16,013 research outputs found

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Frequency estimation in multipath rayleigh-sparse-fading channels

    Get PDF
    Maximum-likelihood (ML) data-aided frequency estimation in multipath Rayleigh-fading channels with sparse impulse responses is investigated. We solve this problem under the assumption that the autocorrelation matrix of the pilot signal can be approximated by a diagonal matrix, the fading of different path amplitudes are independent from each other, and the additive noise is white and Gaussian. The ML frequency estimator is shown to be based on combining nonlinearly transformed path periodograms. We have derived the nonlinear function for the two cases: known and unknown fading variances. The new frequency estimators lead, in particular cases, to known ML frequency estimators for nonsparse multipath fading channels. The use of a priori information about the mean number of paths in the channel allows a significant improvement of the accuracy performance. Exploiting the sparseness of the channel impulse response is shown to significantly reduce the threshold signal-to-noise ratio at which the frequency error departs from the Cramer-Rao lower bound. However, precise knowledge of the channel sparseness is not required in order to realize this improvement

    Experimental analysis of dense multipath components in an industrial environment

    Get PDF
    This work presents an analysis of dense multipath components (DMC) in an industrial workshop. Radio channel sounding was performed with a vector network analyzer and virtual antenna arrays. The specular and dense multipath components were estimated with the RiMAX algorithm. The DMC covariance structure of the RiMAX data model was validated. Two DMC parameters were studied: the distribution of radio channel power between specular and dense multipath, and the DMC reverberation time. The DMC power accounted for 23% to 70% of the total channel power. A significant difference between DMC powers in line-of-sight and nonline-of-sight was observed, which can be largely attributed to the power of the line-of-sight multipath component. In agreement with room electromagnetics theory, the DMC reverberation time was found to be nearly constant. Overall, DMC in the industrial workshop is more important than in office environments: it occupies a fraction of the total channel power that is 4% to 13% larger. The industrial environment absorbs on average 29% of the electromagnetic energy compared to 45%-51% for office environments in literature: this results in a larger reverberation time in the former environment. These findings are explained by the highly cluttered and metallic nature of the workshop

    Multipath Parameter Estimation from OFDM Signals in Mobile Channels

    Full text link
    We study multipath parameter estimation from orthogonal frequency division multiplex signals transmitted over doubly dispersive mobile radio channels. We are interested in cases where the transmission is long enough to suffer time selectivity, but short enough such that the time variation can be accurately modeled as depending only on per-tap linear phase variations due to Doppler effects. We therefore concentrate on the estimation of the complex gain, delay and Doppler offset of each tap of the multipath channel impulse response. We show that the frequency domain channel coefficients for an entire packet can be expressed as the superimposition of two-dimensional complex sinusoids. The maximum likelihood estimate requires solution of a multidimensional non-linear least squares problem, which is computationally infeasible in practice. We therefore propose a low complexity suboptimal solution based on iterative successive and parallel cancellation. First, initial delay/Doppler estimates are obtained via successive cancellation. These estimates are then refined using an iterative parallel cancellation procedure. We demonstrate via Monte Carlo simulations that the root mean squared error statistics of our estimator are very close to the Cramer-Rao lower bound of a single two-dimensional sinusoid in Gaussian noise.Comment: Submitted to IEEE Transactions on Wireless Communications (26 pages, 9 figures and 3 tables
    • …
    corecore