8,636 research outputs found

    Latent class analysis for segmenting preferences of investment bonds

    Get PDF
    Market segmentation is a key component of conjoint analysis which addresses consumer preference heterogeneity. Members in a segment are assumed to be homogenous in their views and preferences when worthing an item but distinctly heterogenous to members of other segments. Latent class methodology is one of the several conjoint segmentation procedures that overcome the limitations of aggregate analysis and a-priori segmentation. The main benefit of Latent class models is that market segment membership and regression parameters of each derived segment are estimated simultaneously. The Latent class model presented in this paper uses mixtures of multivariate conditional normal distributions to analyze rating data, where the likelihood is maximized using the EM algorithm. The application focuses on customer preferences for investment bonds described by four attributes; currency, coupon rate, redemption term and price. A number of demographic variables are used to generate segments that are accessible and actionable.peer-reviewe

    Approximating a similarity matrix by a latent class model: A reappraisal of additive fuzzy clustering

    Get PDF
    Let Q be a given n×n square symmetric matrix of nonnegative elements between 0 and 1, similarities. Fuzzy clustering results in fuzzy assignment of individuals to K clusters. In additive fuzzy clustering, the n×K fuzzy memberships matrix P is found by least-squares approximation of the off-diagonal elements of Q by inner products of rows of P. By contrast, kernelized fuzzy c-means is not least-squares and requires an additional fuzziness parameter. The aim is to popularize additive fuzzy clustering by interpreting it as a latent class model, whereby the elements of Q are modeled as the probability that two individuals share the same class on the basis of the assignment probability matrix P. Two new algorithms are provided, a brute force genetic algorithm (differential evolution) and an iterative row-wise quadratic programming algorithm of which the latter is the more effective. Simulations showed that (1) the method usually has a unique solution, except in special cases, (2) both algorithms reached this solution from random restarts and (3) the number of clusters can be well estimated by AIC. Additive fuzzy clustering is computationally efficient and combines attractive features of both the vector model and the cluster mode

    Robust EM algorithm for model-based curve clustering

    Full text link
    Model-based clustering approaches concern the paradigm of exploratory data analysis relying on the finite mixture model to automatically find a latent structure governing observed data. They are one of the most popular and successful approaches in cluster analysis. The mixture density estimation is generally performed by maximizing the observed-data log-likelihood by using the expectation-maximization (EM) algorithm. However, it is well-known that the EM algorithm initialization is crucial. In addition, the standard EM algorithm requires the number of clusters to be known a priori. Some solutions have been provided in [31, 12] for model-based clustering with Gaussian mixture models for multivariate data. In this paper we focus on model-based curve clustering approaches, when the data are curves rather than vectorial data, based on regression mixtures. We propose a new robust EM algorithm for clustering curves. We extend the model-based clustering approach presented in [31] for Gaussian mixture models, to the case of curve clustering by regression mixtures, including polynomial regression mixtures as well as spline or B-spline regressions mixtures. Our approach both handles the problem of initialization and the one of choosing the optimal number of clusters as the EM learning proceeds, rather than in a two-fold scheme. This is achieved by optimizing a penalized log-likelihood criterion. A simulation study confirms the potential benefit of the proposed algorithm in terms of robustness regarding initialization and funding the actual number of clusters.Comment: In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN), 2013, Dallas, TX, US

    Assessing the Number of Components in Mixture Models: a Review.

    Get PDF
    Despite the widespread application of finite mixture models, the decision of how many classes are required to adequately represent the data is, according to many authors, an important, but unsolved issue. This work aims to review, describe and organize the available approaches designed to help the selection of the adequate number of mixture components (including Monte Carlo test procedures, information criteria and classification-based criteria); we also provide some published simulation results about their relative performance, with the purpose of identifying the scenarios where each criterion is more effective (adequate).Finite mixture; number of mixture components; information criteria; simulation studies.

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues
    • 

    corecore