146 research outputs found

    First stage of LISA data processing: Clock synchronization and arm-length determination via a hybrid-extended Kalman filter

    Full text link
    In this paper, we describe a hybrid-extended Kalman filter algorithm to synchronize the clocks and to precisely determine the inter-spacecraft distances for space-based gravitational wave detectors, such as (e)LISA. According to the simulation, the algorithm has significantly improved the ranging accuracy and synchronized the clocks, making the phase-meter raw measurements qualified for time- delay interferometry algorithms.Comment: 14 pages, Phys. Rev. D 90, 064016 (2014

    Hardware Development of an Ultra-Wideband System for High Precision Localization Applications

    Get PDF
    A precise localization system in an indoor environment has been developed. The developed system is based on transmitting and receiving picosecond pulses and carrying out a complete narrow-pulse, signal detection and processing scheme in the time domain. The challenges in developing such a system include: generating ultra wideband (UWB) pulses, pulse dispersion due to antennas, modeling of complex propagation channels with severe multipath effects, need for extremely high sampling rates for digital processing, synchronization between the tag and receivers’ clocks, clock jitter, local oscillator (LO) phase noise, frequency offset between tag and receivers’ LOs, and antenna phase center variation. For such a high precision system with mm or even sub-mm accuracy, all these effects should be accounted for and minimized. In this work, we have successfully addressed many of the above challenges and developed a stand-alone system for positioning both static and dynamic targets with approximately 2 mm and 6 mm of 3-D accuracy, respectively. The results have exceeded the state of the art for any commercially available UWB positioning system and are considered a great milestone in developing such technology. My contributions include the development of a picosecond pulse generator, an extremely wideband omni-directional antenna, a highly directive UWB receiving antenna with low phase center variation, an extremely high data rate sampler, and establishment of a non-synchronized UWB system architecture. The developed low cost sampler, for example, can be easily utilized to sample narrow pulses with up to 1000 GS/s while the developed antennas can cover over 6 GHz bandwidth with minimal pulse distortion. The stand-alone prototype system is based on tracking a target using 4-6 base stations and utilizing a triangulation scheme to find its location in space. Advanced signal processing algorithms based on first peak and leading edge detection have been developed and extensively evaluated to achieve high accuracy 3-D localization. 1D, 2D and 3D experiments have been carried out and validated using an optical reference system which provides better than 0.3 mm 3-D accuracy. Such a high accuracy wireless localization system should have a great impact on the operating room of the future

    Analog 28 GHz LoS MIMO Relay System Using a 90° Hybrid Coupler

    Get PDF

    Hybrid Digital-to-Analog Beamforming for Millimeter-Wave Systems with High User Density

    Get PDF
    Millimeter-wave (mm-Wave) systems with hybrid digital-to-analog beamforming (D-A BF) have the potential to fulfill 5G traffic demands. The capacity of mmWave systems is severely limited as each radio frequency (RF) transceiver chain in current base station (BS) architectures support only a particular user. In order to overcome this problem when high density of users are present, a new algorithm is proposed in this paper. This algorithm operates on the principle of selection combining (SC). This algorithm is compared with the state of the art hybrid D-A BF. The simulation results show that our proposed hybrid D-A BF using SC supports higher density of users per RF chain. Furthermore, our proposed algorithm achieves higher capacity than what is achieved by the current hybrid D-A BF systems
    • …
    corecore