1,384 research outputs found

    An Estimation of Distribution Algorithm for Nurse Scheduling

    Get PDF
    Schedules can be built in a similar way to a human scheduler by using a set of rules that involve domain knowledge. This paper presents an Estimation of Distribution Algorithm (EDA) for the nurse scheduling problem, which involves choosing a suitable scheduling rule from a set for the assignment of each nurse. Unlike previous work that used Genetic Algorithms (GAs) to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. we identify and mix building blocks directly. The EDA is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems

    TEDA: A Targeted Estimation of Distribution Algorithm

    Get PDF
    This thesis discusses the development and performance of a novel evolutionary algorithm, the Targeted Estimation of Distribution Algorithm (TEDA). TEDA takes the concept of targeting, an idea that has previously been shown to be effective as part of a Genetic Algorithm (GA) called Fitness Directed Crossover (FDC), and introduces it into a novel hybrid algorithm that transitions from a GA to an Estimation of Distribution Algorithm (EDA). Targeting is a process for solving optimisation problems where there is a concept of control points, genes that can be said to be active, and where the total number of control points found within a solution is as important as where they are located. When generating a new solution an algorithm that uses targeting must first of all choose the number of control points to set in the new solution before choosing which to set. The hybrid approach is designed to take advantage of the ability of EDAs to exploit patterns within the population to effectively locate the global optimum while avoiding the tendency of EDAs to prematurely converge. This is achieved by initially using a GA to effectively explore the search space before transitioning into an EDA as the population converges on the region of the global optimum. As targeting places an extra restriction on the solutions produced by specifying their size, combining it with the hybrid approach allows TEDA to produce solutions that are of an optimal size and of a higher quality than would be found using a GA alone without risking a loss of diversity. TEDA is tested on three different problem domains. These are optimal control of cancer chemotherapy, network routing and Feature Subset Selection (FSS). Of these problems, TEDA showed consistent advantage over standard EAs in the routing problem and demonstrated that it is able to find good solutions faster than untargeted EAs and non evolutionary approaches at the FSS problem. It did not demonstrate any advantage over other approaches when applied to chemotherapy. The FSS domain demonstrated that in large and noisy problems TEDA’s targeting derived ability to reduce the size of the search space significantly increased the speed with which good solutions could be found. The routing domain demonstrated that, where the ideal number of control points is deceptive, both targeting and the exploitative capabilities of an EDA are needed, making TEDA a more effective approach than both untargeted approaches and FDC. Additionally, in none of the problems was TEDA seen to perform significantly worse than any alternative approaches

    Evolutionary Synthesis of Cube Root Computational Circuit Using Graph Hybrid Estimation of Distribution Algorithm

    Get PDF
    The paper is focused on evolutionary synthesis of analog circuit realization of cube root function using proposed Graph Hybrid Estimation of Distribution Algorithm. The problem of cube root function circuit realization was adopted to demonstrate synthesis capability of the proposed method. Individuals of the population of the proposed method which represent promising topologies are encoded using graphs and hypergraphs. Hybridization with local search algorithm was used. The proposed method employs univariate probabilistic model

    Bivariate estimation of distribution algorithms for protein structure prediction.

    Get PDF
    A real-valued bivariate ‘Estimation of Distribution Algorithm’ specific for the ab initio and full-atom Protein Structure Prediction problem is proposed. It is known that this is a multidimensional and multimodal problem. In order to deal with the multimodality and the correlation of dihedral angles φ and ψ, we developed approaches based on Kernel Density Estimation and Finite Gaussian Mixtures. Simulation results have shown that both techniques are promising when applied to that problem

    Finite element model updating using estimation of distribution algorithm

    Full text link
    Finite Element (FE) model updating has been attracting research attentions in structural engineering fields for over 20 years. Its immense importance to the design, construction and maintenance of civil and mechanical structures has been highly recognised. However, many sources of uncertainties may affect the updating results. These uncertainties may be caused by FE modelling errors, measurement noises, signal processing techniques, and so on. Therefore, research efforts on model updating have been focusing on tackling with uncertainties for a long time. Recently, a new type of evolutionary algorithms has been developed to address uncertainty problems, known as Estimation of Distribution Algorithms (EDAs). EDAs are evolutionary algorithms based on estimation and sampling from probabilistic models and able to overcome some of the drawbacks exhibited by traditional genetic algorithms (GAs). In this paper, a numerical steel simple beam is constructed in commercial software ANSYS. The various damage scenarios are simulated and EDAs are employed to identify damages via FE model updating process. The results show that the performances of EDAs for model updating are efficient and reliable

    An estimation of distribution algorithm for combinatorial optimization problems

    Get PDF
    This paper considers solving more than one combinatorial problem considered some of the most difficult to solve in the combinatorial optimization field, such as the job shop scheduling problem (JSSP), the vehicle routing problem with time windows (VRPTW), and the quay crane scheduling problem (QCSP). A hybrid metaheuristic algorithm that integrates the Mallows model and the Moth-flame algorithm solves these problems. Through an exponential function, the Mallows model emulates the solution space distribution for the problems; meanwhile, the Moth-flame algorithm is in charge of determining how to produce the offspring by a geometric function that helps identify the new solutions. The proposed metaheuristic, called HEDAMMF (Hybrid Estimation of Distribution Algorithm with Mallows model and Moth-Flame algorithm), improves the performance of recent algorithms. Although knowing the algebra of permutations is required to understand the proposed metaheuristic, utilizing the HEDAMMF is justified because certain problems are fixed differently under different circumstances. These problems do not share the same objective function (fitness) and/or the same constraints. Therefore, it is not possible to use a single model problem. The aforementioned approach is able to outperform recent algorithms under different metrics for these three combinatorial problems. Finally, it is possible to conclude that the hybrid metaheuristics have a better performance, or equal in effectiveness than recent algorithms

    Bayesian Inference in Estimation of Distribution Algorithms

    Get PDF
    Metaheuristics such as Estimation of Distribution Algorithms and the Cross-Entropy method use probabilistic modelling and inference to generate candidate solutions in optimization problems. The model fitting task in this class of algorithms has largely been carried out to date based on maximum likelihood. An alternative approach that is prevalent in statistics and machine learning is to use Bayesian inference. In this paper, we provide a framework for the application of Bayesian inference techniques in probabilistic model-based optimization. Based on this framework, a simple continuous Bayesian Estimation of Distribution Algorithm is described. We evaluate and compare this algorithm experimentally with its maximum likelihood equivalent, UMDAG c
    corecore