654 research outputs found

    A Climatology of Disdrometer Measurements of Rainfall in Finland over Five Years with Implications for Global Radar Observations

    Get PDF
    To improve the understanding of high-latitude rain microphysics and its implications for the remote sensing of rainfall by ground-based and spaceborne radars, raindrop size measurements have been analyzed that were collected over five years with a Jossā€“Waldvogel disdrometer located in JƤrvenpƤƤ, Finland. The analysis shows that the regional climate is characterized by light rain and small drop size with narrow size distributions and that the mutual relations of drop size distribution parameters differ from those reported at lower latitudes. Radar parameters computed from the distributions demonstrate that the high latitudes are a challenging target for weather radar observations, particularly those employing polarimetric and dual-frequency techniques. Nevertheless, the findings imply that polarimetric ground radars can produce reliable ā€œground truthā€ estimates for space observations and identify dual-frequency radars utilizing a W-band channel as promising tools for observing rainfall in the high-latitude climate.Peer reviewe

    Radar multi-sensor (RAMS) quantitative precipitation estimation (QPE)

    Get PDF
    Includes bibliographical references.2015 Summer.Quantitative precipitation estimation (QPE) continues to be one of the principal objectives for weather researchers and forecasters. The ability of radar to measure over broad spatial areas in short temporal successions encourages its application in the pursuit of accurate rainfall estimation, where radar reflectivity-rainfall (Z-R) relations have been traditionally used to derive quantitative precipitation estimation. The purpose of this research is to present the development of a regional dual polarization QPE process known as the RAdar Multi-Sensor QPE (RAMS QPE). This scheme applies the dual polarization radar rain rate estimation algorithms developed at Colorado State University into an adaptable QPE system. The methodologies used to combine individual radar scans, and then merge them into a mosaic are described. The implementation and evaluation is performed over a domain that occurs over a complex terrain environment, such that local radar coverage is compromised by blockage. This area of interest is concentrated around the Pigeon River Basin near Asheville, NC. In this mountainous locale, beam blockage, beam overshooting, orographic enhancement, and the unique climactic conditions complicate the development of reliable QPE's from radar. The QPE precipitation fields evaluated in this analysis will stem from the dual polarization radar data obtained from the local NWS WSR-88DP radars as well as the NASA NPOL research radar

    The GPM GV Program

    Get PDF
    We present a detailed overview of the structure and activities associated with the NASA-led ground validation component of the NASA-JAXA Global Precipitation Measurement (GPM) mission. The overarching philosophy and approaches for NASAs GV program are presented with primary focus placed on aspects of direct validation and a summary of physical validation campaigns and results. We describe a spectrum of key instruments, methods, field campaigns and data products developed and used by NASAs GV team to verify GPM level-2 precipitation products in rain and snow. We describe the tools and analysis framework used to confirm that NASAs Level-1 science requirements for GPM are met by the GPM Core Observatory. Examples of routine validation activities related to verification of Integrated Multi-satellitE Retrievals for GPM (IMERG) products for two different regions of the globe (Korea and the U.S.) are provided, and a brief analysis related to IMERG performance in the extreme rainfall event associated with Hurricane Florence is discussed

    Frequency diversity wideband digital receiver and signal processor for solid-state dual-polarimetric weather radars

    Get PDF
    2012 Summer.Includes bibliographical references.The recent spate in the use of solid-state transmitters for weather radar systems has unexceptionably revolutionized the research in meteorology. The solid-state transmitters allow transmission of low peak powers without losing the radar range resolution by allowing the use of pulse compression waveforms. In this research, a novel frequency-diversity wideband waveform is proposed and realized to extenuate the low sensitivity of solid-state radars and mitigate the blind range problem tied with the longer pulse compression waveforms. The latest developments in the computing landscape have permitted the design of wideband digital receivers which can process this novel waveform on Field Programmable Gate Array (FPGA) chips. In terms of signal processing, wideband systems are generally characterized by the fact that the bandwidth of the signal of interest is comparable to the sampled bandwidth; that is, a band of frequencies must be selected and filtered out from a comparable spectral window in which the signal might occur. The development of such a wideband digital receiver opens a window for exciting research opportunities for improved estimation of precipitation measurements for higher frequency systems such as X, Ku and Ka bands, satellite-borne radars and other solid-state ground-based radars. This research describes various unique challenges associated with the design of a multi-channel wideband receiver. The receiver consists of twelve channels which simultaneously downconvert and filter the digitized intermediate-frequency (IF) signal for radar data processing. The product processing for the multi-channel digital receiver mandates a software and network architecture which provides for generating and archiving a single meteorological product profile culled from multi-pulse profiles at an increased data date. The multi-channel digital receiver also continuously samples the transmit pulse for calibration of radar receiver gain and transmit power. The multi-channel digital receiver has been successfully deployed as a key component in the recently developed National Aeronautical and Space Administration (NASA) Global Precipitation Measurement (GPM) Dual-Frequency Dual-Polarization Doppler Radar (D3R). The D3R is the principal ground validation instrument for the precipitation measurements of the Dual Precipitation Radar (DPR) onboard the GPM Core Observatory satellite scheduled for launch in 2014. The D3R system employs two broadly separated frequencies at Ku- and Ka-bands that together make measurements for precipitation types which need higher sensitivity such as light rain, drizzle and snow. This research describes unique design space to configure the digital receiver for D3R at several processing levels. At length, this research presents analysis and results obtained by employing the multi-carrier waveforms for D3R during the 2012 GPM Cold-Season Precipitation Experiment (GCPEx) campaign in Canada

    Machine learning-based fusion studies of rainfall estimation from spaceborne and ground-based radars

    Get PDF
    2019 Spring.Includes bibliographical references.Precipitation measurement by satellite radar plays a significant role in researching the water circle and forecasting extreme weather event. Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) has capability of providing a high-resolution vertical profile of precipitation over the tropics regions. Its successor, Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR), can provide detailed information on the microphysical properties of precipitation particles, quantify particle size distribution and quantitatively measure light rain and falling snow. This thesis presents a novel Machine Learning system for ground-based and space borne radar rainfall estimation. The system first trains ground radar data for rainfall estimation using rainfall measurements from gauges and subsequently uses the ground radar based rainfall estimates to train spaceborne radar data in order to get space based rainfall product. Therein, data alignment between spaceborne and ground radar is conducted using the methodology proposed by Bolen and Chandrasekar (2013), which can minimize the effects of potential geometric distortion of spaceborne radar observations. For demonstration purposes, rainfall measurements from three rain gauge networks near Melbourne, Florida, are used for training and validation purposes. These three gauge networks, which are located in Kennedy Space Center (KSC), South Florida Water Management District (SFL), and St. Johns Water Management District (STJ), include 33, 46, and 99 rain gauge stations, respectively. Collocated ground radar observations from the National Weather Service (NWS) Weather Surveillance Radar ā€“ 1988 Doppler (WSR-88D) in Melbourne (i.e., KMLB radar) are trained with the gauge measurements. The trained model is then used to derive KMLB radar based rainfall product, which is used to train both TRMM PR and GPM DPR data collected from coincident overpasses events. The machine learning based rainfall product is compared against the standard satellite products, which shows great potential of the machine learning concept in satellite radar rainfall estimation. Also, the local rain maps generated by machine learning system at KMLB area are demonstrate the application potential

    Real-time rain rate evaluation via satellite downlink signal attenuation measurement

    Get PDF
    We present the NEFOCAST project (named by the contraction of "NefeleĆ¢", which is the Italian spelling for the mythological cloud nymph Nephele, and "forecast"), funded by the Tuscany Region, about the feasibility of a system for the detection and monitoring of precipitation fields over the regional territory based on the use of a widespread network of new-generation Eutelsat "SmartLNB" (smart low-noise block converter) domestic terminals. Though primarily intended for interactive satellite services, these devices can also be used as weather sensors, as they have the capability of measuring the rain-induced attenuation incurred by the downlink signal and relaying it on an auxiliary return channel. We illustrate the NEFOCAST system architecture, consisting of the network of ground sensor terminals, the space segment, and the service center, which has the task of processing the information relayed by the terminals for generating rain field maps. We discuss a few methods that allow the conversion of a rain attenuation measurement into an instantaneous rainfall rate. Specifically, we discuss an exponential model relating the specific rain attenuation to the rainfall rate, whose coefficients were obtained from extensive experimental data. The above model permits the inferring of the rainfall rate from the total signal attenuation provided by the SmartLNB and from the link geometry knowledge. Some preliminary results obtained from a SmartLNB installed in Pisa are presented and compared with the output of a conventional tipping bucket rain gauge. It is shown that the NEFOCAST sensor is able to track the fast-varying rainfall rate accurately with no delay, as opposed to a conventional gauge

    Global Precipitation Measurement

    Get PDF
    This chapter begins with a brief history and background of microwave precipitation sensors, with a discussion of the sensitivity of both passive and active instruments, to trace the evolution of satellite-based rainfall techniques from an era of inference to an era of physical measurement. Next, the highly successful Tropical Rainfall Measuring Mission will be described, followed by the goals and plans for the Global Precipitation Measurement (GPM) Mission and the status of precipitation retrieval algorithm development. The chapter concludes with a summary of the need for space-based precipitation measurement, current technological capabilities, near-term algorithm advancements and anticipated new sciences and societal benefits in the GPM era

    Microwave Indices from Active and Passive Sensors for Remote Sensing Applications

    Get PDF
    Past research has comprehensively assessed the capabilities of satellite sensors operating at microwave frequencies, both active (SAR, scatterometers) and passive (radiometers), for the remote sensing of Earthā€™s surface. Besides brightness temperature and backscattering coefficient, microwave indices, defined as a combination of data collected at different frequencies and polarizations, revealed a good sensitivity to hydrological cycle parameters such as surface soil moisture, vegetation water content, and snow depth and its water equivalent. The differences between microwave backscattering and emission at more frequencies and polarizations have been well established in relation to these parameters, enabling operational retrieval algorithms based on microwave indices to be developed. This Special Issue aims at providing an overview of microwave signal capabilities in estimating the main land parameters of the hydrological cycle, e.g., soil moisture, vegetation water content, and snow water equivalent, on both local and global scales, with a particular focus on the applications of microwave indices

    A compendium of millimeter wave propagation studies performed by NASA

    Get PDF
    Key millimeter wave propagation experiments and analytical results were summarized. The experiments were performed with the Ats-5, Ats-6 and Comstar satellites, radars, radiometers and rain gage networks. Analytic models were developed for extrapolation of experimental results to frequencies, locations, and communications systems
    • ā€¦
    corecore