12,803 research outputs found

    Estimation of pulse heights and arrival times

    Get PDF
    The problem is studied of estimating the arrival times and heights of pulses of known shape observed with white additive noise. The main difficulty is estimating the number of pulses. When a maximum likelihood formulation is employed for the estimation problem, difficulties similar to the problem of estimating the order of an unknown system arise. The problem may be overcome using Rissanen's shortest data description approach. An estimation algorithm is described, and its consistency is proved. The results are illustrated by a simulation study using an example from seismic data processing also studied by Mendel

    Actuators for the generation of highly nonlinear solitary waves

    Get PDF
    In this paper we present the design of two actuators for the generation of highly nonlinear solitary waves (HNSWs), which are mechanical waves that can form and travel in highly nonlinear systems. These waves are characterized by a constant spatial wavelength and by a tunable propagation speed, dependent on the wave amplitude. To date, the simplest and widely adopted method to generate HNSWs is by impacting a striker onto a chain of beads of equal size and mass. This operation is conducted manually and it might be impracticable if repetition rates higher than 0.1 Hz are necessary. It is known that the HNSWs’ properties, such as amplitude, duration, and speed can be modified by changing the size or the material of the particles, the velocity of the striker, and/or the precompression on the chain. To address the limitations associated with the manual generation of HNSWs we designed, built, and tested two actuators. The first actuator consists of a chain of particles wrapped by an electromagnet that induces static precompression on the chain. This design allows for the generation of solitary waves with controlled properties. The second actuator consists of a chain surmounted by an electromagnet that lifts and releases a striker. This actuator permits the remote and noncontact generation of solitary waves. The performance of both actuators is evaluated by comparing the experimental HNSWs to theoretical predictions, based on the long wavelength approximation

    Acoustical Ranging Techniques in Embedded Wireless Sensor Networked Devices

    Get PDF
    Location sensing provides endless opportunities for a wide range of applications in GPS-obstructed environments; where, typically, there is a need for higher degree of accuracy. In this article, we focus on robust range estimation, an important prerequisite for fine-grained localization. Motivated by the promise of acoustic in delivering high ranging accuracy, we present the design, implementation and evaluation of acoustic (both ultrasound and audible) ranging systems.We distill the limitations of acoustic ranging; and present efficient signal designs and detection algorithms to overcome the challenges of coverage, range, accuracy/resolution, tolerance to Doppler’s effect, and audible intensity. We evaluate our proposed techniques experimentally on TWEET, a low-power platform purpose-built for acoustic ranging applications. Our experiments demonstrate an operational range of 20 m (outdoor) and an average accuracy 2 cm in the ultrasound domain. Finally, we present the design of an audible-range acoustic tracking service that encompasses the benefits of a near-inaudible acoustic broadband chirp and approximately two times increase in Doppler tolerance to achieve better performance

    Observations of High Frequency, Long Range Acoustic Propagation in a Harbor Environment

    Get PDF
    The positioning and navigation of AUV\u27s in harbor environments using underwater acoustics is complicated by shallow waters, long propagation distances, and complex oceanographic features. This paper reports on high frequency (40 kHz) acoustic measurements made in Portsmouth Harbor, NH, USA, which is an estuary containing several riverine inputs and a strong tidal flow (2+ knots). A one-way propagation experiment was conducted at the mouth of the harbor for propagation distances up to 100 water depths. Strong signatures of a variety of phenomenon were observed in the acoustic signal levels, including tidal heights and currents, turbulent mixing, and wind/wave action. The relative importance of each of these will be discussed in terms of signal to noise level and the associated constraints on acoustic positioning systems
    • …
    corecore