15 research outputs found

    MIMO Radar Waveform Design and Sparse Reconstruction for Extended Target Detection in Clutter

    Get PDF
    This dissertation explores the detection and false alarm rate performance of a novel transmit-waveform and receiver filter design algorithm as part of a larger Compressed Sensing (CS) based Multiple Input Multiple Output (MIMO) bistatic radar system amidst clutter. Transmit-waveforms and receiver filters were jointly designed using an algorithm that minimizes the mutual coherence of the combined transmit-waveform, target frequency response, and receiver filter matrix product as a design criterion. This work considered the Probability of Detection (P D) and Probability of False Alarm (P FA) curves relative to a detection threshold, τ th, Receiver Operating Characteristic (ROC), reconstruction error and mutual coherence measures for performance characterization of the design algorithm to detect both known and fluctuating targets and amidst realistic clutter and noise. Furthermore, this work paired the joint waveform-receiver filter design algorithm with multiple sparse reconstruction algorithms, including: Regularized Orthogonal Matching Pursuit (ROMP), Compressive Sampling Matching Pursuit (CoSaMP) and Complex Approximate Message Passing (CAMP) algorithms. It was found that the transmit-waveform and receiver filter design algorithm significantly outperforms statically designed, benchmark waveforms for the detection of both known and fluctuating extended targets across all tested sparse reconstruction algorithms. In particular, CoSaMP was specified to minimize the maximum allowable P FA of the CS radar system as compared to the baseline ROMP sparse reconstruction algorithm of previous work. However, while the designed waveforms do provide performance gains and CoSaMP affords a reduced peak false alarm rate as compared to the previous work, fluctuating target impulse responses and clutter severely hampered CS radar performance when either of these sparse reconstruction techniques were implemented. To improve detection rate and, by extension, ROC performance of the CS radar system under non-ideal conditions, this work implemented the CAMP sparse reconstruction algorithm in the CS radar system. It was found that detection rates vastly improve with the implementation of CAMP, especially in the case of fluctuating target impulse responses amidst clutter or at low receive signal to noise ratios (β n). Furthermore, where previous work considered a τ th=0, the implementation of a variable τ th in this work offered novel trade off between P D and P FA in radar design to the CS radar system. In the simulated radar scene it was found that τ th could be moderately increased retaining the same or similar P D while drastically improving P FA. This suggests that the selection and specification of the sparse reconstruction algorithm and corresponding τ th for this radar system is not trivial. Rather, a tradeoff was noted between P D and P FA based on the choice and parameters of the sparse reconstruction technique and detection threshold, highlighting an engineering trade-space in CS radar system design. Thus, in CS radar system design, the radar designer must carefully choose and specify the sparse reconstruction technique and appropriate detection threshold in addition to transmit-waveforms, receiver filters and building the dictionary of target impulse responses for detection in the radar scene

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Adaptive OFDM Radar for Target Detection and Tracking

    Get PDF
    We develop algorithms to detect and track targets by employing a wideband orthogonal frequency division multiplexing: OFDM) radar signal. The frequency diversity of the OFDM signal improves the sensing performance since the scattering centers of a target resonate variably at different frequencies. In addition, being a wideband signal, OFDM improves the range resolution and provides spectral efficiency. We first design the spectrum of the OFDM signal to improve the radar\u27s wideband ambiguity function. Our designed waveform enhances the range resolution and motivates us to use adaptive OFDM waveform in specific problems, such as the detection and tracking of targets. We develop methods for detecting a moving target in the presence of multipath, which exist, for example, in urban environments. We exploit the multipath reflections by utilizing different Doppler shifts. We analytically evaluate the asymptotic performance of the detector and adaptively design the OFDM waveform, by maximizing the noncentrality-parameter expression, to further improve the detection performance. Next, we transform the detection problem into the task of a sparse-signal estimation by making use of the sparsity of multiple paths. We propose an efficient sparse-recovery algorithm by employing a collection of multiple small Dantzig selectors, and analytically compute the reconstruction performance in terms of the ell1ell_1-constrained minimal singular value. We solve a constrained multi-objective optimization algorithm to design the OFDM waveform and infer that the resultant signal-energy distribution is in proportion to the distribution of the target energy across different subcarriers. Then, we develop tracking methods for both a single and multiple targets. We propose an tracking method for a low-grazing angle target by realistically modeling different physical and statistical effects, such as the meteorological conditions in the troposphere, curved surface of the earth, and roughness of the sea-surface. To further enhance the tracking performance, we integrate a maximum mutual information based waveform design technique into the tracker. To track multiple targets, we exploit the inherent sparsity on the delay-Doppler plane to develop an computationally efficient procedure. For computational efficiency, we use more prior information to dynamically partition a small portion of the delay-Doppler plane. We utilize the block-sparsity property to propose a block version of the CoSaMP algorithm in the tracking filter

    Cognitive radar network design and applications

    Get PDF
    PhD ThesisIn recent years, several emerging technologies in modern radar system design are attracting the attention of radar researchers and practitioners alike, noteworthy among which are multiple-input multiple-output (MIMO), ultra wideband (UWB) and joint communication-radar technologies. This thesis, in particular focuses upon a cognitive approach to design these modern radars. In the existing literature, these technologies have been implemented on a traditional platform in which the transmitter and receiver subsystems are discrete and do not exchange vital radar scene information. Although such radar architectures benefit from these mentioned technological advances, their performance remains sub-optimal due to the lack of exchange of dynamic radar scene information between the subsystems. Consequently, such systems are not capable to adapt their operational parameters “on the fly”, which is in accordance with the dynamic radar environment. This thesis explores the research gap of evaluating cognitive mechanisms, which could enable modern radars to adapt their operational parameters like waveform, power and spectrum by continually learning about the radar scene through constant interactions with the environment and exchanging this information between the radar transmitter and receiver. The cognitive feedback between the receiver and transmitter subsystems is the facilitator of intelligence for this type of architecture. In this thesis, the cognitive architecture is fused together with modern radar systems like MIMO, UWB and joint communication-radar designs to achieve significant performance improvement in terms of target parameter extraction. Specifically, in the context of MIMO radar, a novel cognitive waveform optimization approach has been developed which facilitates enhanced target signature extraction. In terms of UWB radar system design, a novel cognitive illumination and target tracking algorithm for target parameter extraction in indoor scenarios has been developed. A cognitive system architecture and waveform design algorithm has been proposed for joint communication-radar systems. This thesis also explores the development of cognitive dynamic systems that allows the fusion of cognitive radar and cognitive radio paradigms for optimal resources allocation in wireless networks. In summary, the thesis provides a theoretical framework for implementing cognitive mechanisms in modern radar system design. Through such a novel approach, intelligent illumination strategies could be devised, which enable the adaptation of radar operational modes in accordance with the target scene variations in real time. This leads to the development of radar systems which are better aware of their surroundings and are able to quickly adapt to the target scene variations in real time.Newcastle University, Newcastle upon Tyne: University of Greenwich

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas

    Large-scale Modelling of Subglacial Hydrology

    Get PDF
    Subglacial hydrology is a key component in ice sheet dynamics and controls the sliding of ice sheets. Modelling the integrated system between ice dynamics and subglacial hydrology is essential for understanding current changes in the system and projecting future evolution of ice sheets and their contribution to sea level rise. The recent acceleration of mass loss of the Greenland ice sheet can be largely attributed to dynamic thinning at the ice margin, where hydrologic processes play a significant role in the speed-up of outlet glaciers. Models of subglacial hydrology recently have progressed to incorporate multiple components of the drainage system and are able to represent observed seasonal evolution of an efficient drainage system during the melt season, but the application of models on a continental scale remains a challenge. This doctoral thesis analyzes different approaches to model the subglacial hydrology and its interaction with the ice flow in respect to their ability to be applied to large domains. Two different models are developed and analyzed. A balance flux model coupled to the ice dynamics model SICOPOLIS is used to study the effect of subglacial water on the Eurasian ice sheet, applied to the simulation of future sea level contribution of Greenland where it reveals that the effect of subglacial discharge on submarine melting is comparable to increased ocean warming. Additionally, this model is utilized in the study of subglacial lakes at Recovery Glacier, Antarctica. The second model is an equivalent aquifer model which describes the water flow in a porous layer adapted to exhibit the properties of the complex drainage system. The evolution of the system is achieved by locally adjusting the transmissivity. It is shown that this approach leads to realistic pressure and discharge distributions which compare well with more sophisticated models, while keeping computational costs low

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore