N) and LMA, affected the reflectance at both the 808 nm 

and the 1550 nm wavelengths. Increasing N resulted in a higher leaf reflectance while 

increasing LMA reduced the leaf reflectance. The simulations also revealed that combining the 

two wavelengths in the NDI can minimize, but not entirely normalize, such effects. EWT was 

found to be the main parameter affecting NDI, but there remained some minor influences of N 

and LMA, which may reduce the accuracy of EWT estimation in mixed-species sites that 

exhibit significant variation in N and LMA, for instance, sites that combine green and senescent 

leaves. 

The experiments described in this chapter and the results obtained showed the possibility of 

retrieving reflectance data from the four TLS instruments tested with low errors, and also 

demonstrated the ability of NDI of the two wavelengths in the scope of this research to minimize 

the incidence angle and leaf internal structure effects. Such ability can allow the use of NDI to 

estimate EWT at the canopy level without the need for radiometric corrections for the incidence 

angle effects, and for the variation in the leaf internal structure within each individual species 

or between different species. This can allow the use of NDI to estimate EWT in 3D at canopy 

level. 
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Chapter 4. EWT estimation in indoors dry-down experiment 

4.1 Introduction 

This chapter describes a dry-down experiment conducted in a laboratory setting using four 

small trees from two different species. The instruments used in the experiment were the Leica 

P20 and the P40a. The aim of the experiment was to investigate the ability of NDI to estimate 

EWT at leaf level, and the possibility of upscaling the estimations to canopy level. Challenges 

associated with the estimation of EWT at the canopy level were studied, which included the 

accuracy of the registration, the possibility of calculating NDI on a point-by-point basis, and 

the effect of the woody materials on the EWT estimation accuracy. The experiment also 

examined the vertical distribution of EWT at the canopy level and the ability of the proposed 

approach to detect the change in EWT over a short period of time. Additionally, the experiment 

investigated how the drying pattern varied between the two different species. However, the 

experiment can only be considered a proof-of-concept as it included one deciduous and one 

conifer species, and 3D EWT point clouds were generated for a single tree from each species. 

The experiment was a step towards transferring the EWT estimation approach to a real forest 

environment. The content of this chapter was published in Elsherif et al. (2018).  

4.2 Experimental setup 

The dry-down experiment was conducted at the School of Environment and Life Sciences, 

Salford University, Manchester, UK. The trees involved in the experiment were two deciduous 

Snake-bark maple (Acer davidii), with an approximate height of 2.6 m each (Figure 4-1a), and 

two Corsican pine (Pinus nigra) conifers, approximately 0.9 m in height (Figure 4-1b). The 

duration of the experiment was eight days for the deciduous canopies and nine days for the 

conifer canopies. For each species, one tree served as a control unit and was watered regularly, 

whilst the other acted as a dry-down unit and was left to dry naturally. 

The trees, together with a 50% Spectralon panel, were placed 6.5 m away from a tripod, 

ensuring a clear space of at least 1 m between them and the wall behind. Neither the trees nor 

tripod were moved during the entire period of the experiment, thereby ensuring the scanners 

occupied the same survey point in all scans and faced the trees from the same viewing angle. 

The canopies were scanned by the P20 instrument followed by the P40a instrument on each day 

of the experiment, except for two days on which access to the building was not granted, 

resulting in 6 scans for the deciduous canopies and 7 for the conifer canopies. For consistency, 
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all scans were conducted at 11 am, with a duration of 10 minutes for each instrument, and leaf 

sampling (Section 4.3) was carried out immediately after the scans to ensure that the leaf 

samples represented canopy EWT at the time of the scan, as leaves lose moisture during the 

day as a result of photosynthesis. No scans were conducted predawn, and all the scans were 

carried out with the instruments’ highest point spacing (0.8 mm at 10 m). 

 

Figure 4-1. The trees involved in the indoors dry-down experiment: (a) the deciduous canopies 

and (b) the coniferous canopies, while (1) indicates the control units and (2) indicates the dry-

down units.  

4.3 Leaf sampling and biochemistry measurements 

4.3.1 Deciduous leaves  

Three leaf samples were collected daily from the dry-down unit, except for days 4 and 7, 

resulting in a total of 18 leaf samples. Collecting more daily samples was not possible in order 

to avoid defoliation of the small canopy. To add species variety to the experiment, nine 

additional leaf samples were collected randomly from five different species in Peel Park in 

Salford, Manchester. The leaf samples included: three leaves of grey alder (Alnus incana), two 

leaves of common lime (Tilia x europaea), one leaf of common alder (Alnus glutinosa), one 

leaf of poplar (Populus sp.), and one leaf of cherry (Prunus avium). Processing the leaf samples 

followed the steps described in Section 3.3.4. The fresh weight of each leaf was measured 

immediately on collection, then the leaves were suspended in a wooden frame and successively 

scanned by the P20 and P40a scanners, at a distance of 6.5 m. NDI was calculated following 

Equation (2.5) after calibrating the intensity to apparent reflectance using the calibration models 

described in Section 3.7.1. EWT of each leaf was calculated following Equation (2.1) after 

measuring the surface area and dry weight of each leaf sample. 
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4.3.2 Conifer needles leaves  

Three needle samples were collected daily from the dry-down unit, except for days 5 and 8. 

Each sample consisted of 25 to 45 needles. The weight of the needles in the sample was 

measured and considered the sample fresh weight. The needles in each sample were then taped 

together, side by side from the top, to form a wider surface that could be scanned. They were 

scanned as a single unit by both the P20 the P40a scanners. The surface area of each sample 

was considered the summation of the surface areas of the needles in the sample, while the 

surface area of each individual needle was estimated as the length of the needle multiplied by 

the needle width (estimated at 1 mm). To measure the needle samples’ dry weight, the samples 

were dried in an oven for eight days at 60 degrees Celsius. Samples were weighed every two 

days until no change in weight was detected. EWT of each needle sample was calculated 

according to Equation (2.1). Similar to the broadleaf samples, NDI of the reflectance was 

calculated for each needle sample following Equation (2.5). 

4.4 Canopy level data processing and analysis  

4.4.1 Point cloud processing  

Processing the canopy level point clouds to produce an NDI point cloud on each day of the 

experiment followed the steps described in Sections 3.3.2 and 3.3.3. The scans were imported 

into Leica Cyclone and the partial canopy hits were reduced from the point clouds using the 

Cyclone partial hits filter on medium setting. Each P40a and P20 point cloud pair was registered 

in Leica Cyclone. The P20 point clouds were then filtered to match the same number of points 

in the corresponding P40a point clouds using a nearest neighbour function, as described in 

Section 3.3.3. 

The registered point clouds were then calibrated for the range effect on a point-by-point basis 

using the calibration models described in Section 3.7.1. NDI was calculated for each pair of 

P40a/P20 scans on a point-by-point basis and an NDI point cloud for each day of the experiment 

was generated. Mean NDI at canopy level was compared to the mean EWT of the leaf samples 

of the dry-down unit on each day of the experiment. The NDI point clouds were then 

transformed to EWT point clouds by applying Equation (4.1) and Equation (4.2), on a point-

by-point basis, for the deciduous and conifer canopies respectively, derived in Section 4.5.1. 

4.4.2 Removing the woody materials 

The histogram of the EWT distribution at canopy level on day 1 was used to separate the woody 

materials from the leaves by choosing a separation threshold by trial and error, until few points 
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corresponding to leaves were incorrectly filtered as woody materials. The threshold was then 

applied to the point clouds on all days of the experiment. In the case of the conifer canopies, 

the threshold incorrectly extracted too many points corresponding to needles in the point cloud 

of day 9, as they represented very dry needles that were misclassified as wood. Thus, the 

identified woody points for day 1 were used as a reference, and were compared to the filtered 

points on day 9. The cloud-to-cloud distance module in CloudCompare v.2.6.2 software 

package was used to identify the filtered points on day 9 that were less than 1 mm away from 

the corresponding filtered points on day 1. These points corresponded to the stem and branches. 

The remaining points were extracted and re-added to the needle point cloud. 

4.4.3 Studying the effect of wood on the EWT estimations 

The average estimated EWT for each day of the experiment was calculated from the point cloud 

of the dry-down unit, as the summation of the water content of all points in the EWT point 

cloud, divided by the number of points. The estimated EWT at canopy level, before and after 

filtering the woody materials, was compared to EWT from leaf samples on each day of the 

experiment, not with the aim of validating the estimation, which requires destructively sampling 

the whole canopy, or collecting a different set of leaf samples for the sole purpose of validating 

the EWT estimates, but to study the effect of the presence of woody materials on upscaling 

EWT estimation from leaf to canopy level. 

4.4.4 Detecting the change in EWT  

The estimated EWT of the control and dry-down units, on each day of the experiment, after 

removing the woody materials, was plotted against the corresponding day to investigate the 

ability of the proposed approach to detect the change in EWT. 

4.4.5 Studying the EWT vertical profiles 

To study the vertical heterogeneity of the EWT, after filtering the woody materials, the EWT 

point clouds of the dry-down unit on all days of the experiment were divided into 9 horizontal 

layers (5 horizontal layers for the conifer canopy) and the average EWT for each layer was 

calculated and plotted against the corresponding height. 

4.5 Results and discussion 

4.5.1 Leaf level results 

A strong linear relationship between NDI and EWT was found for the Snake-bark maple leaf 

samples (Figure 4-2a, R2 = 0.82, P < 0.05). The following equation was derived from the 

relationship, which can be used to estimate EWT from NDI for this species: 
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EWT (g cm-2) = 0.0594 × NDI – 0.0052 (4.1) 

A strong linear relationship was also found between NDI and EWT for the additional nine leaf 

samples (Figure 4-2b, R2 = 0.94, P < 0.05). The strong relationship holds (R2 = 0.91, P < 0.05) 

when all the leaf samples were combined together (Figure 4-2c). 

 

Figure 4-2. Leaf level results of NDI against EWT for (a) Snake-bark maple leaf samples, (b) 

the additional leaf samples and (c) all leaf samples combined.  

For the conifer needles, NDI was found to be highly correlated to EWT (Figure 4-3, R2 = 0.74, 

P < 0.05). The relationship between NDI and EWT for this species had significantly different 

slope and intercept than that of the deciduous species, as a result of the different leaf internal 

structure between broadleaf and needles. The NDI – EWT relationship can be described as: 

EWT (g cm-2) = 0.1148 × NDI – 0.0022 (4.2) 

 

Figure 4-3. Leaf level results of NDI against EWT for the conifer samples. 

4.5.2 Canopy level EWT estimation 

The registration accuracy, reported by Leica Cyclone, of the P40a/P20 point clouds obtained on 

all days of the experiment was very similar, as the scan geometry was constant. RMSE of the 

registration ranged between 0.7 and 0.8 mm for all the scans, which was very close to the 
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utilised scan resolution (0.8 mm at 10 m). Figure 4-4 shows a 3D EWT point cloud for the 

control and dry-down units of the deciduous canopies on day 8, alongside the histogram of the 

water content distribution. Figure 4-5 shows the same for the conifer canopies on day 9. Visual 

inspection of the EWT point clouds and histogram on all days revealed that the woody materials 

had higher water content than the leaves in the deciduous canopies, possibly because the trees 

were young and the woody materials were green. Green wood can have similar moisture content 

to leaves or even higher (Waterman et al., 1983). In the case of the conifer canopies, the woody 

materials (brown and mature) had lower water content than the needles. The visual inspection 

also showed some stress in the bottom part of the dry-down canopies in comparison to the 

control canopies. 

 

Figure 4-4. For the deciduous canopies, (a) 3D EWT (g/cm2) distribution of the control unit 

(left) and the dry-down unit (right) on day 8 and (b) the histogram of the EWT (g/cm2) 

distribution for the dry-down and control units combined. 

 

Figure 4-5. For the conifer canopies, (a) 3D EWT (g/cm2) distribution of the control unit (left) 

and the dry-down unit (right) on day 9 and (b) the histogram of the EWT (g/cm2) distribution 

for the dry-down and control units combined.  

(a) (b) 

(a) (b) 
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Thresholds of 0.028 g/cm2 for the deciduous trees was applied to the EWT point clouds to 

extract the woody materials, which had EWT > 0.028 g/cm2. For the conifers, the woody 

materials were found to have EWT < 0.011 g/cm2 and the threshold was used for leaf/wood 

separation. Figure 4-6 illustrates the extracted woody materials of the EWT point clouds shown 

in Figure 4-4 and Figure 4-5. 

 

Figure 4-6. The extracted woody materials, (a) the deciduous canopies on day 8 and (b) the 

conifer canopies on day 9, many needles were incorrectly filtered as wood in the conifer dry-

down unit.  

NDI at canopy level for the dry-down units, before and after extracting the woody materials, 

were plotted against EWT of leaf samples (Figure 4-7). The results revealed a linear relationship 

with R2 of 0.57 and 0.48 for the deciduous and conifer canopies respectively before filtering 

the woody materials (P > 0.05). Filtering the woody materials had little effect on the NDI – 

EWT relationship for the deciduous canopy, but improved the relationship for the conifer 

canopy (R2 = 0.73, P < 0.05). In addition, the NDI – EWT relationship for the deciduous canopy 

was affected by the measured EWT of the leaf samples on day 6 being higher than the previous 

days (see Figure 4-8), but would be expected to be lower as the canopy had dried more. 

Excluding the results of day 6, likely to result from a laboratory measurement error, improved 

the correlation (R2 = 0.89, P < 0.05). 

(a) (b) 
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Figure 4-7. NDI at canopy level against EWT of leaf samples for the dry-down units, (a) the 

deciduous canopies and (b) the conifer canopies. The outlier on day 6 is included.  

4.5.3 Studying the effect of wood on the EWT estimations 

The estimated EWT at canopy level for the dry-down units were compared to EWT of leaf 

samples (Figure 4-8) and the relative error was calculated. The results revealed an 

overestimation on all days for the deciduous canopy when woody material was included, except 

for day 6, with an average of relative errors being 4.9%, and significant underestimation for the 

conifer canopy, with an average of relative errors equalling 16.6%. Studying the errors, 

alongside the histograms and point clouds of the EWT distribution, revealed that the higher 

error in EWT estimation in the conifer canopy seemed to be a result of the canopy having 

mature wood and a higher wood to leaf ratio than the deciduous canopy. 

  

Figure 4-8. Estimated EWT at canopy level with and without the woody materials against EWT 

of leaf samples for the dry-down unit, (a) deciduous and (b) conifer.  

Filtering of the woody materials reduced the average error in EWT estimation to 2.9% for the 

deciduous canopy, and significantly decreased the average error in the estimation to 2.6% for 

the conifer canopy. This revealed the strong effect of the presence of the woody materials on 

the upscaling of the TLS estimation of EWT from leaf to canopy level, especially when the 

wood was brown and mature. 

(a) (b) 

(a) (b) 
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4.5.4 Detecting the change in EWT 

Figure 4-9 shows how the estimated EWT from the TLS measurements changed between the 

first and last day of the experiment for the control and the dry-down deciduous canopies, while 

Figure 4-10 shows the same for the conifer canopies. For the deciduous canopies, the control 

unit showed an almost constant EWT, with a slight increase in the first two days then a slight 

decrease in the remaining days. The dry-down unit, on the other hand, lost EWT throughout the 

days of the experiment, with EWT on the last day of the experiment being 15% less than that 

on the first day. The change in EWT appeared to be more significant in the first two days, as 

the canopy lost 7.3% of EWT, while it lost a total of 7.9% EWT between the third and last day 

of the experiment. In addition, a logarithmic model with R2 > 0.99 can describe the drying 

pattern of the tree and could possibly be used to predict EWT beyond the duration of the 

experiment. 

 

Figure 4-9. The change in the estimated EWT from TLS measurements over the duration of the 

experiment for the deciduous canopies. 

 

Figure 4-10. The change in the estimated EWT from TLS measurements over the duration of 

the experiment for the conifer canopies. 
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Furthermore, TLS could detect the daily change in EWT for the deciduous tree, showing that 

the tree lost approximately 3.7% EWT per day in the first two days in the experiment, and 1.6% 

EWT per day in the remaining five days. The ability of TLS to detect such fine changes in EWT 

suggested that there could be a potential in using TLS to detect canopy EWT changes 

throughout the day, and compare predawn EWT to midday EWT to quantify how much 

moisture plants lose during photosynthesis. 

For the conifer canopies, a 6% increase in EWT occurred between day 1 and day 4 for the 

control unit, before EWT tended to be almost constant throughout the remaining days of the 

experiment. This could be a result of the tree receiving more daily water than it was getting in 

the nursery and/or the tree already being stressed before the start of the experiment. For the dry-

down unit, the overall trend shows a slight decrease in EWT throughout the days of the 

experiment, with EWT on day 9 being 3.4% less than EWT on day 1. This was expected as 

conifer canopies are drought tolerant and use water efficiently (Moran et al., 2017), suggesting 

that nine days were not enough time to cause severe stress. 

4.5.5 Studying the EWT vertical profiles  

Figure 4-11 compares the vertical distribution of EWT for the dry-down units on the first and 

last day of the experiment. The results revealed that the canopies had higher water content in 

the upper canopy than the lower canopy. For the deciduous canopy, the bottom of the canopy 

had 35% lower water content than the top on day 1, and 39.7% lower water content on day 8. 

For the conifer canopy, the bottom of the canopy had 33% lower water content than the top on 

day 1, and 40% lower water content on day 9. 

 

Figure 4-11. The vertical distribution of EWT for the dry-down units, (a) deciduous and (b) 

conifer, after filtering the woody materials. 
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Comparing the EWT vertical profile on day 1 and on the last day revealed that the deciduous 

canopy lost moisture from all parts of the canopy relatively evenly as it dried, with slightly 

greater water loss from the lower canopy. For conifer canopy, upper canopy EWT remained 

almost constant over the course of the experiment, with slightly greater water loss from the 

lower canopy. Although the deciduous and coniferous canopies were not fully destructively 

sampled to validate the EWT vertical profiles, the observations obtained agreed with the 

findings reported in Chavana‐Bryant et al. (2016), a study in which younger leaves, typically 

in canopy top layers, were reported to have higher EWT than older leaves for 1099 leaf samples 

collected from 12 lowland Amazonian trees. Zhu et al. (2017) also reported EWT vertical 

heterogeneity in 20 small plants from five different species: dwarf schefflera, weeping fig, 

Chinese banyan, ficus, and Zanzibar gem, highlighting that EWT was always higher in canopy 

top than in canopy bottom. This was also explained as a result of new leaves at the top of the 

canopy having higher water content than older leaves (Mooney et al., 1977). The EWT vertical 

heterogeneity and its possible causes are further investigated in Section 5.5.4. 

4.6 Summary 

This chapter described an indoor dry-down experiment conducted using two deciduous snake-

bark maple canopies and two Corsican pine conifer canopies. The experiment aimed at 

investigating the relationship between the NDI of the 808 nm and the 1550 nm wavelengths 

and the EWT at leaf level and the possibility of using NDI to produce 3D EWT estimates at 

canopy level. 

NDI was found to be highly linearly related to broadleaf EWT across various tree species, and 

also to needle EWT of the Corsican pine conifer canopy. However, as the experiment included 

samples from a single conifer species, the results obtained can only be considered preliminary 

and further experiments that include various conifer species are necessary in order to determine 

whether the NDI-EWT relationship will hold or not. 

At the canopy level, a high registration accuracy was obtained for each P40a/P20 point cloud 

pair on each day of the experiment, because of the similarity in the scan geometry. NDI 

estimated EWT on a point-by-point basis for the deciduous and conifer canopies, generating 

3D distributions of EWT that revealed some vertical heterogeneity. The young leaves and 

needles in the upper canopy had higher water content than the older leaves/needles in the lower 

canopy. This, if also observed in a forest environment, can affect passive optical spaceborne or 

airborne sensor estimation of EWT, as measurements from such instruments will be dominated 
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by the canopy top (Liu et al., 2015) (see Section 5.5.4 for EWT vertical profiles in forest 

canopies). 

NDI overestimated the EWT for the deciduous canopy, and underestimated it for the conifer 

canopy on all days of the experiment, with the errors in the EWT estimation being proportional 

to the amount of woody material in the point cloud. Filtering the woody material significantly 

improved the EWT estimation accuracy for the conifer canopy, while having a minimum effect 

for the deciduous canopy, most likely because the wood was young and green in the deciduous 

canopy, but was brown and mature in the conifer canopy.  

The 3D EWT estimates showed that the two different species had different drying patterns. The 

deciduous tree seemed to be equally losing EWT from all layers in the canopy while the tree 

dried between the first and last day of the experiment. On the other hand, the conifer canopy 

maintained an almost constant EWT in the upper canopy layers while losing water from the 

bottom layers. It was also possible to detect the change in EWT between the days of the 

experiments, with the change being more obvious in the deciduous canopy than the conifer 

canopy. 

This experiment showed the potential of dual-wavelength TLS methods to better characterise 

and study heterogeneity in biochemistry within tree canopies, which can provide a new insight 

into tree stress and physiology. However, experiments in real forest environments need to be 

conducted to assess the applicability of the proposed EWT estimation approach in larger 

canopies and outdoor conditions (for example in the presence of wind). This was investigated 

in fieldwork campaigns, described in Chapters 5 and 6.  
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Chapter 5. Mapping of forest canopy EWT in three dimensions 

5.1 Introduction 

Forests are of great importance for humankind and the environment because of the essential 

ecological, economic and social services they provide (Yao et al., 2014). They play a major 

role in the global carbon and hydrological cycles (Pan et al., 2011), and influence the climate 

as a result of exchanging water, energy, carbon dioxide, and other chemicals with the 

atmosphere (Bonan, 2008). However, natural and anthropogenic threats, such as climate 

change, drought, disease infections, pest infestations, wildfires, land use change and 

deforestation, threaten forest health (Lewis et al., 2015; Millar and Stephenson, 2015). Forest 

health monitoring is critical to understand how forests react to such stressors (Ferretti, 1997; 

Trumbore et al., 2015), and also for early detection of drought stress, symptoms of disease, and 

risk of wildfire (Meentemeyer et al., 2008). 

As discussed in Section 2.3, optical RS data, airborne and spaceborne, have been widely 

adopted in estimating canopy EWT as a vegetation stress indicator to overcome the limitations 

of in-situ approaches (destructive methods and field spectroscopy), which are time and effort 

consuming and impractical for large areas (Pu et al., 2003; Dash et al., 2017). However, the 

effects of EWT vertical heterogeneity on the optical RS estimation of EWT still needs to be 

investigated. The results obtained in Chapter 4 showed the potential of using dual-wavelength 

TLS for estimating canopy EWT in 3D and generating EWT vertical profiles that can be used 

to quantify and study the EWT vertical heterogeneity within a canopy. However, the 

relationship between NDI and EWT at canopy level was investigated for small individual trees 

in a controlled environment only. In this chapter, the method was transferred to a real forest 

environment, and NDI was used to produce 3D estimations of EWT in a mixed-species 

broadleaf deciduous forest plot in Wytham Woods, Oxford, UK. The aims of the data collection 

campaign were to: (i) test the ability of NDI to generate 3D EWT estimates in a real forest 

environment where partial canopy hits, wind effect, and variation of leaf internal structure 

between species can affect the accuracy of the EWT estimates, and (ii) examine the vertical 

variation of EWT within forest canopies. The content of this chapter was published in (Elsherif 

et al., 2019d). Prof. Yadvinder Malhi and Dr Alexander Shenkin, Environmental Change 

Institute, University of Oxford, have contributed to the results interpretation presented in 

Sections 5.5.1 and 5.5.4.   
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5.2 Study area and TLS scanning setup 

The data collection campaign took place in Wytham Woods near Wytham village 

(51.78° N, 1.31° W) in Oxfordshire, UK, between 22nd and 31st of May 2017. Wytham Woods 

is approximately 400 ha and consists of ancient woodland and naturally-regenerated secondary 

woodland, in addition to nineteenth and twentieth-century plantations (Morecroft et al., 2008). 

It has been owned by the University of Oxford since 1942 and is considered one of the most 

important sites for ecological research in the world (Morecroft et al., 2001). The fieldwork data 

were acquired in a 35 × 45 m rectangular plot around the treetop canopy walkway in the 18 ha 

Wytham core plot (Figure 5-1 and Figure 5-2). Wytham core plot is a permanent sample plot, 

established in the woodland for research purposes (McMahon et al., 2015).  

The site was dominated by Quercus robur (oak) and Acer pseudoplatanus (sycamore) trees, in 

addition to a number of Fagus sylvatica (beech) and Fraxinus excelsior (ash) trees. The 

fieldwork campaign took place in non-windy, non-rainy conditions at an average temperature 

of 21° Celsius. Thirteen trees around the canopy walkway were selected for sampling, based on 

how accessible their leaves were from the canopy walkway (Figure 5-2). Ten scanning positions 

were set around the walkway in locations corresponding to low density canopy cover to reduce 

the effect of occlusion by lower branches and obtain as much detail (laser beam returns) as 

possible from the thirteen sampled trees (Figure 5-2). 

 

Figure 5-1. The study area: (a) Wytham woods and the location of Wytham core plot and (b) 

the treetop canopy walkway.  
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Figure 5-2. The 35 × 45 m rectangular plot and the thirteen sampled trees (indicated by numbers 

assigned during fieldwork). Black indicates trees that were not sampled.  

At each scan position, full-hemisphere scans (360° × 270°) were conducted by the P40b and the 

P20 instruments, mounted consecutively on the same tripod, with a resolution (point spacing) 

of 3 mm at 10 m. Four Leica black and white registration targets were used to link each pair of 

consecutive scanning positions. The scans were conducted over a period of two days. On the 

first day, TLS data were collected from scanning positions S1 to S6, with the duration of each 

scan being approximately fifteen minutes for each instrument. Scanning began at 10 AM and 

the total scanning duration, including the time needed to move the instruments between 

different scanning positions, was approximately two hours. This was followed by leaf sampling, 

for the purpose of validating the EWT estimation (Section 5.3.2), from trees number 1, 2, 3, 4, 

5, 6, and 8. No samples for validation were collected from the ash tree, labelled 7, as it was the 

only ash tree accessible from the treetop canopy walkway, and samples for building the EWT 

estimation model were collected from it (Section 5.3.1). It was acknowledged that canopy EWT 

may have undergone some changes over the two hours of scanning, as trees lost moisture during 

photosynthesis, and that the ideal leaf sampling approach was to collect the samples at the same 

time of scanning, ensuring that they accurately represented the canopy EWT at the time. 

However, this was not possible due to lack of personnel. On the second day, scans were carried 

out from scanning positions S7 to S10, starting at 10 AM and lasting for approximately 

90 minutes, followed by collecting leaf samples for validation from trees number 9, 10, 11, 12, 

and 13. Afterwards, leaf samples for building the EWT estimation models were collected and 

processed as described in Section 5.3.1. 
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5.3 Leaf sampling and biochemistry measurements 

5.3.1 Samples for building the EWT estimation model 

Eighty-four leaf samples were collected randomly from various trees in the plot. The priority 

in sampling leaves for the EWT estimation model was to ensure a representative and broad 

sample of species, leaf types and EWT. Samples were collected from low branches in the 

canopy bottom that were accessible from ground using a tree pruner, and also from the canopy 

top, which was accessible using the treetop canopy walkway. The canopy top leaf samples 

predominantly represented sun leaves, while the canopy bottom leaf samples predominantly 

represented shade leaves. Sun leaves grow in the well-lit regions of the canopy and are usually 

thicker and have higher photosynthetic rates than shade leaves (Lichtenthaler et al., 1981; 

Terashima et al., 2005). The leaf samples included: 18 oak leaf samples, 22 beech leaf samples, 

20 sycamore leaf samples, and 24 ash leaf samples. The ash leaf samples were individual 

leaflets of the compound leaves. Leaf sampling was carried out for each species separately. 

That is, the oak leaf samples were collected first, and the fresh weight of each sample was 

measured in field, immediately on collection, using an electronic balance (one milligram 

precision). The samples were then suspended in a wooden frame, positioned 8.6 m away from 

a tripod, and were scanned in field using the P40b, followed by the P20 instrument, with a 

resolution (point spacing) of 0.8 mm at 10 m. The time gap between collecting the samples and 

scanning them was less than fifteen minutes, and the duration of the scan was approximately 

five minutes for each instrument. Afterwards, the same sampling approach was repeated for 

each species, one after another. 

The leaf samples were then transferred to the laboratory and processed as described in Section 

3.3.4 to measure their surface area, dry weight, EWT, and NDI. It is worth mentioning that 

before drying the samples in an oven, they were left to dry naturally over a period of two weeks. 

Afterwards, they were further dried in an oven for 48 hours at 60° Celsius and were considered 

fully dry as no change in weight was observed when they were weighed after 40, 44, and 48 

hours. In addition to measuring EWT of each leaf sample (Equation (2.1)), LMA was measured 

according to Equation (3.3). Reduced major axis regression was used to determine the NDI – 

EWT relationship for each individual species, and also for all species combined.  

5.3.2 Samples for validation of the EWT estimation 

A total of 274 leaf samples were collected from twelve out of the thirteen trees shown in Figure 

5-2, as the ash tree, labelled 7, was excluded from validation. Table 5-1 shows the number of 

leaf samples collected from each tree. The leaf samples were collected from two canopy layers: 
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the canopy top layer and the canopy bottom layer. This allowed the areas sampled for validation 

to be explicitly identified in the TLS point cloud. The canopy top layer was 1 m above the 

canopy walkway level (12 m), with a depth of one metre, while the canopy bottom layer 

consisted of the low branches that were accessible from the ground. EWT and LMA of each 

leaf sample were measured following the steps described in Section 5.3.1. 

Table 5-1. Details of the species, locations and numbers of the leaf samples for the EWT 

estimation validation. The samples from the ash tree, labelled 7, were excluded. 

Tree label Species Number of leaf samples  

Canopy top 

layer 

Canopy bottom 

layer 

1 Sycamore 20 18 

2 Sycamore 18 10 

3 Sycamore 20 20 

4 Sycamore -- 20 

5 Beech 19 -- 

6 Sycamore 20 -- 

8 Oak -- 24 

9 Oak 20 -- 

10 Oak 20 -- 

11 Oak 15 -- 

12 Sycamore 15 -- 

13 Oak 15 -- 

Total number 182 92 

 

5.4 TLS point cloud processing 

5.4.1 Point cloud registration and filtering 

The point clouds from each instrument were registered in Leica Cyclone, using the registration 

targets, to build the forest plot. The registered P20 scans were then aligned to the registered 

P40b scans. The outcome was a pair of P40b/P20 aligned point clouds at each scanning 

positions. Points corresponding to ground and understory vegetation were removed to reduce 

the size of the point clouds. 

The P20 point cloud at each scanning position was filtered to match the same number of points 

in the corresponding P40b point cloud using a nearest neighbour function as described in Section 

3.3.3. As the nearest neighbour function tried to find the nearest neighbour in the P20 point 

cloud to each point in the P40b point cloud, regardless of how far that nearest neighbour was, 

further filtering was required. A threshold of 3 cm was applied, that is, any pair of P40b/P20 

neighbour points > 3 cm apart was removed from the point cloud. The 3 cm threshold was 
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chosen on the basis of 96% of the nearest neighbour distances being < 3 cm apart, while 99% 

of distances were < 6 cm apart. 

5.4.2 Generating the EWT point clouds 

The filtered point clouds were calibrated to apparent reflectance and NDI was calculated for 

each pair of P40b/P20 scans on a point-by-point basis. The NDI point clouds from the ten 

scanning positions were merged into a single point cloud that covered the entire 35 × 45 m 

rectangular plot. The sampled trees (Table 5-1) were manually extracted from the NDI point 

cloud. They were divided into three groups according to their species, sycamore, oak and beech. 

The species-specific NDI – EWT relationship found at leaf level, as described in Section 5.5.1 

was applied to the NDI point clouds of each group, Equations (5.1), (5.2) and (5.3) for 

sycamore, oak, and beech respectively, and EWT point clouds were generated. In addition, the 

pooled NDI – EWT relationship that combined all species (Equation (5.5)) was applied to the 

NDI point clouds of the twelve trees, regardless of their species, to investigate the possibility 

of using a pooled EWT estimation model in a mixed-species forest plot without the need to 

classify the trees according to their species. 

5.4.3 Validating the EWT estimations 

Visual inspection of the NDI point cloud and histogram of each tree showed that foliage NDI 

was clustered around 0.3, while for wood it was clustered around zero. Wood typically is 

expected to have higher SWIR reflectance than green foliage, as it contains less moisture, while 

their NIR reflectance is expected to be similar at the wavelength used in this study (808 nm). 

This caused the lower NDI values of wood components. Applying the NDI – EWT estimation 

models, trained solely using green foliage, would then cause the majority of points 

corresponding to woody materials to have EWT value equal to or below zero, even if they had 

higher moisture in reality. The same applies to noise points, resulting from wrongly assigned 

nearest neighbours, that is, a full hit being assigned to a partial hit, resulting in a very low or a 

very high NDI value.  

As the focus of this study was to estimate EWT of foliage only, a threshold of zero was used to 

disregard the points corresponding to wood and noise. Afterwards, using visual inspection, 

points that clearly corresponded to wood (being part of the trunk or primary branches) but which 

were wrongly classified as leaves, were manually removed. In addition, it was possible to 

visually identify and remove many of the points corresponding to lateral branches. However, it 

was not possible to identify and remove smaller branches and twigs. Additionally, a Gaussian 
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distribution was fitted to the EWT histogram and a threshold equal to twice the mean value was 

applied to filter points with very high EWT (Figure 5-3). 

 

Figure 5-3. Example of using the mean (µ) of the fitted EWT histogram Gaussian distribution 

to remove the noise by applying a threshold equal to 2µ (purple).  

The layers from which the leaf samples were collected were extracted from each individual tree 

point cloud. The estimated EWT of each layer was compared to the actual EWT of the leaf 

samples collected from that layer and the relative error was calculated according to 

Equation (3.1). 

The EWT point cloud of each tree was divided into a number of horizontal layers, each 1 m 

deep, after removing the woody materials. EWT of each layer was plotted against the 

corresponding height to produce the EWT vertical profile of the tree. The EWT vertical profiles 

were produced from the EWT point clouds generated using the pooled EWT estimation model 

(Equation (5.5)). 

5.5 Results and discussion 

5.5.1 Leaf level results 

For each individual species, moderate correlation was observed between NDI and EWT (R2 = 

0.55, 0.57, 0.59 and 0.68 for the beech, ash, oak and sycamore species respectively, P < 0.05). 

Some differences in the slope, and more obviously in the intercept, of the NDI – EWT 

relationships were observed between the different species (Figure 5-4). This can be a result of 

the remaining effects of the leaf internal structure on the NDI, as PROSPECT simulations 

revealed that NDI can minimize but not entirely normalize such effects (Section 3.7.4). For 

instance, Figure 5-4 shows that there are numerous leaf samples with EWT around 

0.0095 g/cm2; however, they have NDI values varying between 0.21 and 0.25. Theoretically, 

they should have had similar NDI values, if there were no remaining effects for the leaf internal 

structure on NDI. Another factor that affected the slope and intercepts of the NDI – EWT 



 80 

 

relationships was the narrow range of EWT values within each individual species, especially in 

beech, and it was not possible to determine the exact NDI – EWT relationship of each individual 

species using such small EWT ranges. Thus, a dry-down experiment may be needed if the aim 

was to determine the accurate NDI – EWT relationship for each species individually. The 

species-specific NDI – EWT relationships can be described as: 

EWT (g cm-2) = 0.0488 × NDI – 0.0016, for sycamore (5.1) 

EWT (g cm-2) = 0.0553 × NDI – 0.0031, for oak  (5.2) 

EWT (g cm-2) = 0.0327 × NDI – 0.0002, for beech (5.3) 

EWT (g cm-2) = 0.0534 × NDI – 0.0032, for ash (5.4) 

 

Figure 5-4. The species-specific and pooled NDI – EWT relationships. 

It was possible to fit a linear model to all leaf samples combined (R2 = 0.94, P < 0.05) (Figure 

5-4). It is acknowledged that there remained a gap in the EWT values, between 0.0055 g/cm2 

and 0.008 g/cm2, thus the high correlation can potentially be misleading as the samples were 

not normally distributed. However, the consistency of trends between the general and individual 

species models gave confidence it was suitable for application at the canopy scale. The pooled 

NDI – EWT model can be described as: 

EWT (g cm-2) = 0.0579 × NDI – 0.0039 (5.5) 
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The leaf samples collected for the purpose of validating the EWT estimates revealed a vertical 

heterogeneity in EWT within canopies. The average EWT of all leaf samples collected from 

the canopy top layer was 20% higher than that of the leaf samples collected from the canopy 

bottom layer (Figure 5-5). In addition, LMA of leaf samples from the canopy top layer was 

42% higher than that of the canopy bottom layer, suggesting that the observed higher EWT in 

the canopy top was caused by the leaves having higher LMA, increasing their ability to hold 

moisture. To further investigate, the relationship between EWT and LMA was studied at leaf 

level (Figure 5-6), revealing that EWT and LMA were highly correlated (R2 = 0.92, 0.61, 0.60 

and 0.63 for beech, ash, oak and sycamore respectively), and that the relationship between EWT 

and LMA was species-specific. Junttila et al. (2019) also reported that EWT and LMA were 

highly correlated at the leaf level. Additionally, studying the EWT – LMA relationship within 

each species revealed some differences between the individual trees (Figure 5-6). 

 

Figure 5-5. A boxplot of the EWT of the leaf samples in canopy top and canopy bottom layers: 

(a) all leaf samples combined, (b) sycamore, and (c) oak. The whiskers are the minimum and 

maximum values.  

 

Figure 5-6. The EWT – LMA relationships at leaf level. 
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Figure 5-7. The EWT – LMA relationships of the individual trees: (a) sycamore and (b) oak. 

Furthermore, the EWT – LMA relationship was investigated at the canopy level (Figure 5-8), 

which further showed that EWT and LMA were highly correlated and that the relationship 

between them was species-specific. Arellano et al. (2017) and Gara et al. (2018) also 

investigated the relationship between EWT and LMA at canopy level using destructive 

sampling, reporting that canopy layers with higher LMA had higher EWT.  

 

Figure 5-8. The relationship between EWT and LMA at canopy level: (a) all species combined, 

(b) Sycamore and (c) Oak.  

5.5.2 EWT point clouds 

The RMSE of the point cloud registration, reported by Leica Cyclone, was 3 mm for each 

instrument separately. As the scans were conducted at a resolution of 3 mm at 10 m, the 

registration accuracy was considered sufficient. The RMSE of the registration of the P20 point 

clouds to the P40 point clouds was 1 mm. The high accuracy was a result of the similarities 

between the two instruments in terms of their scanning mechanism and laser beam exit location, 

and also a result of the similar scanning geometry. Another key factor was the absence of wind. 

Scanning in more windy conditions would be expected to significantly reduce the registration 
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accuracy (see the willow dataset, Section 6.3.2). The high registration accuracy allowed the 

generation of 3D EWT point clouds, as shown in Figure 5-9 and Figure 5-10. 

 

Figure 5-9. The 3D EWT distribution of the sampled trees. 

 

Figure 5-10. Examples of the 3D EWT distribution of individual trees: (a) Sycamore tree, 

labelled (6), and (b) Oak tree, labelled (11).  

The point clouds revealed a significant difference between the leaf and wood EWT, showing 

some potential of using the 3D EWT distribution in separating the leaf from the wood using 

zero EWT as a separation threshold. However, testing this method revealed that many points 

that clearly corresponded to wood (e.g. trunk, primary branches, lateral branches) had above 

zero EWT, and thus were mistakenly classified as leaves. Attempting to filter these points using 

a higher threshold resulted in removing points clearly corresponding to leaves. Thus, these 
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points had to be removed manually, which rendered this leaf – wood separation method 

impractical at the plot scale. In addition, it was not possible to visually identify and manually 

remove misclassified points that corresponded to small branches and twigs. Additionally, 

numerous points corresponding to leaves were also classified as wood, as they had below zero 

EWT. This could be a result of wrongly assigned nearest neighbours, as discussed in Section 

5.4.3. It was possible to filter these points using the statistical outlier removal tool in the 

CloudCompare v. 2.6.2 software, as they were sparse points in comparison to the very dense 

points in the trunk and branches. However, this method may also filter small branches and 

twigs, and as no field measurements were conducted to validate this leaf-wood separation 

approach, it was not possible to determine its accuracy. 

5.5.3 Validating the EWT estimations 

Comparing the estimated EWT to the actual EWT from the leaf samples revealed a relative 

error of 7.7% on average in the EWT estimations for the species-specific models and 6.3% for 

the pooled model. Table 5-2 summarizes all the observed errors. All errors were < 10%, except 

for the errors obtained in the canopy top layer in sycamore trees number 2 and 12, and in the 

canopy bottom layer in oak tree number 8, in addition to a high error (-21%) in the beech tree. 

This high error in the beech tree can be a result of the narrow range of EWT in the leaf samples 

used to build the EWT estimation model, which was insufficient to accurately determine the 

slope and intercept of the NDI – EWT relationship. In the dry-down experiment (Chapter 4), 

the Snake-bark maple species-specific model produced errors < 3% when applied at the canopy 

level, mainly because the model covered a wide range of EWT values, being calibrated using 

leaf samples collected while the canopies were drying down. This suggested that if the aim was 

to use a species-specific model to estimate EWT at the canopy level, carrying out a dry-down 

experiment would be recommended. This can be conducted by scanning the leaf samples and 

measuring their weight once collected, then leaving them to dry naturally over a period of at 

least one week, while scanning them and measuring their weight at fixed intervals. The leaves 

can then be dried in the oven to measure their dry weight, then the NDI – EWT model can be 

calibrated. This can ensure that the model covered a wide range of NDI and EWT values for 

this species, which can then lead to a more accurate estimation of EWT at the canopy level 

using the species-specific model. 
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Table 5-2. EWT estimation errors in the twelve trees, for the canopy top and bottom layers. The 

signs of the errors were ignored while calculating the average and total errors. 

Tree  Species 

Relative error in EWT estimations 

Species-specific models Pooled model 

Canopy top  Canopy bottom Canopy top Canopy bottom 

1 Sycamore -5.9% 9.2% -5.3% 7.2% 

2 Sycamore -13.5% 6% -13.5% 4.3% 

3 Sycamore -2.5% 6.9% -2.7% 4.3% 

4 Sycamore --- 9.3% --- 7.3% 

5 Beech -21% --- -2.8% --- 

6 Sycamore -0.7% --- -1% --- 

8 Oak --- 12.5% --- 10.2% 

9 Oak 8% --- 6.7% --- 

10 Oak 3.7% --- 2.1% --- 

11 Oak -0.6% --- -2.4% --- 

12 Sycamore -12% --- -13.3% --- 

13 Oak -3% --- -5.4% --- 

Average error  7.1% 8.8% 5.5% 6.7% 

Total error 7.7% 6.3% 

 

When the pooled model was used, the error in the EWT estimation for the beech tree dropped 

to - 2.8%, further showing that the species-specific model of beech was inaccurate. The errors 

in sycamore trees number 2 and 12 slightly increased, with the errors being higher than those 

observed in the remaining sycamore trees. As EWT was underestimated, this suggested lower 

NDI values, which can be a result of the remaining effects of the leaf internal structure on the 

NDI, if leaf samples from these two trees were thicker than the leaves used to build the EWT 

estimation model, according to PROSPECT simulations. This was reflected in the average 

LMA value of the leaf samples collected from the two trees, which was 0.0029 g cm-2, being 

higher than the average LMA of the leaf samples collected from the remaining sycamore trees 

(0.0021 g cm-2).  On the other hand, the error in the EWT estimation in oak tree 8 dropped when 

the pooled model was used, but remained higher than the errors observed in the remaining oak 

trees. The overestimation of EWT suggested that leaf samples collected from that specific tree 

were thinner than the leaf samples used to build the EWT estimation model. This was also 

reflected in the average LMA of the leaf samples collected from the tree (0.0027 g cm-2), which 

was lower than the average LMA of  the leaf samples collected from the remaining oak trees 

(0.0041 g cm-2). The observed EWT estimation errors showed the possibility of using a pooled 

NDI – EWT model to successfully estimate EWT in a mixed forest plot without needing a NDI 

– EWT estimation model for each individual species. Using a pooled EWT model can then be 

more applicable as it does not require prior tree species classification. However, further 
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experiments that include measuring leaf thickness are still needed to better understand the 

source of the high errors observed in some trees. 

5.5.4 EWT vertical profiles 

The EWT vertical profiles (Figure 5-11) revealed a vertical variation in the EWT distribution 

in all twelve trees, agreeing with the leaf sampling results (5.5.1). Figure 5-11 also shows the 

advantage of using TLS data in mapping the EWT in forest plots over the destructive sampling 

approach. TLS can estimate EWT in all canopy layers, which requires tree climbers and 

extensive destructive sampling to be achieved using traditional approaches. Assuming that the 

leaves in the top part of the canopy were sun leaves, and those in the bottom were shade leaves, 

the vertical profiles of EWT showed a gradual transition between sun leaves and shades leaves, 

with sun leaves having higher EWT, and correspondingly higher LMA, than shade leaves. 

 

Figure 5-11. The EWT vertical profiles. Tree (5) is beech, trees (1, 2, 3, 4, 6 and 12) are 

sycamore and trees (8, 9, 10, 11 and 13) are oak.  
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All trees had higher EWT in the upper canopy than in the shaded lower canopy. The upper 

canopy in all trees had an average of 24.2% more EWT than the lower canopy. However, the 

errors presented in Table 5-2 showed that the EWT estimation model overestimated the EWT 

in the canopy bottom layer and, in most cases, underestimated the EWT in the canopy top layer, 

suggesting that the actual difference between EWT of upper and lower canopy can be higher 

than 24.2%. The highest observed variation in EWT was in the beech tree, labelled (5), where 

EWT in the upper canopy was 44% higher than the bottom canopy. The lowest variation was 

observed in the oak tree, labelled (10), where EWT was 13.6% higher in the upper canopy than 

in the lower. Similarities were observed in the vertical profiles of the sycamore trees, with the 

upper canopy layer having an average of 20% higher EWT than the lower canopy. The vertical 

profile of the beech tree was more distinctive. The vertical profiles of the oak trees showed 

some variations from each other, with EWT being 25.4% higher in upper canopy than in lower 

canopy, which suggested that the EWT vertical profile can vary within a species, depending on 

each individual tree structure. 

The vertical profiles observed in the forest plot concurred with the findings of Zhu et al. (2017), 

Arellano et al. (2017) and Gara et al. (2018), all reporting higher EWT in the canopy top than 

in the canopy bottom in a variety of species. Zhu et al. (2017) and Gara et al. (2018) studied 

the EWT vertical profiles in small, individual trees from various species: weeping fig, Ficus 

benjamina, Camellia japonica, Chamaedorea elegans, and Fatshedera lizei, in controlled 

environments. On the other hand,  Arellano et al. (2017) examined the EWT vertical 

heterogeneity in forest plots in Amazonian forest in Ecuador. The results also agreed with the 

vertical profiles observed in the dry-down experiment (Chapter 4). Typically, top layers of 

canopy receive the majority of irradiance and trees tend to grow sun leaves in these layers to 

optimize photosynthesis (Chazdon and Fetcher, 1984). Trees also tend to dedicate more 

nutrients and water to sun leaves than to the shaded leaves in the canopy bottom for the same 

purpose (Hirose and Werger, 1987; Hikosaka, 2004). The observed vertical distribution of EWT 

can then be related to the distribution of sun/shade leaves within the canopy. As sun leaves 

typically have higher LMA than shade leaves, and as EWT was found to be highly correlated 

to LMA as discussed in Section 5.5.1, the EWT vertical profiles shown in Figure 5-11 also 

reflected the vertical variation in LMA within canopies. Arellano et al. (2017) and Gara et al. 

(2018) also showed that EWT and LMA vertical profiles showed similarities.  
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5.6 Summary 

This chapter was dedicated to investigate the possibility of using the NDI of the 808 nm NIR 

wavelength and the 1550 nm SWIR wavelength to generate 3D EWT estimations at the canopy 

level in a real forest environment. It described in detail a data collection campaign that took 

place in a mixed deciduous forest plot in Wytham Woods, Oxford, UK, and resulted in mapping 

the EWT in the forest plot in 3D. 

At leaf level, moderate correlation was observed between NDI and EWT across four broadleaf 

tree species: oak, sycamore, beech and ash. It was also possible to fit a pooled EWT estimation 

model that combined all species, but more leaf samples still need to be added to the model to 

fill the gap in the low EWT region of the model. At the canopy level, it was possible to achieve 

a high registration accuracy for the point clouds, despite the difference in the laser beam 

footprint and beam divergence between the two instruments. This was a result of the similarity 

in the chassis of the instruments and their laser beam exit locations, in addition to the similarity 

in the scan geometry. NDI was successfully used to generate 3D estimations of EWT in the 

scanned forest plot, using species-specific models in addition to a pooled EWT model, with a 

relative error of 7.7% and 6.3% in the EWT estimation respectively.  

The generated 3D distributions of EWT revealed some vertical heterogeneity in all the sampled 

trees. All the trees were found to have higher EWT in the canopy top than the canopy bottom, 

with EWT gradually becoming lower towards the canopy bottom. Such variation in EWT can 

be a result of the leaves in the top of the canopy, predominantly sun leaves, having higher LMA 

than shaded leaves in the bottom of the canopy, as EWT and LMA were found to be highly 

correlated. The observed EWT vertical variation in the forest plot may affect the estimation of 

EWT using passive optical spaceborne or airborne sensors, because measurements from such 

instruments will be dominated by the canopy top, which, according to this study, has higher 

EWT than the lower layers in the canopy. This was further investigated in Chapter 7 using 

radiative transfer modelling.  
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Chapter 6. Transferability of the EWT estimation approach to different 

sites  

6.1 Introduction 

Chapter 4 showed the potential of using NDI of the 808 nm and the 1550 nm wavelengths to 

generate 3D estimates of EWT at the canopy level, with errors < 4%. However, the experiment 

was conducted in a controlled indoor environment, using healthy individual trees, and with no 

effect of wind or occlusion. When the method was transferred to a real forest environment, as 

shown in Chapter 5, EWT was successfully estimated with errors < 8%. The higher errors were 

caused by the lower registration accuracy because of the slight movements of trees due to wind, 

in addition to occlusion, remaining partial hits, remaining effects of leaf internal structure, and 

the remaining woody materials that could not be filtered manually. Nevertheless, the conditions 

in which the data collection campaign took place were considered very suitable for laser 

scanning, as strong wind was absent. 

This chapter is dedicated to investigating the transferability of the EWT estimation approach to 

two additional sites with more challenging conditions. The first site consisted of six willow 

(Salix spp.) bioenergy crop plots and was scanned to study the effects of wind and senescence 

of leaves on the accuracy of the EWT estimation. The second site was a mixed-species urban 

tree plot that was scanned twice, at the end of a heatwave and two months later, to further 

investigate the leaf senescence effect and also to study the ability of the EWT estimation 

approach to detect temporal changes in EWT. Furthermore, the ability of NDI to directly 

estimate FMC at the canopy level was investigated, as a proof-of-concept for future work. The 

results of the willow dataset have been published in Elsherif et al. (2019b). The results of 

Exhibition Park dataset have been published in Elsherif et al. (2019a). The 3D FMC results 

have been published in Elsherif et al. (2019c). 

6.2 Willow dataset 

6.2.1 Study area 

The study area was at the Newcastle University Cockle Park Farm in Ulgham, Northumberland, 

UK (Figure 6-1). Cockle Park Farm is approximately 262 hectares and has been part of 

Newcastle University since 1896. It is a working farm that offers a unique opportunity for 

interdisciplinary research in agriculture, including food security and the generation and efficient 

use of bioenergy. The data collection took place in part of the 10 hectares devoted to short 
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rotation coppiced willow crops (55.2° N, 1.69° W) (Figure 6-1) which are used for bioenergy 

generation. The 10 hectares are divided into four main plots, with each plot containing thirteen 

subplots planted with different willow varieties, with a nominal width of 6 m each (Figure 6-2). 

Six willow subplots of different varieties were chosen for the data collection, labelled as 

Endeavour (E), Terra Nova (TE), Beagle (B), Stott (S), Tordis (T), and Nimrod (NI) (Figure 

6-2). As the data collection took place in October, the leaves were already senescent, as shown 

in Figure 6-3. 

 

Figure 6-1. The study area and the location of the 10 hectares devoted to the willow crops, 

indicated by red. 

 

Figure 6-2. The willow subplots and varieties, coloured by their harvested weight (Kg) in March 

2015, after four years of growth. Shaded area (a) indicates the six willow subplots used in the 

data collection. The figure was adapted from Gaulton et al. (2015). 

Cockle Park 

Hebron 

(a) 

624 m 
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Figure 6-3. The willow varieties. All leaves were already senescent. 

6.2.2 Experiment setup 

Two scanning positions were set at a range of 15 m away from the plots, covering three adjacent 

plots each. The first scanning position covered plots ‘E’, ‘TE’ and ‘B’, while the second covered 

plots ‘S’, ‘T’ and ‘NI’. The plots were scanned from one side from each scanning position with 

the P40a and P20 scanners. The scans were conducted with a resolution of 3 mm at 10 m. Four 

Leica black and white registration targets were placed in each scan to be used in aligning the 

P20 point cloud to the P40a point cloud. In addition, reflectors were mounted on wooden sticks 

and used to mark the approximate boundaries of each willow plot. The scans were conducted 

in windy conditions. Figure 6-4 shows a view of the plots covered from scan position one. Table 

6-1 shows the height and width of the scanned side of the plots. Figure 6-5 shows the P20 point 

clouds collected from the two scanning positions. 

 

Figure 6-4. A view of the three plots covered from scanning position one, left is plot ‘E’, middle 

is plot ‘TE’, and right is part of plot ‘B’. Three out of four Leica black and white registration 

targets can be seen, in addition to the reflectors used to mark the approximate boundaries of 

each plot. 

(B) (E) (TE) (NI) (T) (S) 
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Table 6-1. Height and width of the scanned side of the plots.  

Plot E TE B S T NI 

Height (m) 4.7 4.1 3 3 4.5 3.5 

Width (m) 5.5 6.3 5.6 6 7.7 5.2 

 

 

Figure 6-5. The P20 point clouds of scan position one (top) and scan position two (bottom). 

The point clouds show only the front side of the plots, 1 m deep into the canopy. The colour 

ramps show the uncalibrated intensity (dimensionless). 

6.2.3 Leaf sampling and biochemistry measurements 

For each plot, six leaf samples were collected randomly to be used in building the EWT 

estimation model. Six additional leaf samples were collected from a sampling layer with a 

thickness of one metre, located 1.5 m above ground, for the validation of the EWT estimation. 

The total number of leaf samples collected was 72 samples. The leaf samples were processed 

as described in Section 3.3.4 to measure their EWT. 

To build the EWT estimation model, the six leaf samples collected for this purpose from each 

plot were suspended in a wooden frame and scanned by the P20, followed by the P40a, at a 

range of 7 m. The wooden frame was normal to the laser beam direction to minimize the 

incidence angle effects. The intensity values of each leaf were calibrated to apparent 

Z
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m
) 

Plot (B) Plot (TE) Plot (E) 
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Z
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m
) 

Plot (S) Plot (T) Plot (NI) 
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reflectance, using the calibration models described in Section 3.7.1. NDI was calculated for 

each leaf following Equation (2.5). NDI values of the leaf samples were plotted against EWT 

values to determine the NDI – EWT relationship for each plot. 

6.2.4 Point cloud processing 

The P20 point clouds were aligned to the P40a point clouds in Leica Cyclone using the 

registration targets. Afterwards, the aligned point clouds were calibrated to apparent reflectance 

on a point-by-point basis, and reflectance point clouds were generated, using the calibration 

models described in Section 3.7.1. The reflectance point clouds were used to estimate EWT of 

each plot using two different approaches. 

The first approach followed the steps described in Section 3.3.3 and NDI point clouds were 

generated on a point-by-point basis. Afterwards, the NDI - EWT estimation model of each 

willow variety was used to generate EWT point cloud of each plot. The layer from which leaf 

samples were collected for validation were then extracted from the EWT point cloud of each 

plot. Removing the woody materials and cleaning the noise followed the same method used in 

the forest dataset, as described in Section 5.4.3. Estimated EWT of each layer was compared to 

actual EWT of the leaf samples collected from that layer to evaluate the accuracy of the 

estimation.  

Due to the strong wind during scanning, which was expected to have severe effects on the 

accuracy of the point cloud registration and the estimation of EWT on a point-by-point basis, a 

second approach to estimate EWT was also used. The approach aimed at estimating the average 

EWT of the canopy layer from which leaf samples for validation were collected. For each plot, 

the sampled canopy layer was extracted from the P20 and the P40a point clouds, and average 

reflectance of the layer was calculated for each wavelength. Average NDI of the layer was 

calculated using the average P20 and P40a reflectance values instead of calculating NDI on a 

point-by-point basis. The average EWT of the layer was estimated using the average NDI value. 

To validate the estimation, the sampled layer estimated EWT of each plot was compared to the 

mean EWT of the leaf samples collected from that layer. 

6.3 Willow dataset results and discussion 

6.3.1 Leaf level 

Moderate to high correlation was observed between NDI and EWT (Figure 6-6 and Table 6-2). 

The correlation was significant (P < 0.05) except for plot ‘S’. Some differences in the slopes 

and intercepts of the NDI – EWT relationships of the different plots were observed, with the 
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most significant differences being in plots ‘E’ and ‘S’ (Table 6-3). For plot ‘E’, the NDI – EWT 

relationship had clearly different slope and intercept in comparison to the remaining plots. This 

significant difference can be a result of leaf internal structure effects, if the two leaves that had 

the highest and lowest EWT values were at different levels of senescence in comparison to the 

remaining four leaves. Another reason can be a laboratory measurement error in the two leaf 

samples corresponding to the lowest and highest EWT.  

 

Figure 6-6. The relationship between NDI and EWT of each willow plot. 

Table 6-2. The correlation between NDI and EWT.  

Plot E TE B S T NI 

R2 (NDI – EWT),  

P < 0.05 
0.66 0.82 0.64 0.62 0.76 0.72 

 

Table 6-3. Slopes and intercepts of the NDI – EWT relationships.  

Plot E TE B S T NI 

Slope 0.1187 0.0337 0.0514 0.0336 0.0457 0.0609 

Intercept -0.0140 0.0051 0.0011 0.0086 0.0039 0.0006 

 

For plot ‘S’, the intercept was different than the other plots. The leaf samples had lower NDI 

than the leaf samples from other varieties that had almost the same EWT. According to 

PROSPECT simulation results (Section 3.7.4), this can be a result of the leaf samples having 

higher N, corresponding to a significantly different mesophyll structure. However, in healthy 

leaves, higher N usually corresponds to higher LMA (Jacquemoud and Baret, 1990). Higher N 

would cause a decrease in NDI, while higher LMA would cause an increase in NDI. If the two 
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effects were almost similar, a slight change in NDI would be observed between species. The 

significant decrease in NDI for plot ‘S’ suggested that N had a much more substantial effect on 

NDI than LMA, concurring that leaf samples from plot ‘S’ had significantly different mesophyll 

structure than the remaining leaves. A possible reason for this can be that the leaves were more 

senescent, as the more senescent the leaves were, the higher their N value would be 

(Jacquemoud and Baret, 1990). 

The variety-specific NDI – EWT relationships can be described as: 

EWT (g cm-2) = 0.1187 × NDI – 0.0140, for plot ‘E’ (6.1) 

EWT (g cm-2) = 0.0337 × NDI + 0.0051, for plot ‘TE’ (6.2) 

EWT (g cm-2) = 0.0514 × NDI + 0.0011, for plot ‘B’ (6.3) 

EWT (g cm-2) = 0.0336 × NDI + 0.0086, for plot ‘S’ (6.4) 

EWT (g cm-2) = 0.0457 × NDI + 0.0039, for plot ‘T’ (6.5) 

EWT (g cm-2) = 0.0609 × NDI + 0.0006, for plot ‘NI’ (6.6) 

It was also possible to fit a pooled NDI – EWT model for all leaf samples combined, excluding 

plot ‘S’ (R2 = 0.57, P < 0.05), which can be described as follows: 

EWT (g cm-2) = 0.0532 × NDI + 0.0020 (6.7) 

Both the variety-specific models and the pooled model were used to estimate EWT at the 

canopy level. 

6.3.2 Canopy level 

RMSE of the P40a/P20 point cloud registration for scan positions one and two, reported by 

Leica Cyclone, was 1.6 cm and 1.7 cm respectively. Such errors were considered high in 

comparison to the errors obtained in the indoor experiment (Chapter 4, RMSE = 0.8 mm) and 

the forest dataset (Chapter 5, RMSE = 3 mm). The lower registration accuracy was a result of 

the wind effect. The errors in the registration severely affected the accuracy of retrieving EWT 

on a point-by-point basis, and very high errors were observed, using the variety-specific models 

and also the pooled EWT model (Table 6-4). The errors were a result of the nearest neighbour 

function, while attempting to calculate NDI on a point-by-point basis, wrongly assigning the 

nearest neighbours because of leaf and branch movement between the scans. Eighty percent of 

the selected nearest neighbours were < 3 cm apart, while only 36% were < 1 cm apart. In the 
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indoor experiment (Chapter 4), all the nearest neighbours were < 3 cm apart and 99.6% of them 

were < 1 cm apart, while in the forest dataset (Chapter 5), 96% were < 3 cm apart, and 80% 

were < 1 cm apart. 

Table 6-4. Errors in the EWT estimation. Approach one refers to estimating EWT on a point-

by-point basis, while approach two refers to using the average NDI to estimate the average 

EWT.  

 

When calculations were not done on a point-by-point basis and the average NDI was used to 

estimate the average EWT, the average errors in the EWT estimation dropped to 8.9% and 6.6% 

for the variety-specific and pooled models respectively (Table 6-4). For plot ‘E’, the error 

obtained using the pooled model was much lower than the error obtained using the variety-

specific model (6.4% and -17.6% respectively). This suggested that the variety-specific NDI – 

EWT relationship for plot ‘E’, which had different slope and intercept than the remaining plots, 

was either influenced by the leaf samples being at different levels of senescence, or was caused 

by laboratory measurement error. High correlation was observed between the average estimated 

EWT of the sampled layer in each plot and the actual EWT of the leaf samples collected from 

the layer, using both the variety-specific models and the pooled model (R2 = 0.73, 

RMSE = 0.0013 g/cm2 and R2 = 0.62, RMSE = 0.001 g/cm2 respectively) (Figure 6-7). The 

correlation was significant in both cases (P < 0.05). 

 
Relative error in EWT estimations 

Approach one Approach two 

Plot 
Variety-specific 

model 
Pooled model 

Variety-specific 

model 
Pooled model 

NI 45.2% 23.7% -10.4% -10.1% 

T 24.7% 15.2% -4.2% -9% 

S 10.5% N/A -9.3% N/A 

B 26.3% 21.3% -9.1% 0.5% 

TE 23.3% 27.4% 2.6% 7.1% 

E 52.2% 24.8% -17.6% 6.4% 

Average 30.4% 22.5% 8.9% 6.6% 
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Figure 6-7. The relationship between the estimated EWT of the sampled layers and the actual 

EWT: (a) for the variety-specific models and (b) for the pooled model. 

No significant difference in reflectance between leaf and wood was observed in the P40a point 

clouds of all plots, as shown in Figure 6-8b for plot ‘T’ as an example. This can be a result of 

the wood having high water content as willows are known to have bark filled with watery sap, 

which is used in numerous medical applications (Orémusová et al., 2012). The EWT point 

cloud of the plot (Figure 6-8d) concurred with this observation and showed that the wood had 

higher EWT than leaves. This agreed with the results obtained for the young, deciduous trees 

in Chapter 4 and showed that the SWIR wavelength may not be suitable for leaf/wood 

separation if the bark was green or had high water content. Attempting to extract the woody 

materials from the EWT point cloud using a threshold by trial and error resulted in some points 

corresponding to leaves being classified as wood (Figure 6-8f). On the other hand, clear 

difference in reflectance between leaf and wood was observed in the P20 point cloud (Figure 

6-8a) as wood had higher reflectance than leaves. Attempting to extract the wood using a 

threshold produced a visually-better result than using EWT, as fewer points corresponding to 

leaves were misclassified (Figure 6-8e). This showed the potential of using the 808 nm NIR 

wavelength in leaf/wood separation in willows, which can be useful in biomass estimations.  

 

 

 

 

 

(b) (a) 
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Figure 6-8. Plot ‘T’ point clouds: (a) the P20 reflectance, (b) the P40 reflectance, (c) NDI point 

cloud, (d) EWT point cloud, (e) woody materials extracted from the P20 reflectance point cloud 

using 0.35 threshold and (f) woody materials extracted from EWT point cloud using 0.03 g/cm2 

threshold. Thresholds were chosen by trial and error until changing the threshold did not 

visually improve the results. 

6.4 Exhibition Park dataset 

6.4.1 Study area 

The study area was a mixed-species tree plot (35 m × 39 m) in Exhibition Park, Newcastle upon 

Tyne, UK (54.98° N, 1.62° W) (Figure 6-9). The tree species included: Ilex aquifolium (holly), 

Acer pseudoplatanus (sycamore), Sorbus intermedia (Swedish whitebeam), Fraxinus excelsior 

(ash), Aesculus hippocastanum (horse chestnut), Fagus sylvatica (beech), and Tilia x europaea 

(lime). A single scanning position was set in the centre of the plot, corresponding to a wide gap 

in canopy cover, aimed at obtaining as many laser beam returns as possible from the canopy 

top. The scanning position covered nine trees: two holly trees, two ash trees, two Swedish 
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whitebeam tress, one beech tree, one sycamore tree, and one horse chestnut tree. The horse 

chestnut tree was suffering from horse-chestnut leaf miner (Cameraria ohridella) and thus was 

excluded from any further processing. 

 

Figure 6-9. The Exhibition Park dataset study area: (a) Exhibition Park and (b) the scanned tree 

plot. 

The plot was scanned on 7th of August 2018, at the end of the 2018 heatwave that hit the British 

Isles between 23rd of June and 7th of August, as part of the 2018 European heatwave, making 

summer 2018 the joint-warmest summer in recorded in the UK, and the second warmest 

summer in the North East England region. Temperatures in Newcastle upon Tyne reached 26 

°C, significantly higher than the 15 °C recorded average summer temperature. Scans were 

conducted with the P20 and the P50 instruments mounted consecutively on the same tripod, on 

the same surveying point (scanning position). Three Leica black and white registration targets 

were placed in the plot at different heights for the purpose of aligning the P20 and P50 point 

clouds. A full-hemisphere scan (360° × 270°) was conducted with each instrument with a 

resolution (point spacing) of 3 mm at 10 m. The duration of the scan was approximately fifteen 

minutes for each instrument. The plot was scanned again on 22nd of October 2018 while leaves 

were senescing, using the same scanning set-up. Average temperature in October was 13 °C, 

with periods of rainfall throughout the month. On each date, leaf samples were collected 

immediately after scanning to link the TLS data to EWT, as described in Section 6.4.2. 

6.4.2 Leaf sampling and biochemistry measurements 

On each date, two sets of leaf samples were collected, one for the purpose of building the NDI 

– EWT estimation model, and the other for the validation of the EWT estimates. As the study 

Newcastle upon Tyne 

Exhibition Park 

772 m 

53 m 
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area was in a public park, extensive destructive sampling of the trees was not possible. The total 

number of leaf samples collected in August dataset was 50 samples, while the total number of 

samples collected in October dataset was 38 samples. Leaf sampling details are given in Table 

6-5. Samples for building the EWT estimation model were collected randomly from the plot. 

On the other hand, leaf samples for validation were collected from a small volume, 

approximately 0.5 m × 0.5 m × 0.5 m, with a known crown location in a specific tree from each 

species. Sycamore leaf samples were found to be covered with grey powdery material, 

indicating that the tree suffered from powdery mildew disease. This severely affected the NDI 

– EWT relationship as discussed in Section 6.5.1, and thus the tree was excluded in October 

data collection. Leaf samples of holly were thicker than the other species, in addition, they had 

glossy, waxy surface. The lime tree was on the edge of the plot, fully occluded by two ash trees, 

thus, no leaf samples were collected for validation and samples were only collected to add 

species variety to the EWT estimation model in August. In October, the tree had already lost its 

leaves. 

Table 6-5. Leaf samples collected to build the EWT estimation model and validate the 

estimation in August and October datasets.  

Date August October 

Type of samples EWT model Validation EWT model Validation 

Swedish Whitebeam 5 5 5 5 

Ash 3 5 5 4 

Beech 6 5 5 5 

Holly 4 5 4 5 

Sycamore 3 4 --- --- 

Lime 5 --- --- --- 

Total number of leaf 

samples 
26 24 19 19 

 

The fresh weight and surface area of each leaf sample was measured as described in Section 

3.3.4. The leaf samples were then left to dry naturally over a period of five days (a week for 

October dataset), then were further dried in an oven for 72 hours at 60 °C. Holly leaf samples 

were oven-dried for an additional six days until no change in their weight was observed, 

ensuring that they were fully dry. The dry weight of each leaf sample was measured using the 

same scale used to measure the fresh weight, and EWT was calculated according to Equation 

(2.1).  
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Samples for building the EWT estimation model on each date were scanned by both the P20 

and P50, immediately after measuring their fresh weight, at ranges of 6 m and 7 m for August 

and October datasets respectively. NDI was calculated for each leaf after calibrating the 

intensity values to apparent reflectance using the calibration models described in Section 3.7.1. 

For the August dataset, different pooled NDI – EWT relationships were examined, in addition 

to species-specific relationships. Firstly, a pooled NDI – EWT model was fitted to all species 

combined. Next, the diseased sycamore leaf samples were excluded, and a second pooled NDI 

– EWT model was fitted to the remaining species. The next step was to exclude holly leaf 

samples from the pooled EWT model to account for their thickness and surface characteristics 

that differed from the remaining species. The remaining leaf samples were then combined with 

the leaf samples measured in Chapter 4, and a third pooled NDI – EWT model was fitted in an 

attempt to develop a species-independent EWT estimation model for leaves from park 

environments, collected from different sites. For the October dataset, a pooled NDI – EWT 

model was fitted to leaf samples from all species combined. In addition, holly leaf samples were 

excluded, and a second pooled EWT model was fitted to the remaining species. Furthermore, 

the leaf samples were combined with the willow leaf samples (Section 6.2.3) in an attempt to 

derive a site- and species-independent NDI – EWT relationship for senescent leaves. 

6.4.3 Point cloud processing 

The P20 and P50 point clouds on each date were aligned in Leica Cyclone. NDI point cloud of 

the plot on each date was generated on a point-by-point basis (Section 3.3.3). Individual trees 

were then manually extracted and species-specific and pooled NDI – EWT models on each date 

were used to generate the EWT point clouds. The woody materials were removed as described 

in Section 5.4.3. To validate the EWT estimates, the sections from which leaf samples for 

validation were collected (0.5 m × 0.5 m × 0.5 m volume) were extracted from the 

corresponding trees in the EWT point clouds and the estimated EWT was compared to the 

actual EWT measured from destructive leaf sampling and relative errors in the EWT 

estimations were calculated.  

The temporal change in EWT (increase/decrease) between August and October was measured 

for each tree from the TLS estimated EWT, and also from the destructive sampling EWT, to 

investigate the accuracy of TLS in detecting such changes. Afterwards, the EWT point-cloud 

of each tree was split into multiple horizontal layers, 1 m each. Average EWT of each layer was 

calculated and plotted against height at the centre of the layer to produce a vertical profile of 

EWT distribution in the canopy. The EWT vertical profiles produced for each tree in August 



 102 

 

and October datasets were compared, to study how the vertical distribution of EWT varied 

temporally. 

6.5 Exhibition Park dataset results and discussion 

6.5.1 Leaf level 

A significant correlation (P < 0.05) was found between NDI and EWT for each species on both 

dates (Table 6-6 and Figure 6-10). Some differences in slopes and intercepts of the NDI – EWT 

relationships were observed between the different species, being a result of the remaining leaf 

internal structure effects on NDI and/or the small number of leaves used to derive the NDI – 

EWT relationships, which was insufficient to accurately determine the correct slopes and 

intercepts.  

On both dates, the trendline of the NDI – EWT relationship of holly was significantly shifted 

up in comparison to the other species, similar to what was observed for plot ‘S’ in the willow 

dataset. As discussed in Section 6.3.1, this can be a result of a significantly different leaf internal 

structure of holly in comparison to the other species. Holly leaves were clearly thicker than the 

leaves of the other species, and although their leaf thickness was not measured, their average 

LMA (0.0164 g cm-2) was 129 % higher than average LMA of ash leaf samples (0.0071 g cm-

2), 117 % higher than average LMA of Swedish whitebeam leaf samples (0.0075 g cm-2), and 

192 % higher than average LMA of beech leaf samples (0.0056 g cm-2). Gaulton et al. (2013) 

reported a similar observation when two Fallopia japonica (Japanese knotweed) leaf samples 

were attached together to form a sample with double thickness and were found to deviate from 

the NDI – EWT relationship of the remaining species. It is worth mentioning that the shiny 

surface of holly leaf samples could also have been a factor that contributed to the deviation of 

the NDI – EWT relationship of this species. Zhu et al. (2017) showed that at 1550 nm 

wavelength, shiny leaves had stronger specular reflection than matt leaves at zero incidence 

angle. Higher reflectance at the 1550 nm wavelength would reduce the NDI value, causing the 

upward shift of the trendline of the NDI – EWT relationship of holly in comparison to the other 

matt leaves. 

Table 6-6. The correlation between NDI and EWT for the species-specific models.  

 Beech Swedish Ash Holly Sycamore Lime 

R2 (August)  0.65 0.94 0.92 0.67 0.85 0.88 

R2 (October) 0.93 0.59 0.76 0.74 N/A N/A 
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Figure 6-10. Species-specific NDI – EWT relationships: (a) August and (b) October. 

The NDI – EWT relationship of diseased sycamore leaves appeared to be affected by the low 

NDI value (0.08) of one sycamore leaf. Another sycamore leaf also had lower NDI value than 

leaves from other species with similar EWT. The two leaves had lower NIR reflectance, 0.31 

and 0.36 respectively, than all the other leaf samples, which had NIR reflectance between 0.43 

and 0.56. On the other hand, the SWIR reflectance of the two leaves, 0.26 and 0.24 respectively, 

was within the minimum and maximum values observed in the leaf sampling, 0.19 and 0.35 

respectively. The low NDI values were therefore a result of the low NIR reflectance, which 

could have been caused by the powdery mildew that covered the leaves’ surface. Yuan et al. 

(2014) reported similar observation in winter wheat, showing a decrease in NIR reflectance and 

a slight increase in SWIR reflectance in leaves infected with powdery mildew in comparison to 

healthy leaves. In general, diseases are known to reduce leaf reflectance in NIR (Nilsson, 1991), 

and NIR wavelengths have been adopted in detecting powdery mildew infections in winter 

wheat (Zhang et al., 2012; Yuan et al., 2014) and grape (Beghi et al., 2017). However, powdery 

mildew in wheat is caused by different fungus than in sycamore and further investigation is still 

needed by scanning healthy and diseased sycamore leaves.  

The species-specific NDI – EWT models can be described as follows for August dataset: 

EWT (g cm-2) = 0.0289 × NDI + 0.0006, for beech (6.8) 

EWT (g cm-2) = 0.0362 × NDI + 0.0002, for Swedish whitebeam (6.9) 

EWT (g cm-2) = 0.0711 × NDI – 0.0088, for ash (6.10) 

EWT (g cm-2) = 0.0836 × NDI – 0.0083, for holly (6.11) 

(a) (b) 
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EWT (g cm-2) = 0.0166 × NDI + 0.0073, for sycamore (6.12) 

EWT (g cm-2) = 0.0287 × NDI + 0.0010, for lime (6.13) 

The species-specific models are as follows for October dataset: 

EWT (g cm-2) = 0.0366 × NDI + 0.0017, for beech (6.14) 

EWT (g cm-2) = 0.0632 × NDI – 0.0034, for Swedish whitebeam (6.15) 

EWT (g cm-2) = 0.0492 × NDI + 0.0006, for ash (6.16) 

EWT (g cm-2) = 0.0558 × NDI + 0.0042, for holly (6.17) 

For the August dataset, it was possible to fit a pooled NDI – EWT model for all leaf samples 

combined (R2 = 0.7, P < 0.05) (Figure 6-11). However, the trendline appeared to be affected by 

the low NDI values of the sycamore leaves. Excluding the sycamore leaves and fitting a second 

pooled EWT model improved the correlation (R2 = 0.88, P < 0.05) (Figure 6-12, Equation 

(6.18)). Similarly, a linear model was fitted to all leaf samples combined in the October dataset 

(R2 = 0.93, P < 0.05) (Figure 6-12, Equation (6.19)). Comparing the pooled EWT models on 

the two different dates showed similarity in the slopes, but a difference in the intercept, with 

the trendline of the October model being shifted up in comparison to the trendline of the August 

model. This is likely to be a result of the difference in leaf internal structure between green 

leaves (August) and senescent leaves (October), as senescence changes leaf cell structure 

(Jacquemoud and Baret, 1990). 

 

Figure 6-11. Pooled NDI – EWT model for August dataset. The trendline was affected by the 

Sycamore low NDI values. 
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Figure 6-12. Pooled NDI – EWT models for August (bottom), excluding the Sycamore leaves, 

and for October (top). A shift can be seen between the two trendlines, caused by the leaf 

senescence. 

The pooled EWT models can be described as follows: 

EWT (g cm-2) = 0.0925 × NDI – 0.0131, for August (6.18) 

EWT (g cm-2) = 0.0852 × NDI – 0.0076, for October (6.19) 

Additionally, the leaf samples collected in August were combined with the leaf samples 

collected in the indoor dry-down experiment described in Chapter 4, in an attempt to find a 

species-independent EWT estimation model for healthy leaves in park environments. However, 

a single model could not be fitted accurately without excluding the holly and the sycamore leaf 

samples (Figure 6-13). This concurred with the observation that the holly leaf samples did not 

follow the same NDI – EWT relationship of the other species, as a result of their thickness or 

different surface characteristics, and neither did the diseased sycamore leaves, as a result of 

their different surface characteristics. In a similar manner, the holly leaf samples in the October 

dataset were excluded, and a new pooled EWT model was fitted to the remaining species 

(Figure 6-14). The pooled EWT model was shifted up in comparison to the model for the 

August dataset as a result of the leaf senescence (Figure 6-14). The pooled EWT models after 

excluding the holly leaf samples can be described as: 

EWT (g cm-2) = 0.0631 × NDI – 0.0064, for August (6.20) 
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EWT (g cm-2) = 0.0576 × NDI – 0.0019, for October (6.21) 

 

 

Figure 6-13. Pooled NDI – EWT model for August leaf samples combined with leaf samples 

collected in the indoor dry-down experiment (Chapter 4). Two of the diseased Sycamore leaves 

appear as outliers, while the Holly leaf samples have their own EWT model. 

 

Figure 6-14. Pooled NDI – EWT models for August (bottom) and for October (top), after 

excluding Holly leaf samples. The shift in trendlines of the NDI – EWT relationships was 

caused by the leaf senescence. 
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Next step was to investigate the possibility of fitting a site- and species-independent EWT 

estimation model for senescent leaves. For this, the leaf samples from October dataset were 

combined with the willow leaf samples (Figure 6-15). This showed a difference in the slopes 

and intercepts of the NDI – EWT relationships between the willow leaf samples and October 

dataset. The trendlines of willow were shifted up, suggesting that the willow leaves were more 

senescent than the October dataset leaves. Additionally, some willow leaves, including a leaf 

from plot ‘B’, a leaf from plot ‘TE’, and three leaves from plot ‘E’, appeared to be following 

the NDI – EWT relationship of October dataset more than that of the willow dataset. 

Furthermore, it seemed to be possible to fit an NDI – EWT model for plot ‘S’ and Holly leaf 

samples combined. These observations revealed that the NDI – EWT relationship may not be 

dependent on the species as much as it is dependent on the internal structure of leaves. It was 

not possible to fit a general EWT estimation model for senescent leaves, as they appeared to be 

at different levels of senescence. 

 

Figure 6-15. Pooled NDI – EWT models for October dataset (bottom), for willow dataset 

(middle), and for willow plot ‘S’ and Holly leaf samples (top). 

6.5.2 Canopy level 

The visual inspection of the EWT point cloud of the plot in both dates, and the histogram of 

EWT distribution, showed differences in EWT between species, suggesting that the EWT point 

cloud can be useful in species classification in mixed tree plots (Figure 6-16). Using the species-

specific models to estimate EWT at canopy level resulted in relative errors in the 

estimation < 10% in all species in both dates, except for beech and sycamore in the August 

dataset (Table 6-7). The errors in the EWT estimation for each species varied between the two 

different dates, being higher in the August dataset than in the October dataset, except for holly. 
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This concurred with the observations obtained in the forest dataset (Section 5.5.3) that the 

accuracy of using species-specific models to estimate EWT at the canopy level depended 

mainly on how accurate the slope and intercept of the model were. For the sycamore tree, severe 

error was observed in the EWT estimation (- 31.5%). This suggested that the species-specific 

model derived at the leaf level did not represent the NDI – EWT relationship at the canopy 

level. 

 

Figure 6-16. Top view of the EWT point cloud of the plot in August and the approximate 

boundaries of the trees: (a) Swedish Whitebeam tree 1, (b) Swedish Whitebeam tree 2, (c) Ash 

tree 1, (d) Ash tree 2, (e) Beech tree, (f) Holly tree 1, (g) Holly tree 2, (h) Horse chestnut tree 

and (i) Sycamore tree. * indicates that samples were collected form the tree for EWT validation. 

Table 6-7. The errors in EWT estimations for the species-specific models, pooled model 1, 

which refers to the pooled EWT model with holly leaf samples included, and pooled model 2, 

which refers to the pooled EWT model without holly leaf samples.  

 Relative error in EWT estimations 

 August dataset October dataset 

Species 
Species-

specific  

Pooled 

model 1 

Pooled 

model 2 

Species-

specific  

Pooled 

model 1 

Pooled 

model 2 

Swedish 

Whitebeam 
-9.6% 23.4% -2.2% -1.2% 17.8% 6.3% 

Ash -3.2% 25.5% -4% -1% -4.2% -5.6% 

Beech -14.1% 56.2% 12% 8.5% -17.6% 7.3% 

Holly -4.4% 1% --- 5.8% 2.4% --- 

Sycamore -31.5% -46.7% --- --- --- --- 

 

(a)* 

(i)* 

(h) 

(g)* (f) 

(e)* 

(b) 

(c) 

(d)* 

(g/cm2) 
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Using the pooled EWT model that included the holly leaf samples, Equations (6.18) and (6.19) 

for August and October datasets respectively, resulted in severe errors in the EWT estimation 

in both dates, except for the ash tree in October and the holly tree in both dates (Table 6-7). 

This revealed that although the models had high fitting accuracy (R2 = 0.88 and 0.93 for August 

and October datasets respectively), the models did not represent the NDI – EWT relationship 

at the canopy level, except for the holly species, and thus produced significant errors in the 

EWT estimation. When the pooled EWT models that excluded the holly species were used, 

Equations (6.20) and (6.21) for the August and October datasets respectively, the errors dropped 

significantly (Table 6-7). Thus, care must be taken while fitting a pooled EWT estimation model 

that is to be applied at the canopy level in a mixed-species plot, and species that have thicker 

leaves or different surface characteristics than the remaining species need to be excluded from 

the model. 

In the case of the diseased sycamore tree, both pooled EWT models failed to correctly estimate 

EWT at the canopy level, with the first model producing severe error in the EWT estimation 

(- 46.7 %), and the second model producing a below zero EWT value. This suggested that this 

EWT estimation approach can be inapplicable if leaves were covered with a material that did 

not affect the two wavelengths included in NDI in a similar manner. However, such diseased 

trees will appear as outliers in the NDI – EWT relationship in comparison to the healthy trees 

and thus, this approach can help in detecting diseased trees in tree plots. Following the 

unsuccessful attempts to estimate EWT of the sycamore tree, the tree was not included in 

October dataset. 

Overall, the errors in August were less than the errors in October, except for the beech tree, 

which may have been a result of leaf senescence. Senescence effect on leaf internal structure is 

known to vary between species, and can also vary between leaves from the same species if they 

were at different levels of senescence (Buchanan-Wollaston, 1997). Thus, it can be more 

challenging to build a NDI – EWT model that can accurately represent all levels of senescence 

in the plot. Another source of errors was the wind effect. Although the plot was scanned in non-

windy conditions on both dates, there was a gentle breeze in October during the scan. This may 

have reduced the accuracy of aligning the point clouds from the two instruments in the October 

dataset, leading to higher errors in estimating EWT on a point-by-point basis. However, this 

was not obvious in the RMSE of point cloud alignment, which was 3 mm in both datasets.  
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6.5.3 Detecting the temporal changes in EWT 

Table 6-8 shows the change in EWT between August and October for the four trees used in 

validating the EWT estimates. The destructive sampling results showed an increase in EWT for 

the Swedish whitebeam, ash and beech trees. The highest increase in EWT was observed in the 

beech tree, whilst the ash tree showed the least change in EWT between the two dates. On the 

other hand, some decrease in EWT was observed in the holly tree. However, the change in EWT 

was measured only for the sections of the trees from which leaf samples for validation were 

collected and did not necessarily represent the change in EWT for the whole canopy, which 

would require collecting leaf samples from all canopy layers (see Section 6.5.4 for EWT vertical 

profiles).  

Using the pooled EWT estimation model to detect the change in EWT resulted in an 

overestimation of the increase in EWT for the Swedish whitebeam, indicating that EWT 

increased by 26.7 % in this section of the tree, while leaf sampling showed that it only increased 

by 17.4 %, with 9.3 % difference between them. On the other hand, it underestimated the 

increase in EWT for the beech tree, which had an increase in EWT by 20.6 % according to leaf 

sampling, and by 15.8 % according to TLS (4.8 % difference). The change in EWT was detected 

more accurately for the ash and holly trees as shown in Table 6-8, with the difference between 

actual and estimated EWT change (%) being 1.2 % and 1.6 % respectively.  

Using the species-specific EWT estimation models also resulted in an overestimation of the 

difference between EWT in August and October for the Swedish whitebeam, ash and beech 

trees, and underestimation for the holly tree. The overestimation was very significant in the 

beech tree. Overall, the pooled EWT model detected the change in EWT more accurately than 

the species-specific models. Table 6-8 summarizes the observed temporal change in EWT and 

the accuracy of detecting such change using TLS data. 

The accuracy of detecting the change in EWT was mainly a function of the EWT estimation 

errors on both dates. An overestimation or underestimation of EWT in both dates, with similar 

magnitude of errors, produced the most accurate estimation of the change in EWT. A higher 

magnitude of error in one dataset than in the other produced less accurate estimates of the 

change in EWT, while overestimating EWT in one dataset and underestimating it in the other 

produced the least accuracy, as observed in the Swedish whitebeam tree. Overall, the direction 

and magnitude of the change in EWT was successfully characterized using TLS in the four 

sampled trees, showing the potential of this method to be used in detecting the impact of drought 
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on vegetation. With the very high temporal resolution of TLS, being independent on solar 

illumination or limited by cloud coverage, it can be used to fill the gaps in time series produced 

using optical RS spaceborne sensors. 

Table 6-8. Temporal changes in EWT between August and October.  

 
Swedish 

Whitebeam 
Ash Beech Holly 

Actual EWT 

(g/cm2) 

August 0.0092 0.0127 0.0068 0.0266 

October 0.0108 0.0139 0.0082 0.0239 

Difference 0.0016 0.0012 0.0014 -0.0027 

Difference (%) 17.4% 9.4% 20.6% -10.2% 

Estimated EWT 

(g/cm2) 

species-specific 

August 0.0084 0.0122 0.0058 0.0268 

October 0.0106 0.0138 0.0089 0.0245 

Difference 0.0022 0.0016 0.0031 -0.0023 

Difference (%) 26.2% 13.1% 53.4% -8.6% 

Estimated EWT 

(g/cm2) 

pooled model 2 

August 0.0091 0.0121 0.0076 --- 

October 0.0114 0.0131 0.0088 --- 

Difference 0.0023 0.001 0.0012 --- 

Difference (%) 25.3% 8.3% 15.8% --- 

 

The temporal change in EWT was also observed in the visual inspection of the point clouds of 

the trees on both dates, as shown in Figure 6-17 for Swedish Whitebeam tree 1 as an example. 

 

Figure 6-17. EWT pointcloud of Swedish Whitebeam tree 1 in August (left) and in October 

(right). An increase in EWT was observed in October. 

6.5.4 Vertical profiles of EWT 

Figure 6-18 shows the vertical profiles of EWT for six trees in the plot: two ash trees, two 

Swedish whitebeam trees, and two holly trees. The sycamore tree was excluded following the 

(g/cm2) 
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severe errors in EWT estimation. The beech tree was partially occluded by an ash tree and a 

holly tree, resulting in few laser beam returns from the middle and upper canopy, and thus it 

was not possible to generate a vertical profile of EWT. 

 

Figure 6-18. EWT vertical profiles in August and October: (a) Ash tree 1, (b) Ash tree 2, (c) 

Swedish Whitebeam tree 1, (d) Swedish Whitebeam tree 2, (e) Holly tree 1 and (f) Holly tree 2. 

Both ash trees, in August and October, had higher EWT in the canopy top than in the canopy 

bottom, agreeing with the findings of the indoor dry-down experiment (Chapter 4) and the forest 

dataset (Chapter 5). For ash tree 1, EWT was 29% higher in the canopy top than in the canopy 

bottom in August, and 34% higher in the canopy top than in the canopy bottom in October, 

whilst for ash tree 2, EWT was 67% higher in the canopy top in August and 34% higher in the 

canopy top in October. Both trees had higher EWT in October than in August in all layers, 

suggesting that when the trees were stressed in August, they lost EWT from all layers, agreeing 

with the findings of the indoor dry-down experiment in which the deciduous snake-bark maple 

tree was losing EWT from all layers while being dried down over a period of eight days 

(Chapter 4). Additionally, the vertical profiles showed that ash tree 2 had lower EWT than ash 

tree 1 and also was more stressed during the heatwave in August, losing more EWT than ash 

tree 1, especially in the canopy bottom. 

(a) (b) (c) (d) 

(e) (f) 
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The Swedish whitebeam trees showed different behaviour to the ash trees. Both trees had higher 

EWT in the canopy top than in the canopy bottom in both dates, except for tree 1 in August in 

which canopy layers between 7 m and 10 m had the lowest EWT. However, the vertical profiles 

of EWT were hourglass shaped with the lowest EWT being in middle canopy layers. For tree 1, 

EWT was higher in October than in August and comparing the EWT vertical profiles in both 

dates revealed that there was almost no change in EWT in middle canopy layers, while EWT 

increased in the top and bottom layers in October. In August, EWT was higher in the canopy 

top than in the canopy bottom by only 4%, while it was higher by 27% in October. For tree 2, 

slight change in EWT was detected between August and October, with EWT in October being 

slightly higher. EWT was higher in the canopy top than in the canopy bottom by 48% and 49% 

in August and October respectively. The tree either was not affected by the heatwave, or had 

not yet recovered from the stress caused by the drought, considering that overall it had lower 

EWT in October than tree 1. 

Similar to the Swedish whitebeam trees, holly tree 1 had hourglass EWT vertical profiles in 

August and October, with EWT in middle layers being less than that in the top and bottom of 

canopy. However, contrary to the behaviour observed in Swedish whitebeam tree 1, holly tree 1 

maintained the same EWT in the top and canopy bottom during and after the heatwave, while 

middle canopy layers showed an increase in EWT in October. However, holly tree 2 had 

different EWT vertical profiles than holly tree 1 and also than all the other species. EWT was 

lower in the canopy top than in the canopy bottom in both August and October by 17% and 4% 

respectively. Also, there was a slight change in EWT between the two dates in the canopy 

bottom, while EWT increased in the canopy top in October.  

It was unclear why two trees of the same species, in the same plot, had substantially different 

vertical profiles of EWT and also reacted in a different manner to stress during a heatwave. A 

possible explanation is the illumination conditions of the plot, which may have caused the two 

trees to be illuminated in different ways, thus resulting in the trees growing sun/shade leaves in 

different canopy layers. Typically, sun leaves grow in the canopy top because the top layers of 

the canopy receive the majority of irradiance (Chazdon and Fetcher, 1984). However, as there 

was a wide gap in the canopy in the middle of the plot, sun leaves were not necessarily in the 

canopy top only, depending on how the trees were illuminated. Holly is known to be able to 

grow different types of leaves depending on the position of leaves in the canopy, with shaded, 

canopy bottom leaves having sharp prickles to protect them from animals and insects, while 

sun leaves are smaller and smoother (Herrera and Bazaga, 2013). However, despite all leaf 
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samples being collected from the canopy bottom in both dates, among the eighteen leaf samples 

collected only four were prickly, while fourteen were smooth, suggesting that the canopy 

bottom layers were sun leaves. This can explain why the two holy trees in the plot had high 

EWT in canopy bottom layers, and also attempted to maintain the EWT in these layers 

unchanged when the trees were stressed, while losing moisture from middle canopy layers in 

holly tree 1, and from the canopy top in holly tree 2. 

6.6 Species- and site-independent EWT estimation model 

The leaf level results discussed in section 6.5.1 showed that it was not possible to fit a general, 

site-independent EWT estimation model for senescent leaves, if they were at different levels of 

senescence. However, it was possible to fit a pooled, species- and site-independent EWT model 

for green leaves, described in Equation (6.20), combining the leaf samples collected in the 

August dataset with the leaf samples collected in the indoor dry-down experiment (Chapter 4). 

To further investigate this finding, the leaf samples collected in the forest dataset (Chapter 5) 

were added to the model (Figure 6-19), resulting in a very high fitting accuracy (R2 = 0.91). 

The model can be described as: 

EWT (g cm-2) = 0.0543 × NDI – 0.0034 (6.22) 

 

Figure 6-19. The general, species- and site-independent pooled NDI – EWT model that 

combined all leaf samples. 
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The all-samples pooled EWT model further showed that the NDI – EWT relationship was not 

driven by species as much as it was driven by the variation in leaf internal structure. Variation 

in NDI values of leaves with similar EWT was in some cases more significant within individual 

species than it was between different species, as observed in the beech and lime leaf samples. 

Another example was the sycamore and oak leaf samples, as at similar EWT values, NDI of 

some sycamore leaves was more similar to that of oak leaves than to other sycamore leaves. 

The same was observed in ash leaf samples. The high fitting accuracy of the model suggested 

that such variation in NDI was insignificant; however, as discussed in Section 6.5.1, a high 

fitting accuracy of the EWT estimation model at the leaf level does not necessarily reflect the 

accuracy of the model at the canopy level. Thus, the all-samples pooled model was tested at the 

canopy level in both forest and August datasets. Errors in the EWT estimations are shown in 

Table 6-9 for the August dataset and Table 6-10 for the forest dataset. 

Table 6-9. For August dataset, a comparison between the errors observed in the EWT estimation 

using the all-samples pooled EWT model and the Park-only EWT model.  

 Relative error in EWT estimations 

Species All samples EWT model Park only EWT model 

Swedish Whitebeam 5.3% -2.2% 

Ash -1.8% -4% 

Beech 25% 12% 

 

Table 6-10. For forest dataset, a comparison between the errors observed in the EWT estimation 

using the all-samples pooled EWT model and the forest-only EWT model.  

  Relative error in EWT estimations 

  All samples EWT model Forest only EWT model 

Tree Species Canopy top  Canopy bottom Canopy top Canopy bottom 

1 Sycamore -9.1% 3% -5.3% 7.2% 

2 Sycamore -16% 0.2% -13.5% 4.3% 

3 Sycamore -6.6% 0.3% -2.7% 4.3% 

4 Sycamore --- 3.2% --- 7.3% 

5 Beech -6.3% --- -2.8% --- 

6 Sycamore -4.9% --- -1% --- 

8 Oak --- 5.8% --- 10.2% 

9 Oak 2.3% --- 6.7% --- 

10 Oak -2.1% --- 2.1% --- 

11 Oak -6.3% --- -2.4% --- 

12 Sycamore -16% --- -13.3% --- 

13 Oak -9.1% --- -5.4% --- 

Average error  7.9% 2.5% 5.5% 6.7% 

Total error 6.6% 6.3% 
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For the August dataset, the EWT estimation accuracy obtained using the all-samples pooled 

EWT model was comparable to the park-only pooled EWT model, except for the beech tree. 

The overestimation of the beech tree EWT indicated that the tree had leaves significantly 

thinner, or with different mesophyll structure, than the leaves of the other trees in the plot. 

Although leaf thickness was not measured, LMA measurements showed that beech leaf samples 

had lower LMA than ash and Swedish Whitebeam leaves (0.0056, 0.0071 and 0.0075 g/cm2, 

respectively), suggesting, but not confirming, that they were thinner. 

For the forest dataset, the average of the relative errors in the EWT estimation using the all-

samples pooled model was 6.6%, insignificantly higher than the error observed when the forest-

only pooled model was used (6.3%). However, many of the errors in the canopy top layer 

increased and the errors in the canopy bottom layers decreased, as a result of the EWT 

estimation model containing many canopy-bottom leaves. Error in each individual tree was < 

10 %, except for sycamore trees 2 and 12, for which EWT was underestimated. The high errors 

and the EWT underestimation in the two trees indicated that their leaves were thicker, which 

was reflected in their higher LMA in comparison to the leaves from the other sycamore trees 

(0.0029 g/cm2 for sycamore trees 2 and 12 and average of 0.0021 g/cm2 for the remaining 

Sycamore tree, ranging between 0.0017 and 0.0024 g/cm2). The results revealed that the all-

samples pooled EWT model was species-independent, but site-independent only to an extent. 

6.7 3D mapping of FMC 

Typically, FMC and EWT are correlated water status metrics, as FMC can be quantified as 

EWT divided by LMA. FMC is linked to the potential of fire ignition and propagation (Viegas 

et al., 1992), in addition to the fire spread rate (Nelson Jr, 2001). Thus, it has been widely used 

in wildfire modelling and early detection of wildfire risk (Danson and Bowyer, 2004). 

Following the successful estimation of EWT in 3D using NDI, FMC of leaf samples collected 

in the October dataset was measured, following Equation (6.23), and was directly linked to 

NDI.  NDI – FMC relationships were established at the leaf level and applied at the canopy 

level to investigate the possibility of generating 3D FMC point clouds and FMC vertical 

profiles. Figure 6-20 shows the NDI – FMC relationships established at the leaf level. 

𝐹𝑀𝐶 (%) = (
𝐹𝑊 −  𝐷𝑊

𝐷𝑊
) × 100 (6.23) 
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Figure 6-20. The NDI – FMC relationships at leaf level for October dataset leaf samples. 

The highest FMC was observed in ash leaf samples (189 %), followed by holly leaf samples 

(168 %). The beech leaf samples had a lower FMC (138 %), whilst FMC observed in the 

Swedish whitebeam samples was the lowest (126 %). This differed from the observation 

obtained for EWT of the same leaf samples, which showed that holly had the highest EWT and 

beech had the lowest. Moderate linear correlation was observed between NDI and FMC for all 

species (R2 = 0.53, 0.51, 0.60 and 0.45 for Swedish whitebeam, beech, ash and holly, 

respectively), and the correlation was lower than that achieved in the NDI – EWT relationships. 

This was expected, as EWT is known to be more correlated to reflectance in the optical domain 

than FMC (Ceccato et al., 2001). NDI and FMC were found to be directly proportional for 

Swedish whitebeam and holly species, but inversely proportional for ash and beech (Figure 

6-20). The NDI – FMC relationship was found to be species-dependent and it was not possible 

to fit a pooled, species-independent FMC estimation model. This observed variation in the NDI 

– FMC relationships between species was caused by the difference in LMA between them, as 

FMC is sensitive to the change in LMA (Riaño et al., 2005; Yebra et al., 2008). This agreed 

with the findings of Ceccato et al. (2001), reporting that EWT and FMC were not always 

directly related, as they are two different ways to define vegetation water content, and observing 

an inverse relationship between them in some species, as a result of the LMA effects.  

The species-specific NDI – FMC models can be described as follows: 

FMC (%) = 581.46 × NDI + 4.58, for Swedish whitebeam (6.24) 

FMC (%) = -445.18 × NDI + 216.27, for beech (6.25) 
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FMC (%) = -580.57 × NDI + 342.55, for ash (6.26) 

FMC (%) = 83.86 × NDI + 137.86, for holly (6.27) 

At the canopy level, FMC was estimated with errors < 8 % in the four trees used for validation, 

with the average error in the estimation being 4.5 % (Table 6-11). 3D FMC point clouds were 

generated for the same six trees shown in Figure 6-18. Figure 6-21 shows the 3D FMC point 

cloud of Swedish whitebeam tree 1. Similar to the 3D EWT point clouds, the FMC point clouds 

revealed a difference between leaf and wood, and also showed vertical heterogeneity in FMC 

distribution within canopy. 

Table 6-11. The errors in the FMC estimations at canopy level.  

Species Actual FMC (%)  Estimated FMC (%) Relative error (%) 

Swedish whitebeam 146.8 135.5 -7.7 

Ash 189.7 186.4 -1.6 

Beech 137.5 128.6 -6.4 

Holly 166.1 169.8 2.2 

 

 

Figure 6-21. 3D FMC point cloud of Swedish whitebeam tree 1. 

FMC vertical profile was generated for each tree (Figure 6-22). FMC vertical profiles concurred 

with the visual inspection of point clouds and revealed some vertical variation in all trees. The 

vertical profiles of FMC varied between species, and also showed some variation between the 

two trees from each species. For the Swedish whitebeam trees, the trees displayed hour-glass 

shaped FMC distribution, similar to their EWT vertical profiles, with the lowest FMC being 
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located in the middle of the canopy, which was more obvious in tree 1 than in tree 2. The two 

trees had similar FMC in the upper canopy (layers > 6 m), whilst tree 1 had a higher FMC in 

the lower canopy than tree 2. Overall, tree 1 had 28 % higher average FMC than tree 2 (138 % 

and 108 %, respectively). 

 

Figure 6-22. FMC vertical profile for six trees in the plot: (a) Swedish whitebeam trees 1 and 2, 

(b) ash trees 1 and 2, and (c) holly trees 1 and 2. 

For ash trees, the two trees had similar FMC in the upper canopy (layers > 7 m), while tree 2 

had higher FMC in the lower canopy than tree 1. However, the difference in the mean FMC 

between the trees was less significant than that in the Swedish whitebeam trees, as tree 2 had 

only approximately 7 % higher FMC than tree 1. Also, the highest observed FMC in ash trees 

was in the canopy bottom, while the lowest was in the upper canopy, showing different FMC 

vertical profiles than the hour-glass shaped FMC vertical profiles observed in the Swedish 

whitebeam trees. The FMC vertical profiles were also the opposite to the EWT vertical profiles, 

as a result of NDI being inversely proportional to FMC for ash. Holly trees showed the least 

vertical variation in FMC. Tree 1 had an hour-glass shaped FMC vertical profile, with FMC in 

the middle canopy being slightly lower than that in the upper and lower canopy. However, tree 

2 showed a different behaviour, as FMC in the upper and middle canopy was almost constant, 

while FMC was slightly higher in the lower canopy. The FMC vertical profiles matched the 

EWT vertical profiles.  

Although the results obtained from this dataset were promising, more experiments that include 

leaf samples for validation from multiple canopy layers are needed to validate the accuracy of 

the 3D FMC estimates. The method also needs to be tested in a real forest environment, and the 

data collected in Wytham dataset (Chapter 5) was insufficient for this, as LMA measurements 
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were carried out in the upper and lower canopy only, while LMA vertical profiles are needed 

to fully validate this approach. Combining TLS data with multispectral or hyperspectral 

imagery can lead to better quantifying of the LMA vertical heterogeneity in forest canopies, 

and thus allowing the use of TLS to provide 3D FMC point clouds in forest stands. Overall, 

FMC was outside the scope of this research, which focuses mainly on EWT, and this dataset 

can only be considered a proof-of-concept for future work. 

6.8 Summary 

This chapter investigated the transferability of the EWT estimation approach to two different 

sites: willow bioenergy crop plots and a mixed-species tree plot. The experiments described in 

this chapter aimed at studying the effects of wind and senescence of leaves on the accuracy of 

the EWT estimation, and investigating the possibility of using the proposed EWT estimation 

approach to detect temporal changes in EWT.  

Regarding the wind effects, as expected, it was found that in windy conditions mapping EWT 

in 3D was not possible because of the low registration accuracy of the point clouds from the 

two TLS instruments. However, it was still possible to estimate the average EWT in the whole 

canopy or in individual layers of the canopy, as long as calculations were not done on a point-

by-point basis. 

Leaf senescence was found to significantly affect the NDI – EWT relationship, as it alters the 

leaf internal structure in a way that seemed to vary depending on the leaf level of senescence. 

It was not possible to fit a pooled, site-independent NDI – EWT model. However, it was 

possible to fit a pooled, site-specific EWT estimation model for leaf samples that were at similar 

levels of senescence. On the other hand, for green leaves, a species-, site-independent EWT 

estimation model was derived, and was found to be able to estimate EWT with accuracy very 

close to that obtained using site-specific models. However, care must be taken when applying 

the model, as large errors in EWT estimation would be obtained in trees that have leaves with 

significantly different internal structure (thinner/thicker) than the majority of leaves used in 

building the model. 

It was possible to detect the temporal change in EWT using TLS data. The accuracy depended 

mainly on the errors obtained in EWT estimation in the different dates. Consistent errors in both 

dates resulted in high accuracy in detecting the change in EWT. However, less accuracy was 

obtained when EWT was overestimated in one dataset and underestimated in the other. 
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Although the results obtained were very promising, the method needs to be tested in a real forest 

environment to investigate the ability of TLS data to detect the change in EWT in such a 

challenging environment. 
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Chapter 7. Integrating the 3D EWT estimates in radiative transfer 

modelling 

7.1 Introduction 

The results obtained in Wytham Woods (Chapter 5) revealed vertical heterogeneity in EWT in 

the forest plot, with the upper canopy having an average of 24% higher EWT than the lower 

canopy. As discussed in Chapter 2, the effects of such vertical heterogeneity on the accuracy of 

EWT estimation using optical remote sensing data is often ignored, as it is difficult to measure 

and to account for in EWT estimation models. This chapter is dedicated to integrating the 3D 

EWT estimates obtained in Chapter 5 into the 3D RTM DART. Two groups of simulations 

were conducted to study the effects of woody materials, understory, and EWT vertical 

heterogeneity on the Bottom of the Atmosphere (BOA) reflectance and the NDWI, using two 

different forest scenes. Additionally, example scenarios of water stress, that affected the whole 

canopy or started in the lower canopy then spread upward, were simulated to investigate which 

canopy layers dominated the forest plot reflectance. Such water stress can be caused by drought 

or infections by pests or diseases that affect the lower canopy first, such as oak anthracnose, 

oak leaf blister, sycamore anthracnose, and ash dieback (Downer, 2006; Horst and Horst, 2013; 

Pokorny, 2015). To link the simulations to real satellite data, the simulated reflectance and 

NDWI were compared to actual values retrieved from Sentinel-2A near- and shortwave-

infrared bands (864 nm and 1613 nm, respectively). 

7.2 DART concept and background 

DART  (Gastellu-Etchegorry et al., 1996) is a 3D RTM which has been developed in the 

CESBIO (CEntre for the Study of the BIOsphere from space) laboratory since 1992. DART is 

capable of simulating the radiative budget in any user-defined Earth-atmosphere system, as 

acquired by airborne and spaceborne optical sensors, in the visible and infrared (near, 

shortwave, and thermal) regions of the electromagnetic spectrum (Gastellu-Etchegorry et al., 

2004). Radiative budget refers to the balance between solar radiation entering an Earth-

atmosphere system and reflected radiation and thermal emissions from the system (Kiehl and 

Trenberth, 1997). DART computes the radiation propagation through the system, simulating 

the radiation scattering and absorption by the atmosphere and Earth landscape, plus thermal 

emissions from both of them, and produces a 3D radiative budget, in addition to images at 

various altitudes. Simulated images are produced at BOA and Top of the Atmosphere (TOA) 

for any user-defined sensor, viewing angles, sun illumination angles, and spectral bands, in 
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addition to images at any other sensor altitude specified by the user. Simulated images are 

coupled with Look Up Tables (LUTs) that contain BOA and TOA spectral products, including 

scene radiance, irradiance, albedo, and reflectance, for all specified sensors and configurations. 

Irradiance refers to the incident radiation, radiance is the reflected radiation, albedo is the ratio 

between radiance and irradiance, while reflectance is the same fraction for a single incidence 

angle (sun position) (Wanner et al., 1997). TOA products resemble satellite sensor 

measurements and are influenced by atmospheric effects (scattering and absorption), and thus 

require radiometric corrections in real-life scenarios. Among the aforementioned DART 

products, BOA reflectance was the focus of this study, as it is the product being used in deriving 

vegetation indices. The numerous other spectral products that DART provides are described in 

detail in Gastellu-Etchegorry et al. (2015).  

DART simulation is conducted using four modules: Direction, Phase, Maket, and Dart. The 

inputs for the Direction module are the sensor characteristics, viewing angle, spectral bands, 

and sun angular position (azimuth and zenith angles). The module then computes discrete 

directions of light propagation to be used in flux tracking during the simulation. For the Phase 

module, the atmospheric parameters need to be defined, including gas and aerosol (solid or 

liquid particles suspended in the air) density profiles, which can be defined manually, imported 

into the model, or selected from the model database. In addition, the optical properties of all 

objects in the scene need to be specified. Optical properties can be manually defined or selected 

from the DART database. The Phase module uses the inputs to calculate scattering phase 

functions for elements in the Earth landscape and the atmosphere, based on their pre-defined 

optical properties and geometry. A scattering phase function defines how radiation is scattered 

by an element at a given wavelength (Seinfeld and Pandis, 2016). 

In the Maket module, urban, natural or mixed 3D Earth scenes, with different levels of 

complexity, can be constructed as a set of 3D cells (voxels) that contain the scene elements. 

The dimensions of the cells affect the processing time and define the output spatial resolution. 

3D objects in the scene can be created in the module or imported into it, then their optical 

properties, pre-defined in the Phase module, are assigned. 3D objects consist of turbid cells, 

facets (triangles), or a combination of both, depending on the type of the object. For example, 

tree trunks and urban features are constructed as facets, while water and vegetation bodies 

(grass, crop fields, and foliage) are approximated as turbid mediums. A vegetation turbid 

medium is a set of infinitely small flat surfaces, defined by their leaf angle distribution, volume 

density, and optical properties. Vegetation foliage can also be modelled as facets, defined by 
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their orientation in space and surface area.  In addition to creating the Earth scene and the 3D 

objects in it, the atmosphere geometry needs to be specified. DART models the atmosphere as 

three major sections: Lower Atmosphere (LA), Mid Atmosphere (MA), and High Atmosphere 

(HA). LA has the height and cell size of the Earth landscape. MA is modelled as a number of 

cells while HA is modelled as a number of layers. The dimensions of the MA cells and HA 

layers can be defined by the end-user, or DART default atmosphere geometry (Table 7-1) can 

be used, depending on the aims of the simulations.  

Finally, the Dart module uses the outputs from the Direction, Phase, and Maket modules, and 

computes radiation propagation and interactions through the atmosphere and the Earth scene, 

by tracing iteratively radiation fluxes per cell (voxel), and generates the scene 3D radiative 

budget, simulated images, and spectral products. Gastellu-Etchegorry et al. (2015) provides a 

full description of the DART model, including the physical principles of the model, flux-

tracking approaches, different products, and how to define and simulate terrestrial and airborne 

optical and LiDAR sensors. Figure 7-1 shows a representation of a DART Earth-atmosphere 

system. The model used in this study was DART 5.6.7. 

Table 7-1. DART default atmosphere geometry.  

Atmosphere 

height 
MA height MA cell size HA height 

HA layer 

thickness 

84 km 4 km 100 m × 100 m × 500 m 80 km 2 km 

 

 

Figure 7-1. DART representation of Earth-atmosphere system. Figure is adapted from Gastellu-

Etchegorry et al. (2015).  
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Numerous previous studies have successfully coupled DART simulations with airborne and 

spaceborne optical data to retrieve vegetation biophysical and biochemical characteristics.  

SPOT and Ikonos imagery were used for estimating forest LAI, crown coverage, and leaf 

chlorophyll content through inversion of DART (Gascon et al., 2004). Sepulcre-Canto et al. 

(2009) used ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) 

satellite imagery and DART simulations to successfully differentiate between irrigated and 

rain-fed olive orchards. Hernández-Clemente et al. (2012) coupled airborne multispectral data 

with DART simulations to examine the performance of carotenoid vegetation indices at leaf 

and canopy levels in a pine forest. Banskota et al. (2013) estimated forest LAI using AVIRIS 

hyperspectral data with high accuracy through inversion of the DART model. Malenovský et 

al. (2013) derived a new leaf chlorophyll content vegetation index from the AISA Eagle 

airborne imaging spectrometer data using DART simulations. Yáñez-Rausell et al. (2015) used 

CHRIS-PROBA images and DART simulations to successfully estimate leaf chlorophyll 

content of a Norway spruce stand, validating the estimation using AISA Eagle airborne imagery 

of the same stand. Ferreira et al. (2018) combined AISA Eagle airborne imagery with DART 

simulations to successfully estimate individual tree crowns’ structural and biochemical traits 

(chlorophyll and carotenoid contents) in a diverse tropical forest.  

Other applications of the DART model have included designing satellite sensors (Durrieu et 

al., 2013), studying canopy heterogeneity in Amazonian forests (Barbier et al., 2010), studying 

variation in tropical forest texture and canopy structure (Barbier et al., 2012), estimating 

tropical forests biomass (Proisy et al., 2012), and modelling vegetation canopies’ 3D 

distribution of photosynthesis rates (Guillevic and Gastellu-Etchegorry, 1999). No apparent 

previous studies have modelled the vertical variation in vegetation biochemical characteristics 

(including EWT) in 3D RTMs, including DART. 

7.3 Parametrizing the model 

Two spectral bands were defined and used in all simulations, corresponding to Sentinel-2A 

near- and shortwave-infrared bands (bands 8A and 11, respectively). The first band had a central 

wavelength of 864 nm and a bandwidth of 33 nm, while the second band had a central 

wavelength of 1613 nm and a bandwidth of 143 nm. Although DART produces spectral 

products for various sensor viewing angles, the results presented in this study corresponded to 

zero zenith and azimuth sensor viewing angles. DART default sun angular position was used 

(30º zenith angle and 225º azimuth angle). The number of discrete light propagation directions 

and the number of iterations for flux tracking were 100 and 6 respectively, as recommended by 
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the developer of the model for the spectral range in the scope of this study. The U.S. standard 

atmosphere 1976 model (DART database) was used to parametrize how pressure, temperature 

and density of the atmosphere change with altitude, defining the gas and aerosol vertical profiles 

and optical properties. As the aim of the simulations was not to study the atmospheric effects 

on TOA reflectance, it was not necessary to accurately define the atmosphere, and using a 

standard atmosphere model was considered sufficient, as it was kept constant in all simulations. 

Optical properties of the understory were predefined as two Lambertian models (DART 

database). The first resembled healthy grass (Figure 7-2a), and the second resembled leaf litter 

(Figure 7-2b). For the woody materials, bark-deciduous Lambertian model (DART database) 

was used (Figure 7-3). 

 

Figure 7-2. Pre-defined understory optical properties: (a) healthy grass, and (b) litter. 

 

Figure 7-3. Pre-defined bark-deciduous optical model used for woody materials. 

Leaf optical properties were simulated using the PROSPECT model, implemented in DART, 

using the model parameters shown in Table 7-2, unless otherwise stated, and changing EWT 

depending on the simulation. The leaf structure coefficient was defined based on the values 

retrieved from field spectroscopy measurements conducted in the forest, as reported in Calders 
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et al. (2018). LMA was defined based on the destructive sampling conducted in the forest 

(Chapter 5). Methods to implement the vertical variation of EWT in the model are presented in 

Section 7.4. It is worth mentioning that leaves were modelled as objects with double-face 

optical properties. That is, light rays were allowed to scatter on the front face, transmit through 

leaves, and scatter again on the back face. On the other hand, woody materials were modelled 

as objects with single-face optical properties, meaning that light rays only scattered on the outer 

surface of objects.  

Table 7-2. PROSPECT parameters used to simulate leaf optical properties.  

Leaf structure 

coefficient 

Chlorophyll 

(µg cm-2) 

Carotenoid 

(µg cm-2) 

Brown 

pigment 

LMA  

(g cm-2) 

EWT 

(g cm-2) 

1.5 47.7 4.4 0.0 0.0028 variable 

 

Two forest scenes (Sections 7.4 and 7.5) were constructed, having the dimensions of 35 m × 

45 m and 40 m × 40 m respectively, and average heights of 16.5 m and 27.6 m respectively. 

Default values for the scene cell (voxel) dimensions were used (0.3 m × 0.3 m × 0.3 m).  DART 

default atmosphere geometry (Table 7-1) was utilized, keeping the atmosphere optical and 

geometric characteristics constant in all simulations. 

7.4 Forest scene 1 

Forest scene 1 represented a mixed-species (sycamore and oak) forest plot, based on the TLS 

data obtained in the data collection campaign conducted in Wytham Woods (Chapter 5). All 

the processes described in this section were conducted in CloudCompare v. 2.6.2 software, 

unless otherwise stated. To build the forest scene, tree stem locations were determined from the 

TLS point cloud. First, a slice was taken slightly above ground in the plot point cloud, which 

contained the ground and approximately 20 cm of the stems. Then, the approximate coordinates 

of the centre of each stem at ground level were acquired and considered as the tree location. As 

the aim of the planned simulations was to investigate the effects of EWT vertical heterogeneity 

on BOA reflectance and NDWI, and not to investigate the effects of tree structure variation, it 

was not necessary to model all the trees in the plot. Instead, to reduce computation time, one 

sycamore tree and one oak tree were chosen from the plot TLS point cloud to be used in 

reconstructing the forest scene. The selection of the trees and generation of 3D tree models were 

performed as follows:  
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1) The point clouds of the twelve sampled trees around the canopy walkway (Figure 5-2 and 

Table 5-1) were visually inspected, and six trees (four sycamores and two oaks), which visually 

suffered the least occlusion, were selected. 

2) Leaf and wood in each tree were already separated for EWT estimation (Section 5.4.2). The 

leaf point cloud was also already divided into multiple layers to generate EWT vertical profiles 

(Section 5.5.4). A Poisson surface reconstruction model, which generates a triangle mesh from 

a set of oriented 3D points, using the algorithm described in Kazhdan and Hoppe (2013), was 

used to reconstruct 3D objects (meshes) from leaf layers and wood point clouds of each tree. 

According to the developer of the model, the model is recommended for application on closed 

3D shapes, thus applying it to leaf and wood point clouds resulted in highly distorted 3D objects, 

as the model attempted to produce closed shapes, disregarding the shape of leaves and tree 

branches (Figure 7-4b and Figure 7-5b). However, the model generated the density histogram 

of the points involved in creating each triangle in the mesh. The density histogram was used to 

clean the 3D objects and remove the triangles that had very low density by choosing a threshold, 

based on visual inspection of the meshes and original point clouds. Figure 7-4 shows an 

example of generating a 3D object from the TLS point cloud for Sycamore tree 1 woody 

materials. Figure 7-5 shows the same for a single leaf layer in the same tree. 

3) The average number of triangles in each tree 3D object was 41 million, as a result of the very 

dense point clouds used to generate the 3D models. Using 3D objects that had such a high 

number of triangles was not practical, because of software and hardware limitations, which 

required reducing the number of triangles. For this, each tree 3D object was imported into 

MATLAB and the standard MATLAB function ‘reducepatch’ was applied to reduce the number 

of triangles. The function maintained the boundaries of each shape, attempting to preserve the 

surface area, and merged the triangles inside the shape to reduce their number. The input was a 

reduction coefficient (percentage). This was decided by trial and error, by measuring the total 

mesh surface area before and after applying different reduction coefficients. It was found that 

the module was able to reduce the number of triangles by approximately 96% with only a slight 

reduction in the mesh surface area. The average number of triangles in the tree objects after 

reduction was approximately 1.3 million. This number was still considered high. However, 

using a higher reduction coefficient was not possible, as it was found to have more impact on 

the surface area. 
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Figure 7-4. Creating 3D object for Sycamore tree 1 woody materials: (a) wood point cloud, (b) 

outcome of applying Poisson surface reconstruction model and the histogram of point density 

in mesh triangles, and (c) the final 3D object after removing the noise using the density 

histogram, guided by visual inspection of the original point cloud. 

4) Leaf layer 3D objects of each tree were used to estimate individual tree LAI. First, the total 

one-sided surface area of the triangles in each layer was calculated. Afterwards, to calculate the 

canopy projected area, a polygon was interactively fit to the canopy outer perimeter by 

manually drawing a polyline. The polygon was then projected on a horizontal plane using 

AutoCAD 2016 and the area inside the polygon was calculated and considered the canopy 

projected area. LAI of the canopy was calculated as the summation of the one-sided surface 

area of triangles divided by the canopy projected area (Table 7-3). Sycamore tree 1 and oak 

tree 10 (Figure 7-6) were chosen to be used in DART simulations as they had the closest LAI 

to the global average LAI for deciduous forests, which ranges between 3.9 and 5.1, as reported 

in Asner et al. (2003), and in the region of 3-6, as reported in Kozlowski and Pallardy (1996). 
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Figure 7-5. Creating 3D object for a leaf layer in Sycamore tree 1: (a) layer point cloud, (b) 

outcome of applying Poisson surface reconstruction model and the histogram of point density 

in mesh triangles, and (c) the final 3D object after removing the noise. 

Table 7-3. LAI estimated from the trees 3D models. 

Tree label Species Height (m) LAI 

1 Sycamore 15.80 3.42 

2 Sycamore 15.40 2.62 

6 Sycamore 17.25 3.01 

12 Sycamore 17.42 2.31 

10 Oak 16.49 3.03 

11 Oak 17.90 1.85 

 

5) To import the trees into DART, 3D objects of each tree (leaf layers and wood) were combined 

into a single group of objects that resembled the whole tree. The species and coordinates of 

each tree in the plot were used to distribute the 3D tree objects in the scene. In each location 

that corresponded to a sycamore tree, the 3D model of sycamore tree 1 was placed, and in each 

location that corresponded to an oak tree, the 3D model of oak tree 10 was placed. DART 

considered each tree object a single object that consisted of multiple groups (leaf layers and 
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wood), making it possible to assign specific optical properties to each layer in the tree to model 

the vertical variation of EWT. For this, an average EWT vertical profile of the sycamore trees 

in the plot (Table 7-4) and an average EWT vertical profile of the oak trees in the plot (Table 

7-4) were generated from the EWT vertical profiles retrieved in Chapter 5. For each canopy 

layer, a PROSPECT simulation was conducted, using the parameters shown in Table 7-2, and 

EWT of the layer, and the resulting optical model was assigned to the layer. Figure 7-7 shows 

a 3D view of the forest scene. 

 

Figure 7-6. The 3D tree objects used to build forest scene 1: (a) Sycamore tree 1, and (b) oak 

tree 10. 

Table 7-4. The EWT vertical profiles for the 3D models of the Sycamore and Oak trees, used 

to build forest scene 1. Height was measured to the centre of each layer. 

 Sycamore Oak 

Layer Height (m) EWT (g cm-2) Layer Height (m) EWT (g cm-2) 

1 15.1 0.0130 1 15.62 0.0131 

2 13.9 0.0125 2 14.25 0.0130 

3 12.9 0.0122 3 13.25 0.0128 

4 11.9 0.0121 4 12.25 0.0122 

5 10.9 0.0119 5 11.25 0.0120 

6 9.9 0.0115 6 10.25 0.0119 

7 8.9 0.0108 7 9.25 0.0114 

8 7.9 0.0105 8 7.75 0.0106 

9 6.9 0.0107 N/A N/A N/A 

10 5.9 0.0106 N/A N/A N/A 
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Figure 7-7. 3D view of forest scene 1. 

7.5 Forest scene 2 

Forest scene 2 was a 40 m × 40 m subset of the 3D model of a one hectare forest stand in 

Wytham Woods, Oxford, UK, described in detail in Calders et al. (2018). The one hectare 3D 

model was reconstructed using data collected with a RIEGL VZ-400 TLS instrument in leaf-on 

and leaf-off conditions (Calders et al., 2016). Reconstructing the 3D model is described 

thoroughly in Calders et al. (2018), and followed three main steps: (1) tree segmentation, (2) 

tree structure modelling, and (3) leaf insertion. Tree segmentation was done using the treeseg 

open-source software (Burt et al., 2018), using the leaf-off point cloud. Tree structure modelling 

was done by converting each extracted individual tree point cloud to a Quantitative Structure 

Model (QSM), which is a geometrical model that describes the complete tree woody 

components in an hierarchical order, including the higher order branches (Hackenberg et al., 

2015). For this, cylinders were fitted to the tree point clouds, according to the skeleton of each 

tree, following the procedure described in Calders et al. (2015). Leaves were then added to each 

tree QSM using the Foliage and Needles Naïve Insertion (FaNNI) algorithm (Åkerblom et al., 

2018), by defining the leaf shape, target leaf area, leaf area density distribution, leaf size 

distribution, and leaf orientation distribution, using the leaf-on point cloud as a guidance, as 

described in Calders et al. (2018). 

The subset used in this research contained 44 trees from three different species: sycamore (Acer 

pseudoplatanus), ash (Fraxinus excelsior), and hazel (Corylus avellana). To reconstruct the 

forest scene in DART, each tree leaf point cloud was divided into a number of layers, each 1 m 

deep, depending on the canopy height. For the woody materials, each tree QSM defined the 

woody components as cylinders, with each cylinder defined as two vertices, top and bottom 
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respectively, and a radius. As DART is not capable of reconstructing 3D models from such data 

type, the cylinders were reconstructed in MATLAB, using the free add-on ‘cylinder 

between two points’ function. The outcome was one or more cylinder meshes for each wood 

component in each tree, which were then merged together to build the tree woody materials 3D 

models (Figure 7-8a). The woody materials 3D models and the leaf layers 3D models were then 

grouped and imported into DART to build the forest scene (Figure 7-8b). 

 

Figure 7-8. 3D view of forest scene 2: (a) woody materials 3D objects and (b) plot 3D objects, 

combining wood and leaf 3D models. 

The forest scene was a realistic representation of the original forest plot, in terms of the tree 

species, structure, and locations, unlike forest scene 1, which was reconstructed using only two 

tree models representing two species. Plus, as the woody materials were modelled as QSMs 

derived from leaf-off TLS data, the small branches and twigs in the upper canopy were 

accounted for, whilst they were absent in the tree models used to build forest scene 1 as a result 

of occlusion in the TLS leaf-on data. In addition, the average height of the scene was 27.6 m, 

being higher than that of forest scene 1 (16.5 m). This variation in tree structure and species 

between the two forest scenes can be useful to investigate its effect on the plot reflectance and 

the NDWI. As no EWT measurements were conducted in this forest plot, and no EWT vertical 

profiles were generated, EWT was assumed to equal 0.014 g cm-2 in all canopy layers, based 

on EWT retrieved from destructive sampling of sycamore and ash trees (Chapter 5). EWT was 

then modified to simulate different case scenarios, as discussed in Section 7.6. For each canopy 

layer, a PROSPECT simulation was conducted using the parameters shown in Table 7-2, except 

for LMA that was changed to 0.0022 g cm-2 in this plot, based on the field spectroscopy 

conducted in this part of the forest (Calders et al., 2018). Assigning optical properties to each 
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canopy layer in the 44 trees was time consuming. This further showed the challenges associated 

with modelling the vertical variation in vegetation biochemistry traits. 

7.6 Simulations 

Two groups of simulations were carried out. The first group aimed at studying how foliage, 

woody materials, and understory contributed to the forest plot BOA reflectance and NDWI 

(Table 7-5). In forest scene 1, EWT was kept constant at 0.013 g cm-2 in all canopy layers, 

being the average EWT of canopy top observed in leaf destructive sampling, while it was kept 

constant at 0.014 g cm-2 in all canopy layers of forest scene 2. Sim 1.1 aimed at measuring the 

BOA reflectance and NDWI resulting from foliage only, and thus zero reflectance Lambertian 

optical models were assigned to the woody materials and understory. Sim 1.2 and 1.3 measured 

the contribution of woody materials and understory, respectively, to the plot BOA reflectance 

and NDWI, while Sim 1.4 combined both contributions. The results of the simulations were 

compared to Sim 1.1 results and the change in reflectance and NDWI was calculated. Sim 1.5 

investigated how changing the understory from healthy grass to dry litter would affect the plot 

reflectance and cause a change in NDWI. Thus, the results of Sim 1.5 were compared to the 

results of Sim 1.4 to calculate the change in reflectance and NDWI. 

Table 7-5. Group 1 simulations. EWT value was 0.014 g cm-2 for forest scene 2. 

 Sim 1.1 Sim 1.2 Sim 1.3 Sim 1.4 Sim 1.5 

Foliage PROSPECT 

reflectance model 

EWT value (g cm-2) 

0.013 0.013 0.013 0.013 0.013 

Understory reflectance 

model 
Zero Zero 

Healthy 

grass 

Healthy 

grass 
Litter 

Woody materials 

reflectance model 
Zero 

Bark 

deciduous 
Zero 

Bark 

deciduous 

Bark 

deciduous 

  

The predefined optical models: healthy grass (Figure 7-2a), litter (Figure 7-2b), and bark-

deciduous (Figure 7-3), were used in the simulations, as shown in Table 7-5. It is worth 

mentioning that assigning zero reflectance optical models to ground and/or woody materials 

meant that light rays that would reach the ground or wood components would be terminated. In 

a real life scenario, part of the light rays reflected from the ground and wood components can 

be scattered again by foliage, and thus add to the canopy reflectance. So, it was expected that 

the results obtained in simulations that included assigning zero reflectance optical properties to 

ground and/or woody materials would contain a bias. 
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The second group of simulations aimed at studying the effect of the EWT vertical heterogeneity 

on the BOA reflectance and the NDWI, and to determine which canopy layers dominated the 

plot reflectance (Table 7-6). Bark-deciduous Lambertian model was assigned to the woody 

materials, and healthy grass was assigned to the understory, except for Sim 2.10 in which the 

understory was modelled as dry litter. In Sim 2.1, it was assumed that EWT dropped in all 

canopy layers from 0.013 g cm-2 (0.014 g cm-2 in forest scene 2) to 0.008 g cm-2 (38% and 43% 

drop in EWT for forest scenes 1 and 2 respectively), simulating a water stress condition. 

In Sim 2.2, canopy layers were dried more, simulating a more severe stress, and lower EWT 

value was used (0.004 g cm-2, 69% and 71% drop in EWT from its original value for forest 

scenes 1 and 2 respectively). In simulations 2.1 and 2.2, the vertical heterogeneity in EWT was 

ignored, and it was assumed that all canopy layers dried simultaneously. Sim 2.3 modelled the 

vertical variation in EWT. For forest scene 2, as there were no actual EWT vertical profile 

measurements of the trees, Sim 2.3 was not carried out. Simulations 2.4 to 2.9 aimed at 

investigating which canopy layers contributed the most to the plot reflectance, by applying 

different alterations to the EWT in canopy bottom layers, as shown in Table 7-6, simulating 

scenarios of water stress that started in the bottom of the canopy and then spread upwards. 

Table 7-6. Group 2 simulations. 

Sim Forest scene 1  Forest scene 2  

2.1 0.008 g cm-2 in all canopy layers 0.008 g cm-2 in all canopy layers 

2.2 0.004 g cm-2 in all canopy layers 0.004 g cm-2 in all canopy layers 

2.3 Vertical profiles in Table 7-4 N/A 

2.4 
Top five layers: EWT vertical profiles 

0.008 g cm-2 in remaining layers 

Top five layers: 0.014 g cm-2 

0.008 g cm-2 in remaining layers 

2.5 
Top four layers: EWT vertical profiles 

0.008 g cm-2 in remaining layers 

Top four layers: 0.014 g cm-2 

0.008 g cm-2 in remaining layers 

2.6 
Top three layers: EWT vertical profiles 

0.008 g cm-2 in remaining layers 

Top three layers: 0.014 g cm-2 

0.008 g cm-2 in remaining layers 

2.7 
Top five layers: EWT vertical profiles 

0.004 g cm-2 in remaining layers 

Top five layers: 0.014 g cm-2 

0.004 g cm-2 in remaining layers 

2.8 
Top four layers: EWT vertical profiles 

0.004 g cm-2 in remaining layers 

Top four layers: 0.014 g cm-2 

0.004 g cm-2 in remaining layers 

2.9 
Top three layers: EWT vertical profiles 

0.004 g cm-2 in remaining layers 

Top three layers: 0.014 g cm-2 

0.004 g cm-2 in remaining layers 

2.10 

Top four layers: EWT vertical profiles 

0.004 g cm-2 in remaining layers 

Understory changed to litter 

Top four layers: 0.014 g cm-2 

0.004 g cm-2 in remaining layers 

Understory changed to litter 
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7.7 Model validation 

This research focused on DART simulation of vegetation reflectance, which has been 

successfully validated using ground and airborne validation data (Gastellu-Etchegorry et al., 

1999). In addition, de Castro Oliveira et al. (2017) assessed DART simulation accuracy of 

Eucalyptus plantations reflectance, by comparing it to reflectance extracted from high 

resolution Pleiades satellite imagery, reporting absolute error < 2%. Plus, as part of the 

RAdiation transfer Model Intercomparison (RAMI) experiment, DART simulations of 

vegetation reflectance were cross-validated against other, independently developed, 3D RTMs, 

including FLIGHT, SPRINT, Librat, and Raytran (Pinty et al., 2001; Pinty et al., 2004; 

Widlowski et al., 2007; Widlowski et al., 2008; Widlowski et al., 2013; Widlowski et al., 2015). 

DART Earth-atmosphere radiative coupling was validated successfully using simulations of the 

MODTRAN (MODerate resolution atmospheric TRANsmission) atmosphere RTM (Gascon et 

al., 2001; Grau and Gastellu-Etchegorry, 2013). 

To evaluate how close the results obtained from the simulations conducted in this study were 

to real satellite imagery, and how the assumptions used in parametrizing the model affected the 

accuracy of the results, Sentinel-2A imagery that covered Wytham Woods was acquired from 

the Copernicus Open Access Hub, processed to BOA reflectance. The imagery was collected 

on 22nd of May 2017, which corresponded to the data collection campaign (22nd to 31st of May 

2017), in which TLS data collection and leaf EWT measurements were conducted (Chapter 5). 

The average zenith angle of the satellite imagery was 2.7º, and the sun zenith angle was 32.4º, 

both being close to their assumed values in the simulations, which were 0.0º and 30º, 

respectively. Pixels corresponding to the 18 ha Wytham core plot (Figure 5-1) were extracted 

from the NIR and SWIR bands (bands 8A and 11, respectively) in the satellite imagery, using 

the coordinates specified in Butt et al. (2009). Minimum, maximum, and average reflectance in 

the extracted pixels were determined. In addition, NDWI was calculated on a pixel-by-pixel 

basis, then the minimum, maximum, and average NDWI values in the plot were determined. 

The calculated values were compared to Sim 1.4 results of forest scenes 1 and 2.  

7.8 Results and discussion 

7.8.1 Comparing the simulated reflectance to Sentinel-2A data 

Sim 1.4 results obtained from forest scenes 1 and 2 were compared to the actual BOA 

reflectance and NDWI retrieved from the Sentinel-2A satellite imagery (Figure 7-9). The results 

revealed that the simulated NIR reflectance was lower than the average reflectance obtained 
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from the satellite data, referred to as the average actual reflectance hereafter, by 14.8 % and 

7.6 % in forest scenes 1 and 2 respectively. As discussed in Section 7.4, forest scene 1 suffered 

from occlusion, as 3D tree models used in the scene were reconstructed from leaf-on TLS scans, 

making their canopy LAI less than the actual value in the real forest plot. This can explain the 

simulated NIR reflectance being less than the actual NIR reflectance obtained from the satellite 

data. One approach to solve this issue is by combining TLS data and airborne LiDAR data in 

order to achieve a better coverage of canopy top, and thus reduce the occlusion effects.  

On the other hand, the simulated SWIR reflectance in both forest scenes was very close to the 

average actual reflectance, indicating that the EWT measurements used in the simulations, 

retrieved from the TLS data and destructive sampling, were realistic. The simulated SWIR was 

6.6 % less than the average actual reflectance in forest scene 1, and 6.4 % higher than the 

average actual reflectance in forest scene 2.  The simulated NDWI obtained from forest scene 1 

was 8 % lower than the average actual NDWI, while forest scene 2 simulated NDWI was 12.5 % 

lower than average actual NDWI. Both simulated NDWI values were affected by the simulated 

NIR reflectance being lower than the actual NIR reflectance. Furthermore, simulated NDWI of 

forest scene 2 could have also been influenced by the simulated SWIR reflectance being higher 

than its actual value. No EWT measurements were conducted in field for forest scene 2 and 

EWT was assumed to equal 0.014 g cm-2 in all the canopy layers, based on the EWT retrieved 

from destructive sampling in forest scene 1, as discussed in Section 7.5.  

Overall, the results showed that the simulated reflectance and NDWI in both forest scenes can 

be considered realistic, despite the approximations used in parametrizing the forest scenes. It is 

worth mentioning that the minimum, maximum, and average satellite reflectance and NDWI 

were calculated from all the pixels corresponding to the 18 ha Wytham core plot, and not from 

the exact pixels corresponding to the locations of the simulated forest plots, as the accurate 

coordinates of the plots were not available. 
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Figure 7-9. Comparison between the simulated NIR reflectance, SWIR reflectance, and NDWI, 

and the actual mean values retrieved from Sentinel-2A satellite imagery of the plot. Whiskers 

represent one standard deviation. 

7.8.2 Group 1 simulations 

Table 7-7 shows the simulated 864 nm NIR and 1613 nm SWIR reflectance, and the 

corresponding NDWI, resulting from both forest scenes.  

Table 7-7. Group 1 simulations results. The change in reflectance and NDWI was calculated in 

regard to Sim 1.1, except for Sim 1.5.  

Forest scene 1 

Sim 
NIR 

reflectance 

NIR 

reflectance 

change (%) 

SWIR 

reflectance 

SWIR 

reflectance 

change (%) 

NDWI 
NDWI 

change (%) 

1.1 0.3301 --- 0.1489 --- 0.3782 --- 

1.2 0.3364 1.9 0.1505 1.1 0.3818 1 

1.3 0.4018 21.7 0.1720 15.5 0.4004 5.9 

1.4 0.4169 26.3 0.1747 17.3 0.4093 8.2 

1.5 0.3948 - 5.3* 0.1965 12.5* 0.3354 - 18.1* 

Forest scene 2 

1.1 0.3991 --- 0.1863 --- 0.3635 --- 

1.2 0.4448 11.5 0.1977 6.1 0.3846 5.8 

1.3 0.4042 1.3 0.1876 0.7 0.3660 0.7 

1.4 0.4524 13.4 0.1991 6.9 0.3887 6.9 

1.5 0.4497 - 0.6* 0.2005 0.7* 0.3834 - 1.4* 

* Change in reflectance and NDWI was calculated in regard to the results of Sim 1.4. 
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7.8.3 Effects of the woody materials on the plot reflectance 

For forest scene 1, the results revealed that the woody materials (Sim 1.2) had made minimal 

contribution to the plot reflectance. In comparison to Sim 1.1, the plot reflectance in the NIR 

and SWIR bands, and NDWI remained almost unchanged. The negligible effects of the woody 

materials on the plot reflectance and NDWI may be a result of the missing branches and small 

twigs in the top of the canopy, in the 3D models used to build the forest scene (Figure 7-4), as 

a result of occlusion in the TLS data. In a similar study, Malenovský et al. (2008) used DART 

simulations, coupled with AISA Eagle imagery, to study the influence of woody materials on 

Norway spruce canopy reflectance, reporting that when only trunks and first order branches 

were taken into account, a negligible change (< 1 %) was observed in the canopy reflectance. 

When small branches and twigs were incorporated into the model, a decrease in the canopy 

reflectance was reported, which varied between spectral bands (2% in visible and 4% in NIR). 

Another reason may be the woody materials being occluded by the leaves in the canopy top, 

thus having a low contribution to top of the canopy reflectance, and to NDWI as a result. A 

similar observation was reported by Verrelst et al. (2010), when PROSPECT and FLIGHT 

RTM simulations were used to study the influence of woody materials on canopy reflectance 

for three coniferous plots, which varied in age and structure. It was reported that the woody 

materials’ effects were negligible in the dense, young plot, but were significant in the old-

growth plots, concluding that the woody materials’ influence must be taken into consideration 

for mature or partly defoliated forest plots. However, these studies included coniferous forest 

plots only, while this research focuses on deciduous broadleaf forest plots, for which there is a 

gap in the literature regarding the contribution of the woody materials to the plot reflectance. 

By contrast, the results obtained in forest scene 2 showed that the woody materials had some 

influence on the plot reflectance and NDWI. NIR reflectance increased by 11.5 %, while SWIR 

reflectance increased by 6.1 %, resulting in a 5.8 % increase in NDWI. Unlike forest scene 1, 

tree models used in this forest scene did not suffer from occlusion, meaning that higher order 

branches and twigs in the canopy, especially in the canopy top, were accounted for and 

modelled. This difference in the tree models used in the forest scenes can be the reason for the 

different observations obtained in the results. 

7.8.4 Effects of the understory on the plot reflectance 

The understory had a high contribution to the plot reflectance in forest scene 1 (Sim 1.3). The 

NIR and SWIR reflectance increased by 21.7 % and 15.5 % respectively, in comparison to Sim 

1.1, causing an increase in NDWI by 5.9 %. On the other hand, the understory had no effect on 
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the plot reflectance and NDWI in forest scene 2. The observed differences between the two 

forest scenes was due to the presence of canopy gaps in forest scene 1, while forest scene 2 had 

no canopy gaps, and canopy gap distribution is known to affect the contribution of understory 

to forest plot reflectance (Guyot et al., 1989; Spanner et al., 1990; Miller et al., 1997; Zarco-

Tejada et al., 2001; Rautiainen and Lukeš, 2015; Landry et al., 2018). Furthermore, forest 

scene 1 had less leaves and woody materials in the canopy top than the real forest, because of 

occlusion in the TLS data used to reconstruct the plot as previously discussed, which allowed 

more irradiance to reach the understory, which in return resulted in the understory having high 

contribution to the plot reflectance. In a similar study, Eriksson et al. (2006) used Forest 

Reflectance and Transmittance (FRT) RTM to study how understory contributed to top of the 

canopy reflectance of 20 forest stands (14 deciduous and six coniferous) in southern Sweden, 

30 m × 30 m in size each. It was reported that reflectance values varied by up to ± 18% in the 

red region and up to ± 10% in the near infrared region due to the understory. This suggested 

that the observed increase in simulated reflectance in forest scene 1 due to the understory was 

exaggerated as a result of the missing leaves and branches in the upper canopy layers. 

When the effects of woody materials and understory were combined (Sim 1.4), NDWI 

increased by 8.2 %, in comparison to Sim 1.1, in forest scene 1, and by 6.9 % in forest scene 2. 

When the understory was changed from healthy grass in Sim 1.4 to litter in Sim 1.5, NIR 

reflectance dropped by 5.3 % and SWIR reflectance increased by 12.5 % in forest scenes 1, 

causing an 18 % drop in NDWI. The NIR, SWIR, and NDWI of forest scene 2 remained almost 

unchanged. This showed that NDWI can only detect water stress in the understory if canopy 

gaps existed in the forest plot. 

More simulations are still needed, with different types of understory (understory being 

modelled as turbid cells with different dimensions, density, and optical properties), to further 

investigate the contribution of the understory to forest plot reflectance and NDWI. Additionally, 

simulations that include bare soil, or add a soil layer beneath the understory, can be used to 

study the effects of soil on reflectance. 

7.8.5 Group 2 simulations 

Table 7-8 shows the simulated SWIR reflectance in both forest scenes, whilst Table 7-9 shows 

the simulated NDWI. Sim 1.4 results were used as a reference to calculate the change in SWIR 

reflectance and NDWI. NIR reflectance was not included in the results, as it remained 

unchanged. The results revealed that the SWIR reflectance and NDWI changed considerably 
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when EWT was decreased in all canopy layers to 0.008 g cm-2 in Sim 2.1, and to 0.004 g cm-2 

in Sim 2.2, with the SWIR reflectance increasing and NDWI decreasing. Such change in NDWI 

was expected, as NDWI is very sensitive to the change in vegetation moisture content (Serrano 

et al., 2000; Jackson, 2004; Dennison et al., 2005; Chakraborty and Sehgal, 2010). 

Table 7-8. Group 2 simulated reflectance. The change in reflectance was calculated in regard 

to Sim 1.4. Blue corresponds to changing EWT to 0.008 g cm-2, whilst grey corresponds to 

changing EWT to 0.004 g cm-2.  

 Forest scene 1 Forest scene 2 

Sim 
SWIR 

reflectance 

SWIR reflectance 

change (%) 

SWIR 

reflectance 

SWIR reflectance 

change (%) 

1.4 0.1747 --- 0.1991 --- 

2.1 0.2137 22.3 0.2537 27.4 

2.2 0.2615 49.7 0.3112 56.3 

2.3 0.1786 2.2 --- --- 

2.4 0.1809 3.5 0.2087 4.8 

2.5 0.1839 5.3 0.2115 6.2 

2.6 0.1905 9 0.2194 10.1 

2.7 0.1838 5.2 0.2183 9.6 

2.8 0.1916 9.7 0.2238 12.4 

2.9 0.2072 18.6 0.2402 20.6 

2.10 0.2168 24.1 0.2255 13.3 

Table 7-9. Group 2 simulated NDWI. The change in NDWI was calculated in regard to Sim 1.4. 

Blue corresponds changing EWT to 0.008 g cm-2, whilst grey corresponds to changing EWT to 

0.004 g cm-2.  

 Forest scene 1 Forest scene 2 

Sim NDWI NDWI change (%) NDWI NDWI change (%) 

1.4 0.4093 --- 0.3887 --- 

2.1 0.3237 - 20.9 0.2831 - 27.2 

2.2 0.2319 - 43.3 0.1865 - 52 

2.3 0.4002 - 2.2 --- --- 

2.4 0.3947 - 3.6 0.3689 - 5.1 

2.5 0.3879 - 5.2 0.3629 - 6.6 

2.6 0.3728 - 8.9 0.3470 - 10.7 

2.7 0.3881 - 5.2 0.3503 - 9.9 

2.8 0.3701 - 9.6 0.3385 - 12.9 

2.9 0.3360 - 17.9 0.3075 - 20.9 

2.10 0.2864 - 30 0.3328 -14.4 
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Sim 2.3 showed that the EWT vertical heterogeneity almost had no effect on the plot reflectance 

and NDWI, both changing by 2.2%. Possible reasons for this were that the vertical 

heterogeneity was not significant enough to cause a change in reflectance and NDWI, or that 

the upper canopy layers, in which there was minimal vertical heterogeneity, dominated the plot 

reflectance. The results of simulations 2.4 to 2.9 confirmed that the top four canopy layers 

contributed the most to the plot reflectance and to the change in NDWI. For forest scene 1, 

Sim 2.4 showed that reducing EWT to 0.008 g cm-2 in the canopy layers below the top five 

layers, while leaving EWT in top five layers unchanged, increased the SWIR reflectance by 

only 3.5%, and caused NDWI to drop by 3.6%. This showed that the canopy layers below the 

top five layers made a minimal contribution to the plot reflectance and NDWI. When EWT in 

canopy layer five was reduced (Sim 2.5), the magnitude of the change in reflectance and NDWI 

increased slightly. Reducing EWT in canopy layer four (Sim 2.6) increased the magnitude of 

the change in reflectance to 9%, and that of the change in NDWI to 8.9 %. This revealed that 

reducing EWT in canopy layer four alone almost had the same effect on reflectance and NDWI 

as reducing EWT in all canopy layers below it combined. Furthermore, comparing the change 

in NDWI that was observed when all canopy layers were dried down to 0.008 g cm-2 to the 

change observed when the top four canopy layers remained healthy (20.9 % drop and 5.2 % 

drop, respectively), further showed that NDWI was mainly detecting the change in EWT in 

canopy top layers.  

Simulations 2.7 to 2.9 further confirmed this, showing that reducing EWT to 0.004 g cm-2 in 

canopy layer four alone almost had the same effect on reflectance and NDWI as reducing EWT 

in all lower canopy layers combined. The simulations also showed that when EWT in all canopy 

layers was reduced to 0.004 g cm-2, NDWI dropped by 43.3 %, while it only dropped by 9.6 % 

when the top four canopy layers remained healthy, and all the remaining canopy layers were 

dried down. Results obtained in forest scene 2 were consistent with forest scene 1 results, with 

some differences in the magnitude of the change in reflectance and NDWI, and thus only forest 

scene 1 results were discussed to avoid repetition. 

Simulations 2.4 to 2.9 assumed that a water stress started in the canopy bottom then spread 

upward, whilst the understory remained healthy, for the sake of studying the effects of reducing 

EWT in the lower canopy on the plot reflectance and NDWI. In reality, a water stress caused 

by drought conditions will also affect the understory. Sim 2.10 accounted for this, by drying all 

canopy layers below the top four canopy layers to 0.004 g cm-2, and modelling the understory 

as dry litter. The simulation was a repeat of Sim 2.8, with the only change being modelling the 
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understory as litter instead of healthy grass. Comparing the results of the two simulations in 

forest scene 1 showed that drying the understory had a significant effect on the NDWI, while it 

had a minimal effect on the NDWI in forest scene 2. As discussed in Section 7.8.4, forest 

scene 1 had less leaves and branches in the canopy top than in reality, which increased the 

contribution of the understory to the plot reflectance and NDWI, whilst Forest scene 2 was a 

more realistic representation of the forest. 

Overall, results of group 2 simulations showed that care must be taken while using spaceborne 

and airborne optical RS data to monitor forest health and early-detect the risk of wildfires, 

especially in dense forests, as the upper canopy layers, which have more moisture, were found 

to dominate the forest plot reflectance. In the case of moderately dense and open forests, NDWI 

may reflect the severity of the water stress, even if the upper canopy layers remained healthy, 

as a result of the understory contribution to the plot reflectance and NDWI. On the other hand, 

in dense forests, a spaceborne sensor will not be able to detect a severe water stress in the 

understory and lower canopy until the upper canopy layers begin to get stressed.  

The results presented in this chapter cannot be generalized until more forest plots, sensors, and 

case studies are simulated. Also, similar case studies need to be simulated using other 3D RTMs 

for cross-comparison with the results obtained from DART. The results of RTM simulations 

are very sensitive to the phase function used in single and multiple scattering of radiation in the 

canopy, and also to the number of successive orders of scattering (Widlowski et al., 2015). The 

results of the RAMI-IV experiment, in which highly realistic forest scenes were simulated, 

showed variation in the simulated spectra between the different 3D RTM models tested 

(Widlowski et al., 2013). 

7.9 Summary 

This chapter integrated the vertical heterogeneity of forest canopy EWT in the RTM DART, 

aiming at investigating how such heterogeneity would affect the forest plot reflectance and the 

NDWI. In addition, various case scenarios were simulated to study the effects of woody 

materials and understory on the plot reflectance, and also to examine how sensitive NDWI was 

to the change in the plot EWT. Simulations that included decreasing EWT in all canopy layers 

simultaneously, and others that involved drying the canopy bottom layers only, were conducted 

and compared, in an attempt to determine which canopy layers dominated the plot reflectance 

and contributed the most to the change in NDWI. Two forest scenes were used in the 

simulations, each of them representing a different forest plot in the same forest. The forest 
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scenes had different tree structure and species, and their tree 3D models were reconstructed 

from TLS data using two different approaches. The 3D leaf models of the trees were divided 

into a number of layers, with a thickness of 1 m each, in order to assign different optical 

properties to each layer, based on the EWT of it, and thus modelling the vertical variation of 

EWT in the forest plot. 

The NIR and NDWI calculated from Sentinel-2A satellite imagery showed that the simulated 

reflectance and NDWI of the two forest scenes were realistic, lying within the minimum and 

maximum values observed in the satellite imagery, and not far from the mean. Forest scene 2 

was more efficient in terms of the required processing time and computational resources. Each 

simulation required approximately six hours of processing time using forest scene 1, while the 

same simulation required approximately one hour and 15 minutes to complete using forest 

scene 2, using the same PC. 

The results of the simulations revealed that the understory had a high contribution to the forest 

plot reflectance and affected the NDWI in forest scene 1, which suffered from occlusion and 

contained canopy gaps, while it had a minimal effect on the reflectance and the NDWI in forest 

scene 2, which was a more realistic representation of the forest. These findings agreed to what 

was previously reported in the literature, and further showed that the effects of the understory 

on the forest plot reflectance must be accounted for in moderately dense and open forests. The 

woody materials had a minimal effect on the plot reflectance and NDWI in forest scene 1, 

mainly because the woody materials in upper canopy were missing from the tree 3D models 

used in reconstructing the plot. On the other hand, the woody materials had some influence on 

forest scene 2 reflectance and NDWI, but the effects were minimal in comparison to the changes 

in NDWI caused by reducing EWT. 

Modelling the vertical heterogeneity of EWT had a negligible effect on the plot reflectance, in 

comparison to assuming a uniform EWT in all canopy layers. However, it was found that this 

was caused by the top four canopy layers dominating the plot reflectance. Drying the canopy 

layers below the top four layers, while maintaining upper canopy layers healthy, changed 

NDWI in a way that did not reflect the severity of the water stress and that the lower canopy 

layers lost approximately 70 % of their EWT. This may cause misjudgements while monitoring 

the forest health, during drought conditions or in case of water stress that started in the canopy 

bottom then spread upward, caused by disease or pest invasion. The drying patterns of forest 

canopies still need to be studied using TLS to examine how the EWT vertical profiles would 
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change during drought conditions, and to investigate whether the trees would lose moisture 

equally from all canopy layers, or would attempt to maintain the upper canopy layers healthy 

to optimize photosynthesis. 

The results obtained in this chapter may be specific to the forest under study, or to the species 

in the forest, or specifically to broadleaf deciduous forests, and thus cannot be generalized, 

unless more forest types and species are studied. Also, similar case studies need to be simulated 

using other RTMs for cross-comparison with the results obtained from DART. 
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Chapter 8. Discussion and conclusions 

8.1 Research motivation 

Determining the vegetation water status can reflect the physiological status of vegetation, thus, 

it has significant importance for various agricultural and forestry applications (Peñuelas et al., 

1994; Chaves et al., 2003). It can help in early detection of vegetation stress, symptoms of 

disease, and signs of pest infestations in forests and agricultural crops (Carter, 1993; Datt, 1999; 

Trumbore et al., 2015). Additional applications in forestry include early detection of wildfire 

risk, forest fire modelling, and studying wildfire regimes (Ustin et al., 1998; Chuvieco et al., 

2004a; Danson and Bowyer, 2004; Yebra et al., 2008). Furthermore, in agricultural crops, 

monitoring vegetation water status is important for drought assessment, irrigation scheduling, 

and crop yield estimation (Peñuelas et al., 1992; Sepulcre-Cantó et al., 2006). 

Optical RS data, both spaceborne and airborne, have been widely utilized in monitoring the 

vegetation water status at a landscape level (Dash et al., 2017). Typically, canopy EWT is 

estimated directly from optical RS data and used as an early indicator of vegetation stress. 

However, the accuracy of estimating EWT from optical RS data is influenced by canopy 

structure, background soil and understory reflectance, atmosphere, and shadows (Ali et al., 

2016). Although using RTMs to estimate EWT instead of using simple vegetation indices can 

overcome these limitations, the models do not account for the vertical heterogeneity in canopy 

biophysical and biochemical traits. Such heterogeneity plays a role in the canopy reflectance, 

and ignoring it can reduce the accuracy of the estimation of vegetation biochemical traits 

(Kuusk, 2001; Wang and Li, 2013). Methods to quantify such heterogeneity are still needed. 

Also, there is a need for a fast and reliable method to measure canopy EWT in sampling plots 

that match the pixel size of satellite sensors to be used in the calibration and validation of the 

EWT estimation models. The in-situ destructive sampling approaches currently being used are 

insufficient, especially for satellites with large pixel size such as MODIS. Another limitation 

of using optical RS data to estimate EWT is that EWT cannot be measured predawn, which is 

a more reliable indicator of vegetation water status (Améglio et al., 1999). Dual-wavelength 

TLS was identified as a tool that can overcome the limitations associated with optical RS 

estimation of EWT, by providing 3D EWT estimates that can be used to study the EWT vertical 

heterogeneity. TLS can also serve as a calibration and validation tool for satellite estimation of 

EWT. In addition, EWT can be estimated both predawn and at midday, as TLS instruments are 

active sensors. 
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8.2 Revisiting research aim and objectives 

The main aim of this research was to estimate canopy EWT in 3D using commercial dual-

wavelength TLS, both in a laboratory experiment and multiple field campaigns, to quantify and 

better understand the canopy EWT vertical heterogeneity. The intensity data from 

commercially available TLS instruments, operating at NIR wavelength (the Leica P20) and 

SWIR wavelength (the Leica P40 and P50) was combined into a vegetation index (NDI), after 

developing robust methods to calibrate the intensity to apparent reflectance (Chapter 3). NDI 

was used to generate 3D canopy EWT estimates in an indoors dry-down experiment (Chapter 4) 

and four data collection campaigns. The main data collection campaign was in a mixed-species 

forest plot in Wytham Woods, Oxford, and is named hereafter as the Wytham dataset (Chapter 

5). The second data collection campaign was in a willow crop site in Newcastle University 

Cockle Park Farm in Ulgham, Northumberland, and is named hereafter as the willow dataset 

(Chapter 6). The third and fourth campaigns were carried out in a mixed-species tree plot in 

Exhibition Park, Newcastle. The plot was scanned at the end of a heatwave (August 2018) and 

two months later (October 2018), resulting in two datasets, named hereafter as Exhibition Park 

August dataset and Exhibition Park October dataset (Chapter 6). Vertical profiles of EWT were 

generated and compared within and across species. 

Additional aims included: (1) detecting EWT temporal changes in 3D, which was addressed 

using the indoors dry-down experiment (Chapter 4) and Exhibition Park datasets (Chapter 6), 

and (2) investigating how EWT vertical heterogeneity affected forest plot reflectance and 

received satellite signal, which was addressed by modelling the 3D EWT estimates of the 

Wytham dataset in the DART model (Chapter 7). Four TLS instruments were utilized in this 

study: a Leica P20 instrument, two Leica P40 instruments, and a Leica P50 instrument. This 

research had seven main objectives, which were addressed as follows: 

Objective one: to develop robust methods to calibrate the intensity data from commercially-

available TLS instruments to apparent reflectance. 

This objective was addressed in Chapter 3. The intensity – range relationship was investigated 

separately for each instrument using external reference targets with known reflectance, 

revealing that the four instruments deviated from the 1/R2 component of the laser equation. This 

was caused by the near-distance intensity reducer that aimed at protecting the optics and the on-

board range calibration adjustments that attempted to correct the intensity for the range effect 

after a specific range, which varied between the instruments. This deviation from the laser 
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equation was expected, as similar observations were previously reported for numerous 

commercial TLS instruments, e.g., the Faro LS880 and Leica HDS 6100 (Kaasalainen et al., 

2011), the Riegl LMS Z420i (Blaskow and Schneider, 2014), the Z+F Imager 5006i (Blaskow 

and Schneider, 2014; Fang et al., 2015), the Faro Focus3D 120 (Tan et al., 2016), the Riegl 

VZ400i (Xu et al., 2018), and the Riegl VZ4000 (Tan et al., 2019). As each of the four 

instruments used in this study was found to have its own unique intensity – range relationship, 

an intensity correction model was developed for each instrument separately. The intensity – 

reflectance relationship was then investigated for each instrument. This revealed non-linear 

relationships as a result of the internal adjustments performed by the instruments to alter the 

intensity values and enhance the visual appearance of the point clouds. When the raw intensity 

data were extracted from the instruments using an intensity map editor provided by the 

manufacturer, the relationship was found to be almost linear, with some slight non-linearity. 

The intensity correction models were validated using independent reference targets. The 

average error observed in all validation experiments at all ranges tested was 2.6 %, while the 

minimum and maximum average errors were 1.1 % (RMSE = 0.011) and 5.1 % 

(RMSE = 0.043) respectively. The errors observed at ranges less than 4 m, especially at 2 m 

range, were higher than all remaining ranges, with errors > 10 %. This was a result of the 

intensity correction models not being able to fully correct the intensity for the near distance 

intensity reducer effects. This must be considered if scans were planned at near ranges, or if 

objects of interest were less than 4 m away from the instrument, such as the understory 

vegetation surrounding the scanning positions in a forest plot. The accuracy of the intensity 

correction models was considered sufficient for the application, which was further confirmed 

with the high correlation obtained between NDI and EWT at leaf and canopy levels, as 

described in the upcoming sections. 

Objective two: to investigate the ability of NDI to minimize the effects of incidence angle and 

leaf internal structure without the need for further radiometric corrections. 

This objective was addressed in Chapter 3. For the incidence angle effects, eighteen leaf 

samples from six different tree species, including grey alder, common lime, common alder, 

hornbeam, poplar, and cherry, were scanned. The incidence angle was changed between 0 and 

60 degrees, with scans conducted at 20 degrees intervals, and NDI was calculated for each 

incidence angle. The incidence angle effect on each wavelength separately was severe, as the 

change in incidence angle between zero and 60 degrees reduced the SWIR reflectance by an 
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average of 47 % and the NIR reflectance by an average of 52 %. Using NDI largely minimized 

the incidence angle effects for all six species. Changing the incidence angle between zero and 

40 degrees caused an average change in NDI of 6.7 % across all leaf samples, whilst changing 

it between zero and 60 degrees caused an average change of 13.7% in the NDI. One reason for 

the more significant change in NDI at 60 degrees incidence angle was that leaves were not 

perfectly Lambertian surfaces, and the reflectance – incidence angle relationships deviated 

more from the cosine law as the incidence angle increased towards 60 degrees. 

For the same leaf samples, the change in NDI between minimum and maximum EWT values 

was 53 %. In the Wytham dataset, the change in EWT caused 79 % change in NDI, and overall 

in all leaf samples measured in this study, excluding holly leaf samples, the change in EWT 

caused a 127 % change in NDI. This showed that EWT had more significant impact on NDI 

than the remaining effects of the incidence angle. Hancock et al. (2017) reported similar 

observations for NDI of 1064 nm and 1545 nm, also observing deviations at some incidence 

angles, for instance, at 10, 40, and 60 degrees incidence angles, which was higher than the 

deviation observed at 60 degrees in this study. It was concluded that the change in NDI caused 

by the incidence angle effects was negligible in comparison to the change in NDI caused by 

EWT. However, at the canopy level in complex vegetation environments such as forests, the 

remaining effects of the incidence angle on NDI may contribute to the errors in estimating 

EWT, as the laser beams will hit the leaves at all possible incidence angles (Kaasalainen et al., 

2018). 

The ability of NDI to minimize the leaf internal structure effects was investigated by conducting 

2886 PROSPECT simulations to examine how the leaf structure coefficient (N), representing 

leaf thickness and leaf internal cellular arrangements, and LMA affected the NDI – EWT 

relationship. LMA was found to have a minimal effect on NDI, as the maximum change in 

LMA across all species examined caused only a 7 % increase in NDI. N at the canopy level was 

found to range between 1.5 and 2 for green canopies, and was ≥ 2.5 for senescent canopies, as 

shown in Figure 8-1. Increasing N between 1.5 and 2 would result in a 10 % decrease in NDI 

according to the PROSPECT simulations. As N and LMA are correlated variables, with an 

increase in N typically corresponding to an increase in LMA, their combined effects on NDI 

would be further reduced as the effects have opposite directions. However, the effects would 

not entirely cancel each other out, and N would have some remaining effects on NDI. This can 

be a factor contributing to the variation of EWT estimation errors observed at the canopy level 

in Wytham and Exhibition Park datasets. However, this did not prevent the use of a pooled 



 151 

 

EWT estimation model to successfully estimate EWT at the canopy level in mixed-species sites. 

Increasing N to 2.5 would cause a 17 % decrease in NDI, while increasing it to 3 would cause 

a 22 % decrease in NDI. Thus, species that had significantly thicker leaves than the other species 

in the plot, for instance, holly leaves in Exhibition Park dataset, needed their own NDI – EWT 

estimation model. Furthermore, an NDI – EWT relationship developed using green leaves could 

not be applied to senescent leaves. 

 

Figure 8-1. The NDI – EWT relationship for N = 1.5 (black), N = 2 (green), and N = 2.5 (blue), 

resulted from PROSPECT simulations, in addition to the NDI – EWT relationship at canopy 

level for all scanned trees in this study, excluding holly trees. 

Overall, the experiments conducted in this study showed that EWT was the main factor deriving 

the change in NDI, whilst the incidence angle and leaf internal structure remaining effects on 

NDI may affect the accuracy of EWT retrieval at the canopy level. 

Objective three: to examine the relationship between NDI and EWT at the leaf level across a 

range of species. 

This objective was addressed in Chapter 4, Chapter 5, and Chapter 6. A total of 192 leaf samples 

were collected, scanned, and their NDI and EWT measured. The samples represented thirteen 

different species as follows: snake-bark maple, grey alder, common lime, common alder, 

poplar, cherry, sycamore, oak, beech, ash, Swedish whitebeam, holly, and six varieties of 

willows. Among the 192 leaf samples, 137 leaves were green, 19 leaves were senescing, 

meaning they had started to change colour but were still relatively green (Exhibition Park 

October dataset), and 36 leaves were senescent, meaning they had already changed colour and 
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lost nutrients and chlorophyll content (willow dataset). For each individual species, moderate 

to high correlation was observed between NDI and EWT, with R2 ranging between 0.55 and 

0.94. 

For green leaves, site-specific species-independent pooled NDI – EWT models were fitted with 

high accuracy (R2 ranging between 0.88 and 0.94), in addition to a site- and species-independent 

pooled NDI – EWT model that combined all leaf samples (R2 = 0.91, Figure 6.19). This 

concurred with the results obtained from the PROSPECT simulations and showed that the 

remaining effects of leaf internal structure on the NDI – EWT relationship did not prevent 

fitting pooled NDI – EWT models with high accuracy. This suggested that the NDI – EWT 

relationship was species-independent, agreeing with the results obtained in Gaulton et al. (2013) 

for NDI of 1064 nm NIR and 1545 nm SWIR laser wavelengths. On the other hand, NDII and 

NDWI, the vegetation indices equivalent to NDI in optical RS data, have also been previously 

linked to EWT in mixed-species sites (Cheng et al., 2008a; Yilmaz et al., 2008; De Jong et al., 

2014). However, other studies highlighted that in the case of a large variation in leaf thickness 

and LMA between species, the accuracy of NDII and NDWI estimation of EWT can be 

significantly reduced (Zarco-Tejada et al., 2003; Zhang and Zhou, 2015). For NDI, this was 

observed in holly leaf samples, which was the only species that did not fit in the pooled NDI – 

EWT models. Holly leaves were clearly thicker than the leaves of the other species, and had 

145 % higher LMA than the average LMA measured for the other species in this study. In 

addition, the shiny surface of holly leaves also contributed to the deviation of the NDI – EWT 

relationship of this species from that of the other matt leaves, as Zhu et al. (2017) showed that 

at 1550 nm wavelength, shiny leaves had stronger specular reflection. The higher reflectance at 

the 1550 nm wavelength reduced the NDI and thus contributed to the deviation in the NDI – 

EWT relationship. 

The sycamore leaves diseased with powdery mildew also did not follow the NDI – EWT 

relationship of healthy leaves, and similar to holly leaves, did not fit in the pooled NDI – EWT 

models. The powdery mildew that covered sycamore leaf samples decreased the NIR 

reflectance but had a minimal effect on the SWIR reflectance, resulting in very low NDI values 

in comparison to NDI of healthy leaves. This concurred with the findings of  Yuan et al. (2014) 

for winter wheat powdery mildew. In general, diseases are known to reduce leaf reflectance in 

NIR (Nilsson, 1991), and NIR wavelengths have been adopted in detecting powdery mildew 

infections in winter wheat (Zhang et al., 2012; Yuan et al., 2014) and grape (Beghi et al., 2017). 
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However, further investigation is still needed as fungus that causes powdery mildew differs 

between plant species. 

For the senescent leaves, they did not follow the NDI – EWT relationship of green leaves, 

mainly because senescence is known to significantly change the leaf internal cell structure 

(Jacquemoud and Baret, 1990; Buchanan-Wollaston, 1997), and such changes were found to 

influence the NDI – EWT relationship, as shown in Figure 8-1. It was possible to fit site-specific 

pooled NDI – EWT models for the Exhibition Park October dataset and willow dataset 

separately, but not a site-independent pooled model that combined all senescent leaves, most 

likely because they were at different levels of senescence. 

The leaf level results obtained in this research showed that the NDI – EWT relationship was 

site- and species-independent to an extent, but highlighted that leaf surface characteristics, leaf 

senescence, and leaf thickness must be taken in consideration while deriving pooled, multi-

species NDI – EWT models. 

Objective four: to use NDI to generate 3D EWT estimates at the canopy level in a controlled 

laboratory experiment, as well as in field campaigns. 

This objective was addressed in Chapter 4, Chapter 5, and Chapter 6. Canopy EWT was 

successfully estimated in an indoors dry-down experiment and four field campaigns, with errors 

in EWT estimates for individual trees ranging between 1 % and 13.5 %. The average errors 

observed in the dry-down experiment were 2.9 % and 2.6 % for the deciduous and coniferous 

canopies respectively. The average errors obtained in the Wytham dataset, willow dataset, 

Exhibition Park August dataset, and Exhibition Park October dataset were 7.7 %, 8.9 %, 7.8 %, 

and 4.2 % respectively, using the species-specific NDI – EWT models. When the site-specific 

pooled NDI – EWT models were used, the errors were 6.3 %, 6.6 %, 4.8 %, and 5.4 % for the 

Wytham dataset, willow dataset, Exhibition Park August dataset, and Exhibition Park October 

dataset respectively. It is worth mentioning that for the willow dataset, it was not possible to 

estimate EWT on a point-by-point basis as a result of the low registration accuracy resulting 

from the strong wind on the day of the scan, and it was only possible to estimate the average 

EWT in each plot. 

The site- and species-independent pooled NDI – EWT model that combined all green leaves 

(Figure 6.19, Equation 6.22) was also successfully used to retrieve canopy EWT estimates in 

the Wytham dataset and Exhibition Park August dataset, with average errors of 6.6 % and 10 % 
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respectively. The advantage of using pooled EWT estimation models over using species-

specific models is that it does not require prior tree species classification, thus reducing the 

processing time, as a single model will be applied to the whole NDI point cloud at once. 

However, the results obtained using the site- and species-independent pooled NDI – EWT 

model showed that the NDI – EWT relationship was site-specific to an extent, as severe error 

in EWT estimation was observed in one beech tree (25 %) when the model was used, in 

comparison to a 12 % error in EWT estimation when the site-specific pooled model was used. 

As shown in Figure 8-1, this specific beech tree had the lowest EWT and the thinnest leaves 

(N < 1.5). Further experiments that include accurate measurements of leaf thickness are still 

needed to determine the boundaries outside which pooled NDI – EWT models should not be 

used. The powdery mildew that covered the leaves of sycamore trees in the Exhibition Park 

August dataset rendered this EWT estimation approach inapplicable at the canopy level as high 

error was obtained (47 %). This showed that this EWT estimation approach cannot be applied 

if leaves were covered with a material that did not affect the two wavelengths included in the 

NDI in a similar manner. However, as the diseased trees would appear as outliers in comparison 

to the healthy trees in the canopy level NDI – EWT relationship, this approach can serve as a 

fast, non-destructive method to detect diseased trees, which would be identified by their very 

low NDI values (Figure 8-2). 

 

Figure 8-2. Using NDI to detect diseased trees. The Sycamore tree, diseased with powdery 

mildew (red), had significantly lower NDI than the healthy trees. 

The errors obtained at the canopy level in the field campaigns were higher than the errors 

reported in Zhu et al. (2017) (mean error of 4.46 %), which, to our knowledge, was the only 

previous study in which 3D EWT estimates were generated at the canopy level using TLS. 
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However, the aforementioned study was conducted in controlled laboratory settings, utilized a 

single-wavelength TLS (1550 nm), required radiometric corrections for the incidence angle 

effects, and involved small, individual canopies. Junttila et al. (2019) successfully used dual-

wavelength TLS to detect European spruce bark beetle infestation symptoms in Norway spruce 

trees in field campaigns, but 3D EWT estimates at the canopy level were not generated. Overall, 

very high correlation was observed between TLS estimated canopy EWT and actual canopy 

EWT measured from destructive sampling (Figure 8-3, R2 = 0.95, RMSE = 0.0008 g cm-2). The 

results of the conifer tree in the dry-down experiment were excluded, as the tree had very high 

EWT, and including the results would have biased the regression and increased R2 to 0.99. 

Similarly, holly trees also had relatively higher EWT than all the remaining species. When holly 

trees were excluded, the correlation remained high (R2 = 0.82, RMSE = 0.0008 g cm-2). The 

accuracy of the EWT estimation at the canopy level was considered high and was comparable 

to the accuracy reported in the literature using optical RS data (R2 ranging between 0.7 and 

0.92) (Champagne et al., 2003; Zarco-Tejada et al., 2003; Cheng et al., 2008a; Yilmaz et al., 

2008). However, the accuracy of this EWT estimation approach still needs to be investigated at 

the plot level for a more accurate comparison to the accuracy of spaceborne and airborne optical 

RS estimation of canopy EWT, which will require coupling the EWT estimates with canopy 

LAI measurements. 

 

Figure 8-3. The relationship between TLS estimated canopy EWT and actual canopy EWT 

measured from destructive sampling for all trees involved in this study.  

Overall, the results obtained in this study showed that dual-wavelength TLS can successfully 

retrieve canopy EWT in field campaigns conducted in sites that were heterogeneous in terms 
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of species and canopy structure. Such heterogeneous sites are more challenging when it comes 

to estimating canopy EWT because of the variation in canopy LAI and leaf internal structure 

between species (Zarco-Tejada et al., 2003). 

Objective five: to study EWT vertical heterogeneity within canopy and determine how it varies 

across different species and also between individual trees within each species. 

This objective was addressed in Chapter 4, Chapter 5, and Chapter 6. Vertical profiles of EWT 

were generated for deciduous snake-bark maple and coniferous Corsican pine canopies in the 

indoors dry-down experiment, for twelve forest canopies from three different species in the  

Wytham dataset (sycamore, oak, and beech), and for six trees from three different species in 

the Exhibition park datasets, with vertical profiles being generated twice, once in August and 

once in October  (ash, Swedish whitebeam, and holly). Vertical heterogeneity in canopy EWT 

was observed in all twenty trees. This concurred with the findings reported in the few studies 

found in the literature that investigated the vertical distribution of EWT at the canopy level (Liu 

et al., 2015; Arellano et al., 2017; Zhu et al., 2017; Gara et al., 2018), all reporting vertical 

heterogeneity. 

One reason for the observed EWT heterogeneity was that leaves at different heights within the 

canopy contribute differently to the total canopy photosynthesis (Aber, 1979; Ellsworth and 

Reich, 1993), and trees tend to dedicate more nutrients and water to sun leaves in the canopy 

top than to the shaded leaves in the canopy bottom, to optimize photosynthesis (Hirose and 

Werger, 1987; Hikosaka, 2004). This can explain the behaviour observed in the snake-bark 

maple and Corsican pine canopies in the indoors dry-down experiment, in the twelve forest 

canopies in the Wytham dataset, and in the two ash trees in the Exhibition Park datasets, in 

which EWT was higher in the canopy top, gradually getting lower towards the canopy bottom. 

Previous studies in the literature also reported that EWT was always higher in the canopy top 

than in the canopy bottom (Liu et al., 2015; Arellano et al., 2017; Zhu et al., 2017; Gara et al., 

2018). Mooney et al. (1977) and Chavana‐Bryant et al. (2016) showed that leaf age also played 

a role in EWT distribution within a canopy, reporting that younger leaves in the canopy top had 

higher EWT than older leaves in the canopy bottom. However, the two Swedish whitebeam and 

the two holly trees in the Exhibition Park datasets showed different behaviour, as EWT was not 

always the highest in the canopy top and the lowest in the canopy bottom as observed in all 

other trees. Typically, sun leaves grow in the canopy top because the top layers of the canopy 

receive the majority of irradiance (Chazdon and Fetcher, 1984). However, in the Exhibition 
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Park tree plot, there was a wide gap in the canopy in the middle of the plot, thus sun leaves were 

not necessarily in the canopy top only, depending on how the trees were illuminated. 

The EWT vertical profiles observed could also be a result of the LMA distribution within the 

canopy, as EWT and LMA were found to be highly correlated in the destructive sampling 

conducted in Chapter 5, suggesting that a leaf with higher LMA, typically thicker, would be 

able to hold more moisture than a thinner leaf of the same species. This agreed with the findings 

of  Junttila et al. (2019), also reporting high correlation between EWT and LMA at the leaf 

level. Arellano et al. (2017) and Gara et al. (2018) showed that EWT and LMA vertical profiles 

showed similarities, with canopy layers with higher LMA having higher EWT. This can again 

be related to the illumination conditions and the distribution of sun/shade leaves within the 

canopy, as sun leaves are typically thicker and have higher LMA than shade leaves 

(Lichtenthaler et al., 1981). 

Objective six: to investigate the potential of using TLS to detect temporal changes in EWT due 

to drought conditions. 

This objective was addressed in Chapter 4 with an indoors dry-down experiment and in 

Chapter 6 with the Exhibition Park August and October datasets. In the dry-down experiment, 

TLS was able to detect the change in EWT over a period of eight days for the deciduous snake-

bark maple tree and over a period of nine days for the coniferous Corsican pine tree, while the 

trees were drying naturally. TLS estimated a 15 % drop in EWT between the first and last days 

of the experiment for the deciduous tree, and a 3.4 % decrease in EWT for the conifer tree. 

Furthermore, TLS could detect the daily change in EWT for the deciduous tree, showing that 

the tree lost approximately 3.7 % EWT per day in the first two days of the experiment, and 

1.6 % EWT per day in the remaining five days. The ability of TLS to detect such fine changes 

in EWT suggested that there could be a potential in using TLS to detect canopy EWT changes 

throughout the day, and compare predawn EWT to midday EWT to quantify how much 

moisture plants lose during photosynthesis. Spaceborne and airborne optical RS sensors can 

neither measure such fine changes in EWT because of their temporal resolution limitations, nor 

can they provide predawn EWT estimates. Also, determining the predawn vegetation water 

status by measuring predawn leaf water potential using a pressure chamber is a very challenging 

process if the aim was to determine the water status of a large number of plants (Vila et al., 

2011), and TLS can be a more efficient alternative approach. 
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Although the measured daily change in EWT in the dry-down experiment was less than the 

errors observed in canopy EWT estimates in the field campaigns, this did not necessarily 

indicate that TLS cannot detect the fine changes in EWT in outdoors conditions. For instance, 

scanning a forest plot predawn and rescanning it at midday, from the exact same scanning 

positions and in non-windy conditions, can theoretically lead to similar errors in canopy EWT 

estimates predawn and midday, which can lead to accurate detection of the EWT fine changes. 

This has not been tested in this study, and although the ability of TLS to detect EWT temporal 

changes in outdoors conditions was examined in the Exhibition Park datasets, the experiment 

involved green and senescent leaves, which required the use of two different EWT estimation 

models to account for the significant changes in leaf internal structure. This reduced the 

accuracy of detecting the change in EWT and thus the results obtained could not be considered 

a reference to determine the ability of TLS to measure EWT fine changes. 

In the Exhibition Park datasets, the errors in EWT estimates in the August dataset (average error 

of 4.8 %) were less than the errors in the October dataset (average error of 5.4 %), which could 

have been a result of leaf senescence. The effect of senescence on leaf internal structure is 

known to vary between species, and can also vary between leaves from the same species if they 

were at different levels of senescence (Buchanan-Wollaston, 1997). Thus, it can be more 

challenging to build a NDI – EWT model that can accurately represent all levels of senescence 

in the plot. Another source of errors was the wind effect, as there was a gentle breeze in October 

during the scan.  

The change in EWT between August and October was detected for seven trees from four 

different species: ash, Swedish whitebeam, beech and holly. The results showed that the 

direction and magnitude of the change in EWT was successfully characterized using TLS. This 

showed the potential of this method to be used in detecting the impact of drought on vegetation. 

With the very high temporal resolution of TLS, being independent of solar illumination or 

limited by cloud coverage, it can be used to fill the gaps in time series produced from optical 

RS data. The accuracy of detecting the change in EWT appeared to be mainly a function of the 

EWT estimation errors on both dates. An overestimation or underestimation of EWT in both 

dates, with similar magnitude of errors, produced the most accurate estimation of the change in 

EWT. A higher magnitude of error in one dataset than in the other, or overestimating EWT in 

one dataset and underestimating it in the other, resulted in less accurate estimates of the change 

in EWT. 
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Objective seven: to develop methods to utilise the 3D EWT estimates in the DART model and 

simulate the effects of EWT vertical heterogeneity on satellite signal. 

This objective was addressed in Chapter 7. Two forest plots were reconstructed in the DART 

model, based on TLS data collected in Wytham Woods: a mixed-species oak and sycamore 

plot, named hereafter as forest plot 1, and a mixed-species sycamore, ash, and hazel plot, named 

hereafter as forest plot 2. Forest plot 1 was reconstructed using the leaf-on TLS point clouds 

collected in the Wytham dataset, thus there were missing leaves and wood components in the 

canopy top as a result of occlusion. Forest plot 2 was reconstructed from leaf-off scans 

conducted with a  Riegl VZ-400 TLS instrument, which was used to build the wood component 

3D models, then a leaf insertion algorithm was used to add leaves to the 3D models, based on 

leaf-on scans conduced with the same instruments (full details in Calders et al. (2018)). 

Simulations were carried out to investigate which canopy layers dominated the forest plot 

reflectance by assuming equal EWT in all canopy layers, then reducing EWT in canopy bottom 

layers only while maintaining EWT constant in canopy top layers. This was achieved by 

splitting each tree model as a number of horizontal layers, and assigning different optical 

properties to each layer separately. Sentinel-2A NIR and SWIR bands were simulated, and 

NDWI was calculated for each case study. The results obtained in the two forest plots revealed 

that the plot reflectance, NDWI, and the change in NDWI, were dominated by the reflectance 

from the top four meters of canopy. Reducing EWT in all canopy layers by 70 %, simulating a 

severe drought condition, caused a 52 % drop in NDWI, which reflected the severe vegetation 

water stress. However, reducing EWT by 70 % in all layers below the top four metres of canopy, 

whilst the top four metres maintained the high EWT values, resulted in only a 13 % drop in 

NDWI, which may not indicate that the forest plot was at risk of wildfire. 

Furthermore, comparing the simulated reflectance and NDWI when EWT was equal in all 

canopy layers to the simulated reflectance and NDWI when the actual EWT vertical profile was 

used showed that the EWT vertical heterogeneity had no effect on the satellite-measured 

reflectance or NDWI. This was a result of the majority of the plot reflectance resulting from the 

top four metres of the canopy, in which there was minimal vertical heterogeneity. It is worth 

mentioning that drying the canopy bottom layers only while maintaining the canopy top layers 

healthy did not necessarily represent the real drying patterns of trees during drought conditions, 

which still needs to be examined in forest canopies. Overall, the simulations showed that care 

must be taken while using spaceborne optical RS data in monitoring forest health and early-
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detection of wildfire risk, especially in dense forests, as the upper canopy layers, which have 

more moisture, were found to dominate the forest plot reflectance. In dense forests, a 

spaceborne sensor will not be able to detect severe water stress in the understory and lower 

canopy until the upper canopy layers begin to get stressed. However, more 3D RTMs still need 

to be tested, as the results of RTM simulations are very sensitive to the phase function used in 

single and multiple scattering of radiation in the canopy, and also to the number of successive 

orders of scattering (Widlowski et al., 2015). The results of the RAMI-IV experiment showed 

variation in the simulated spectra between the different 3D RTM models tested (Widlowski et 

al., 2013). 

Additional aims of the simulations were to study the influence of woody materials and 

understory vegetation on the forest plots reflectance. It was found that the woody materials had 

no contribution to the plots’ reflectance and NDWI in forest scene 1, most likely because the 

woody materials in the upper canopy were missing as a result of occlusion, while the woody 

materials had some influence on the reflectance and NDWI in forest scene 2. This agreed with 

the results of DART simulations conducted in Malenovský et al. (2008), and FLIGHT RT 

simulations conducted in Verrelst et al. (2010), with both reporting that the woody materials 

had a low effect on the forest plot reflectance, and the latter showing that the effects increased 

in old, open forest canopies. The understory had some effects on forest plot 1 reflectance, as 

the plot had some canopy gaps, in addition to the missing leaves in the canopy top layers that 

allowed more irradiance to reach the understory. On the other hand, the understory had minimal 

effects on forest plot 2 reflectance, as the plot had no gaps and also did not suffer from 

occlusion. This agreed to with what has been previously reported in the literature that tree 

density and canopy gap distribution determined the contribution of understory to forest plot 

reflectance (Guyot et al., 1989; Spanner et al., 1990; Miller et al., 1997; Zarco-Tejada et al., 

2001; Rautiainen and Lukeš, 2015; Landry et al., 2018). 

8.3 Suggestions for future research directions 

Towards using TLS to quantify other vegetation water status metrics: 

This study showed that canopy EWT can be retrieved successfully in 3D using dual-wavelength 

TLS data. The 3D EWT estimates can then be used to retrieve other key vegetation water status 

metrics. As shown in Chapter 7, tree 3D models can be generated from TLS point clouds and 

used to estimate canopy LAI. Previous studies in the literature also showed that canopy LAI 

can be successfully estimated from TLS data (Moorthy et al., 2008; Antonarakis et al., 2010; 
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Zheng et al., 2013; Vincent et al., 2015; Meng et al., 2019). Combining the 3D EWT estimates 

with LAI measurements can lead to estimating canopy water content (kg m-2), as CWC is the 

product of EWT and LAI. The CWC estimated from TLS is expected to better-represent the 

whole canopy than that retrieved from optical RS data, as it is based on 3D EWT estimates. 

Tree 3D models generated from TLS point clouds can also be used to estimate the total leaf 

surface area in each canopy layer. Coupling the EWT vertical profiles with the leaf surface area 

estimates can lead to quantifying the water content in each canopy layer (kg), which allows the 

characterization of whole-tree leaf water status and total water content (kg). 

Furthermore, this research focused only on studying the relationship between NDI of laser 

wavelengths and leaf moisture content. Expanding this to include wood moisture content can 

lead to the use of TLS to estimate both leaf and wood water content, if a relationship between 

NDI and wood moisture content can be established. This can lead to estimating the total 

vegetation water content (kg m-2) from TLS data. VWC is a different water status metric to 

CWC, as the former can be used in retrieving soil moisture content under vegetation from active 

and passive microwave remote sensing (Njoku and Entekhabi, 1996; Yilmaz et al., 2008), while 

the latter is a vegetation stress indicator and a parameter of interest in studying the water cycle 

and its role in the global climate change (Clevers et al., 2010; Mendiguren et al., 2015). CWC 

represents the total moisture content in canopy per unit ground surface area, while VWC 

represents the total moisture content in leaves, branches and stems per unit ground surface area. 

However, it is expected that this method may be able to only detect moisture in the surface and 

outer layer of stems and branches, and not to quantify total moisture in wood components. In 

vegetation with small stems filled with watery sap, such as the willow plots scanned in this 

study, this method may be able to better-quantify the wood moisture content. 

EWT vertical profiles can also represent the vertical heterogeneity in LMA (g cm-2), as EWT 

was found to be highly correlated to LMA in this study and also in Junttila et al. (2019). The 

EWT – LMA relationship can be used to generate 3D LMA point clouds from the 3D EWT 

estimates, but the accuracy of the estimation may be of concern as the errors will accumulate. 

Although LMA is not a water status metric, it is an important trait in plant growth rate 

(Gutschick and Wiegel, 1988; Poorter et al., 2009). Another metric that is correlated to EWT 

and LMA is FMC (%), which can be estimated as EWT divided by LMA. Coupling the 3D 

EWT estimates retrieved from TLS with LMA measurements retrieved from field spectroscopy, 

destructive sampling, or hyperspectral imagery, can lead to estimating FMC in 3D. Studying 

FMC distribution in 3D may lead to a better characterization of forest fire ignition and 
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propagation, as FMC in each canopy layer can be quantified. The results obtained in this 

research showed that NDI can be used to estimate FMC directly, but also highlighted that the 

NDI – FMC relationship was species-specific and highly influenced by the variation in LMA, 

and testing this approach in a real forest environment is still needed. Figure 8-4 summarizes the 

different metrics that can be retrieved from the 3D EWT point clouds. 

 

Figure 8-4. Retrieving other vegetation water status metrics and LMA from the 3D EWT point 

cloud.  

Towards improving the accuracy of EWT estimation from optical RS data: 

In this study, although the TLS data were collected at the plot level, EWT was studied at leaf 

and canopy levels only, and the understory was excluded during the point cloud processing to 

reduce computational time. Estimating EWT at the plot level can allow a direct comparison 

with EWT estimates retrieved from spaceborne and airborne optical RS data. By generating 3D 

EWT estimates at the plot level in forest plots that correspond to specific pixels in the satellite 

imagery, TLS can provide ground truth data to validate the satellite estimation of EWT. 

Furthermore, the 3D EWT estimates allow the study of the EWT distribution separately in each 

component of the plot: in the understory, in the whole canopy excluding the woody materials, 

and in each canopy layer, and thus can be used to study how EWT of these different components 

contributes to the EWT estimated from optical RS data per pixel. The radiative transfer 

modelling conducted in this study showed that the upper canopy was the main component that 
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dominated the forest plot reflectance and the change in NDWI, but a direct comparison between 

TLS estimated EWT and satellite estimated EWT is still needed. With this achieved, TLS can 

then serve as a tool to calibrate the satellite estimated EWT by excluding the understory and 

woody materials’ influence on the estimation, aiming at a more accurate estimation of canopy 

EWT from spaceborne and airborne imagery. 

Towards improving spaceborne sensors early-detection of forest stress and wildfire risk: 

The results obtained from the DART simulations conducted in this study revealed that the 

canopy top layers (top four meters) dominated the forest plot reflectance in the two plots 

examined. This suggested that spaceborne sensors can monitor the water status of canopy top 

layers only, and that the water status metrics estimated from optical RS data may not necessarily 

represent the whole canopy. For instance, the results of the simulations suggested that using 

Sentinel-2 imagery to estimate EWT in the two forest plots simulated would result in an 

overestimation of EWT, because the majority of the received satellite signal came from the 

canopy top, which has higher EWT than the canopy bottom according to the EWT vertical 

profiles generated from TLS. However, the EWT vertical profiles can be used to expand the 

satellite estimation of EWT to include lower canopy layers as well as upper canopy layers. 

Figure 8-5 demonstrates the use of TLS to expand the satellite estimation of EWT in the forest 

plot scanned in the Wytham dataset. Although EWT vertical profiles cannot be generated in 

forest plots corresponding to every pixel in the satellite imagery, generating EWT vertical 

profiles in multiple plots in the same forest may be sufficient to represent the EWT vertical 

heterogeneity in the forest. However, the plots must represent the different species in the forest. 
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Figure 8-5. The use of EWT vertical profiles generated from TLS to determine EWT reduction 

coefficients that can be used to retrieve EWT of lower canopy layers from EWT of canopy top 

layers, estimated from optical RS data. Additional layers can then be added to the 2D EWT 

distribution map generated from the satellite imagery, with each layer representing EWT in a 

lower canopy layer.  

During drought conditions, trees were found to lose water content unequally from different 

canopy layers, as shown in the EWT vertical profiles generated in the indoors dry-down 

experiment and in the Exhibition Park datasets. Although the temporal changes in EWT vertical 

profiles still need to be examined in forest canopies, it is expected that during drought 

conditions trees may attempt to maintain healthy canopy top layers and will most likely lose 

more moisture from canopy bottom layers. This is because in a forest, canopy top leaves are 

typically sun leaves (Chazdon and Fetcher, 1984), and trees tend to dedicate more nutrients and 

water to sun leaves to optimize photosynthesis (Hirose and Werger, 1987; Hikosaka, 2004). In 

the case of forest canopies losing more moisture from lower canopy layers than from upper 

canopy layers during a drought, a satellite sensor may not be able to detect the water stress that 

started in the canopy bottom. Using TLS to study the drying patterns of forest canopies and 

how the trees react to drought conditions and redistribute the resources to different canopy 

layers can help addressing this limitation. EWT vertical profiles generated during drought 

conditions can quantify  how much moisture was lost from the different canopy parts, then used 

to expand the satellite estimation of EWT to account for the water stress in lower canopy layers, 

if any (Figure 8-5). The threshold used in early-detection of wildfire risk using a satellite sensor 
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can then be adjusted to include the lower EWT in canopy bottom layers, which may improve 

the decision making during heatwaves and droughts. 

Towards the use of dual-wavelength TLS in vegetation health monitoring  

This study showed that dual-wavelength TLS can provide 3D EWT estimates at the canopy 

level in mixed-species vegetation sites (forest and urban park tree plots) using general, site-

specific, species-independent EWT estimation models. It was also possible to develop a site- 

and species-independent general model that was successfully applied in the forest and urban 

park tree plots and achieved EWT estimation accuracy close to that achieved using the site-

specific models. This was mainly because the leaf structure coefficient (N) of the species 

involved in this study ranged between 1.5 and 2, according to the PROSPECT simulations, and 

the general EWT model was calibrated using leaf samples that covered this range. This 

suggested that the general EWT model derived in this study can be used to estimate canopy 

EWT at the plot and landscape levels in mixed-species deciduous woodlands. Species 

classification and species-specific models will not be needed, as long as the species present in 

the site have N values ranging between 1.5 and 2. The leaf samples collected in this study from 

11 deciduous species were all found to be in this range of N values, further indicating that the 

developed model can be considered a general EWT model for deciduous species. The model 

can be further improved by adding more species to the calibration data, and also by adding more 

leaf samples in the low EWT region (less than 0.009 g cm-2). However, it was not possible to 

use the general EWT model to estimate EWT for holly trees, which had thick leaves with waxy, 

glossy surfaces (N > 2 according to PROSPECT simulations). Thus, in mixed-species sites, the 

presence of trees from species that have significantly thicker leaves than those used in 

calibrating the model (N > 2) can complicate the use of this method at the landscape level. Such 

trees will require their own EWT estimation model and must be identified and segmented in the 

point cloud. Leaf sampling will also be needed to build the species-specific models.  

One solution for this issue is to use the NDI values to auto-detect trees in the point cloud, if 

any, that have N > 2, as such trees will have significantly higher NDI values than the other 

species, making them appear as statistical outliers. For instance, NDI values of all trees scanned 

in this study, both in the forest and urban park tree plots, ranged between 0.17 and 0.42, with 

mean NDI of 0.26 and standard deviation of 0.044. Using the mean and standard deviation, 

holly trees can be auto-detected in the point cloud by using a threshold of the mean + one 

standard deviation (the threshold = 0.3, NDI of holly = 0.42, highest NDI in all other 
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trees = 0.29). Afterwards, the general EWT model can be applied to all trees in the point cloud, 

while the species-specific model can be applied to the auto-detected holly trees. To further 

automate the process, general EWT estimation models derived from PROSPECT simulations 

can be used instead of those derived from destructive sampling. An EWT estimation model 

corresponding to N of 1.7, derived from PROSPECT simulations, can be used as a general 

model for the species that have N values between 1.5 and 2. Furthermore, it was observed that 

forest canopies had thicker leaves than tree canopies in the urban park tree plot, even if they 

were from the same species. For instance, beech leaf samples collected from the forest plot 

were thicker than those collected from the beech tree in the urban park tree plot (Figure 8-1). 

Thus, the use of general EWT models based on habitat type can further improve the accuracy 

of the EWT estimation. The PROSPECT simulations suggested that an EWT model 

corresponding to N of 1.5 can represent deciduous broadleaf canopies in urban tree plots, and 

a general model corresponding to N of 1.8 can be suitable for deciduous broadleaf trees in 

woodlands. A general EWT model corresponding to N of 2.3 can be used for species with thick 

leaves (N > 2), such as holly, as the highest value of N for non-senescent, dicot leaves is 2.5 

(Jacquemoud and Baret, 1990). Table 8-1 shows the suggested general EWT models derived 

from the PROSPECT simulations. Figure 8-6 shows the processing steps to generate the 3D 

EWT point clouds.  

 Table 8-1. General EWT estimation models based on the PROSPECT simulations.  

Habitat Species N EWT estimation model 

Urban tree 

plot 

Beech 

Swedish Whitebeam 

Ash 

Snake-bark maple 

Lime 

Grey Alder 

Common Alder 

Poplar 

1.5 EWT (g cm-2) = 0.0690 × NDI – 0.0077 

Deciduous 

woodland 

Sycamore 

Oak 

Beech  

Ash 

1.8 EWT (g cm-2) = 0.0733 × NDI – 0.0076 

Urban tree 

plot 
Holly 2.3 EWT (g cm-2) = 0.0794 × NDI – 0.0074 

General 

model 
Deciduous 1.7 EWT (g cm-2) = 0.0720 × NDI – 0.0076 

General 

model 

Species with thick 

leaves (N > 2) 
2.3 EWT (g cm-2) = 0.0794 × NDI – 0.0074 
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Figure 8-6. A flowchart of the LiDAR data processing pipeline to generate 3D EWT point 

clouds in mixed-species sites using the general EWT estimation models derived from 

PROSPECT simulations. 

The aforementioned approach and the general EWT estimation models described in Table 8-1 

still need to be tested by reprocessing the point clouds collected in this study and comparing 

the accuracy achieved using the site-specific models, derived from destructive sampling, and 

that achieved using the general EWT models derived from the PROSPECT simulations. 

Furthermore, general EWT models still need to be developed for coniferous species, and 

transferring the models suggested in Table 8-1 to other types of forests (boreal forests and 

tropical rainforests) also needs to be examined.       

The use of general EWT models, being independent of species and transferable to different 

sites, can make dual-wavelength TLS a useful tool for operational landscape-scale EWT 

estimation in mixed-species vegetation areas, with no need for a prior knowledge of the species 

present in the site. Time series of the change in EWT can be produced at much higher temporal 

resolution than spaceborne sensors. For instance, during drought conditions, the daily change 

in EWT can be monitored, with the potential to even detect the changes in EWT throughout the 

day. As the EWT estimates are provided in 3D, the change in EWT vertical profiles can be 

observed, and trees reaction to drought conditions, regarding how they redistribute water and 

resources, can be studied at very high spatial and temporal resolutions. However, one challenge 

associated with the use of TLS to estimate EWT at the landscape level is the scan time required 

to cover large areas of vegetation. For instance, applying this method to generate 3D EWT 

estimates in a one-hectare forest plot, using 20 m × 20 m scan grid and 3 mm point spacing, 

would require at least 25 hours of scanning (5 days of scanning, 5 hours per day). This would 

reduce the temporal resolution of the time series of the change in EWT produced for such large 
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areas, which may also be further reduced because of the wind effects, as scans cannot be 

conducted in windy conditions. The scanning time can be reduced by increasing the point 

spacing (reducing the scan resolution) or increasing the scan grid size. However, at the 

landscape level, TLS can only be suitable for detecting the weekly or monthly changes in EWT, 

depending on the size of the area to be scanned. Scanning only a set of plots that represent the 

different species in the site can be more useful, as these plots can be scanned daily and the rapid 

changes in EWT can be monitored. Another factor that needs to be taken in consideration while 

applying this approach at the plot and landscape levels is the effect of the variation of the canopy 

LAI in heterogeneous sites. Although the use of a vegetation index can be sufficient to reduce 

the effects of incidence angle, leaf internal structure, and leaf BRDF, canopy LAI can influence 

the accuracy of the EWT estimation using vegetation indices. Thus, at the plot and landscape 

levels, LAI measurements are needed, and canopy EWT should be quantified as the product of 

EWT and LAI.   

Towards the use of dual-wavelength airborne LiDAR in vegetation health monitoring 

Recently, the Optech Titan (Teledyne Optech) multispectral airborne LiDAR sensor was 

launched, being the first multispectral LiDAR system commercially available. The system 

collects data in three channels, employing 1550 nm SWIR, 1064 nm NIR, and 532 nm visible 

wavelengths. Channels 1 and 2 have similar beam divergence (0.35 mrad), and also have similar 

wavelengths to those utilized in the DWEL and SALCA dual-wavelength TLS systems, which 

have been previously linked to EWT.  Thus, the system has the potential to provide 3D EWT 

estimates at the landscape level, if the point clouds from the two different channels could be 

accurately aligned. Similar to TLS, the use of airborne LiDAR in EWT estimation at the 

landscape level in mixed-species woodlands can be complicated by the presence of species with 

significantly thicker leaves than the other species in the site, preventing the use of general EWT 

estimation model derived from destructive sampling. Unlike TLS, airborne LiDAR data 

collection does not require accessing the forest, making it more feasible for woodlands with 

limited or no accessibility. However, this also limits the amount of information obtainable about 

the species present in the woodland, making identifying the trees with thicker leaves more 

challenging. In this case, the EWT estimation models presented in Table 8-1, and the processing 

steps shown in Figure 8-6, can be used, without the need for accessing the woodland to collect 

leaf samples to build EWT estimation models, or to identify species with significantly thicker 

leaves. However, further investigation is still needed for senescent leaves, as it was found in 

this study that the level of senescence affected the EWT estimation model and prevented the 
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develop of site- and species-independent EWT estimation model. It was found that a general 

EWT model with N of 2.5 can represent the senescent trees in the urban park tree plot. However, 

the model did not represent the NDI – EWT relationship for the willow plots, and site-specific 

models were mandatory in this case.   

Overall, this study showed the potential of using commercially-available TLS instruments to 

provide important insights into the EWT distribution within canopy, by mapping the EWT at 

canopy level in 3D. The proposed approach can serve as a powerful tool to study the variation 

of EWT within the canopy and between different species, can provide high spatial and temporal 

EWT estimations, is independent of the cloud coverage and solar illumination, and has the 

potential to estimate EWT predawn. This approach can also be used in detecting temporal 

changes in EWT, showing how the vertical profiles of EWT change during drought conditions, 

and how trees redistribute water and resources to cope with the water deficiency. Being the first 

study to successfully map canopy EWT in 3D in forest and urban park tree plots, and to provide 

detailed vertical profiles of canopy EWT, the method proposed in this study can help fill the 

gap in the literature regarding quantifying and studying the vertical heterogeneity in canopy 

biochemistry. This study showed that canopy EWT varied vertically. It was always higher in 

the canopy top (sun leaves) than in the canopy bottom (shade leaves) in forest canopies, while 

this was not the case in the urban part tree plot, where different species and different trees within 

each species had different EWT vertical profiles. It was found that the EWT vertical profiles 

seemed to be affected by the illumination conditions and the location of sun and shade leaves 

layers in the canopy. EWT and LMA were found to be highly correlated, which affected the 

EWT distribution within the canopy, as leaves with higher LMA, typically thicker, held more 

moisture than thinner leaves. Other key findings were that trees did not lose moisture equally 

from all the canopy layers while being water-stressed, and that they seemed to attempt to 

maintain EWT in sun leaf layers unchanged, while losing more moisture from shade leaf layers. 

This study also introduced a method to integrate the vertical heterogeneity in canopy 

biochemistry into 3D radiative transfer modelling by utilizing the EWT vertical profiles 

retrieved from TLS into the DART 3D RTM. The simulations showed that the upper canopy 

layers dominated the forest plot reflectance and that the spaceborne sensor was not able to detect 

severe water stress in the bottom canopy layers. This suggested that spaceborne optical sensors 

can monitor the change in EWT in the canopy top layers only, which should be taken into 

consideration while monitoring forest health during drought conditions. This can improve the 

decision making regarding preventing and fighting forest wildfires.  
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The method proposed in this study can be improved by coupling TLS data with in situ 

multispectral or hyperspectral data in order to quantify the LMA distribution within the canopy 

and establish relationships between the EWT and LMA distribution. Furthermore, chlorophyll 

content can be estimated using the multispectral or hyperspectral data, and the relationship 

between EWT and chlorophyll content vertical profiles can be studied, especially during 

drought conditions. The tree 3D models generated in this study, and used in the radiative 

transfer modelling, can be improved by coupling the TLS data with airborne LiDAR data to 

reduce the effects of occlusion. The tree 3D models were used to estimate canopy LAI, and in 

situ measurements of LAI using hemispherical imagery or litter traps are needed to evaluate 

this LAI estimation method. Also, the radiative transfer modelling conducted in this study, 

despite the results being close to those obtained from actual satellite data, can be improved by 

collecting leaf spectra of the understory vegetation in the forest plots and model the understory 

as turbid medium. The results are also expected to improve, especially in the NIR reflectance 

region, if TLS and airborne LiDAR data are used to reconstruct the forest plot, as the canopy 

LAI will be more realistic. Finally, this study utilized single-wavelength, commercial TLS 

instruments as no commercial multispectral TLS systems have yet become available. Although 

it showed that combining data from two commercially-available TLS systems can be an 

alternative to commercial multispectral TLS systems, the TLS instruments used in this study 

were pulsed systems. Commercial, full-waveform multispectral TLS systems, if developed, 

have the potential to provide more information about the canopy structure and biochemistry, 

especially inside the canopy. Next steps include combining the EWT vertical profiles with the 

canopy LAI in order to quantify the water content (g) in each canopy layer and characterise the 

whole-tree leaf water status and total water content, and applying the method predawn to 

examine its potential in measuring the predawn canopy EWT.  

8.4 Conclusions 

This research showed the potential of commercial dual-wavelength TLS as a powerful tool to 

monitor vegetation water status by estimating canopy EWT in three dimensions. Key findings 

of this study were: (1) EWT exhibited vertical heterogeneity within canopy, which varied 

between species, sites, and individual trees, (2) trees were found to lose moisture content 

unequally from different canopy layers during drought conditions, (3) forest plot reflectance 

was dominated by canopy top layers, and severe water stress that started in lower canopy was 

not detected by the satellite sensor until it affected the top four metres of canopy. The presented 

method can help improve understanding of 3D biochemistry and resource allocation in trees, 
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and provide new insights into how trees react to heatwaves and droughts. The method can also 

provide EWT vertical profiles and allow the study of their temporal changes, and such 

measurements cannot be obtained using optical RS spaceborne and airborne sensors. EWT 

estimates retrieved from TLS can fill the gaps in the time series of EWT temporal changes 

produced from optical RS data. The proposed method also has the potential to be used to 

calibrate and validate the optical RS estimates of EWT, and to provide EWT estimates predawn. 
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