1,477 research outputs found

    Control-oriented dynamical modelling and state estimation of centrifugal fans with induction motors drives

    Get PDF
    To achieve significant energy savings in air and water supply systems, variable frequency induction motor drives are employed to power centrifugal fans and pumps. The cost of implementing closed loop control for energy savings can be reduced by replacing expensive flow rate or pressure sensors with estimators that are based on monitored variables from the drives and are embedded into their software. Existing estimation techniques rely on quasi-steady modelling of fans and pumps using data from steady state experiments or data sheets. However, this approach faces challenges during transients, which are addressed in the present thesis. This research proposes quasi-steady and dynamical estimators for the flow rate and pressure of a centrifugal fan with an induction motor drive, based on neural networks trained using both steady state and transient experimental data. The thesis describes a test rig designed specifically for this purpose, which utilizes an industrial centrifugal fan from Nicotra- Gebhardt equipped with a three-phase induction motor. Additionally, the thesis presents a detailed procedure for designing the estimators. The use of electrical drives for controlling centrifugal fans and pumps is a wellestablished practice that can lead to significant energy savings. However, this requires electrical and automation engineers to possess knowledge relevant to the modelling of fans and pumps in relation to drives. Existing approaches rely heavily on quasisteady modelling, which is widely used by drives application experts, but there is limited adoption of dynamical modelling that is integrated with AC drives. This thesis aims to enhance existing dynamical models by employing neural network estimation to calculate the overall efficiency of the fan/pump. The model separates the fan/pump's own efficiency for the computation of motor load torque to reflect accurately the power balance. The developed model is designed to be suitable for control design applications. Additionally, this research verifies the dynamical model experimentally, which supports the necessity of incorporating a first-order nonlinear differential equation to model the flow rate dynamics. A linearized mathematical model of a centrifugal fan powered by a Squirrel Cage Induction Motor has been developed and validated through experimental and simulation data. Furthermore, a H mixed sensitivity approach has been employed to design a controller for a system that aims to achieve performance objectives such as stability, disturbance rejection, and reference tracking. The proposed H mixed sensitivity controller meets the necessary requirements for optimal performance, offering a promising solution for control system design

    Sensor data-based decision making

    Get PDF
    Increasing globalization and growing industrial system complexity has amplified the interest in the use of information provided by sensors as a means of improving overall manufacturing system performance and maintainability. However, utilization of sensors can only be effective if the real-time data can be integrated into the necessary business processes, such as production planning, scheduling and execution systems. This integration requires the development of intelligent decision making models that can effectively process the sensor data into information and suggest appropriate actions. To be able to improve the performance of a system, the health of the system also needs to be maintained. In many cases a single sensor type cannot provide sufficient information for complex decision making including diagnostics and prognostics of a system. Therefore, a combination of sensors should be used in an integrated manner in order to achieve desired performance levels. Sensor generated data need to be processed into information through the use of appropriate decision making models in order to improve overall performance. In this dissertation, which is presented as a collection of five journal papers, several reactive and proactive decision making models that utilize data from single and multi-sensor environments are developed. The first paper presents a testbed architecture for Auto-ID systems. An adaptive inventory management model which utilizes real-time RFID data is developed in the second paper. In the third paper, a complete hardware and inventory management solution, which involves the integration of RFID sensors into an extremely low temperature industrial freezer, is presented. The last two papers in the dissertation deal with diagnostic and prognostic decision making models in order to assure the healthy operation of a manufacturing system and its components. In the fourth paper a Mahalanobis-Taguchi System (MTS) based prognostics tool is developed and it is used to estimate the remaining useful life of rolling element bearings using data acquired from vibration sensors. In the final paper, an MTS based prognostics tool is developed for a centrifugal water pump, which fuses information from multiple types of sensors in order to take diagnostic and prognostics decisions for the pump and its components --Abstract, page iv

    CONDITION-BASED RISK ASSESSMENT STRATEGY AND ITS HEALTH INDICATOR WITH APPLICATION TO PUMPS AND COMPRESSORS

    Get PDF
    Large rotating machinery, such as centrifugal gas compressors and pumps, are widely applied as crucial components in the petrochemical industries. To enable in-time and effective maintenance of these machines, the concept of a health indicator is arousing great interest. A suitable health indicator indicates the overall health of the machinery and it is closely related to maintenance strategies and decision-making. It can be obtained either from near misses and incident data, or from real-time measured data. However, the existing health indicators have some limitations. On the one hand, the near misses and incident data may have been obtained from similar systems, reflecting population characteristics but not fully accounting for the individual features of the target system. On the other hand, the existing health indicators that use condition monitoring data, mainly focused on detecting incipient faults, and usually do not include financial cost factors when calculating the indicators. Therefore, there is the requirement to develop a single system "Health Indicator", that can show the health condition of a system in real-time, as well as the likely financial loss incurred when a fault is detected in the system, to assist operators on maintenance decision making. This project has developed such an integrated health indicator for rotating machinery. The integrated health indicator described in this thesis is extracted from a novel condition-based risk assessment strategy, which can be regarded as an integration of risk-based maintenance with improved conventional condition-based maintenance, with financial factors taken into account. The value of the health indicator is that it directly illustrates the risk to the system (or equipment), including likely financial loss, which makes it easier for operators to select the optimal time for maintenance or set alarm thresholds given the specific conditions in their companies or plants. This thesis provides a guide to set up an integrated maintenance model for large rotating machinery. It provides a useful reference for researchers working on condition-based fault detection and dynamic risk-based maintenance

    Predictive Maintenance of an External Gear Pump using Machine Learning Algorithms

    Get PDF
    The importance of Predictive Maintenance is critical for engineering industries, such as manufacturing, aerospace and energy. Unexpected failures cause unpredictable downtime, which can be disruptive and high costs due to reduced productivity. This forces industries to ensure the reliability of their equip-ment. In order to increase the reliability of equipment, maintenance actions, such as repairs, replacements, equipment updates, and corrective actions are employed. These actions affect the flexibility, quality of operation and manu-facturing time. It is therefore essential to plan maintenance before failure occurs.Traditional maintenance techniques rely on checks conducted routinely based on running hours of the machine. The drawback of this approach is that maintenance is sometimes performed before it is required. Therefore, conducting maintenance based on the actual condition of the equipment is the optimal solu-tion. This requires collecting real-time data on the condition of the equipment, using sensors (to detect events and send information to computer processor).Predictive Maintenance uses these types of techniques or analytics to inform about the current, and future state of the equipment. In the last decade, with the introduction of the Internet of Things (IoT), Machine Learning (ML), cloud computing and Big Data Analytics, manufacturing industry has moved forward towards implementing Predictive Maintenance, resulting in increased uptime and quality control, optimisation of maintenance routes, improved worker safety and greater productivity.The present thesis describes a novel computational strategy of Predictive Maintenance (fault diagnosis and fault prognosis) with ML and Deep Learning applications for an FG304 series external gear pump, also known as a domino pump. In the absence of a comprehensive set of experimental data, synthetic data generation techniques are implemented for Predictive Maintenance by perturbing the frequency content of time series generated using High-Fidelity computational techniques. In addition, various types of feature extraction methods considered to extract most discriminatory informations from the data. For fault diagnosis, three types of ML classification algorithms are employed, namely Multilayer Perceptron (MLP), Support Vector Machine (SVM) and Naive Bayes (NB) algorithms. For prognosis, ML regression algorithms, such as MLP and SVM, are utilised. Although significant work has been reported by previous authors, it remains difficult to optimise the choice of hyper-parameters (important parameters whose value is used to control the learning process) for each specific ML algorithm. For instance, the type of SVM kernel function or the selection of the MLP activation function and the optimum number of hidden layers (and neurons).It is widely understood that the reliability of ML algorithms is strongly depen-dent upon the existence of a sufficiently large quantity of high-quality training data. In the present thesis, due to the unavailability of experimental data, a novel high-fidelity in-silico dataset is generated via a Computational Fluid Dynamic (CFD) model, which has been used for the training of the underlying ML metamodel. In addition, a large number of scenarios are recreated, ranging from healthy to faulty ones (e.g. clogging, radial gap variations, axial gap variations, viscosity variations, speed variations). Furthermore, the high-fidelity dataset is re-enacted by using degradation functions to predict the remaining useful life (fault prognosis) of an external gear pump.The thesis explores and compares the performance of MLP, SVM and NB algo-rithms for fault diagnosis and MLP and SVM for fault prognosis. In order to enable fast training and reliable testing of the MLP algorithm, some predefined network architectures, like 2n neurons per hidden layer, are used to speed up the identification of the precise number of neurons (shown to be useful when the sample data set is sufficiently large). Finally, a series of benchmark tests are presented, enabling to conclude that for fault diagnosis, the use of wavelet features and a MLP algorithm can provide the best accuracy, and the MLP al-gorithm provides the best prediction results for fault prognosis. In addition, benchmark examples are simulated to demonstrate the mesh convergence for the CFD model whereas, quantification analysis and noise influence on training data are performed for ML algorithms

    Improving the profitability, availability and condition monitoring of FPSO terminals

    Get PDF
    The main focus of this study is to improve the profitability, availability and condition monitoring of Liquefied Natural Gas (LNG) Floating Production Storage and Offloading platforms (FPSOs). Propane pre-cooled, mixed refrigerant (C3MR) liquefaction is the key process in the production of LNG on FPSOs. LNG liquefaction system equipment has the highest failure rates among the other FPSO equipment, and thus the highest maintenance cost. Improvements in the profitability, availability and condition monitoring were made in two ways: firstly, by making recommendations for the use of redundancy in order to improve system reliability (and hence availability); and secondly, by developing an effective condition-monitoring algorithm that can be used as part of a condition-based maintenance system. C3MR liquefaction system reliability modelling was undertaken using the time-dependent Markov approach. Four different system options were studied, with varying degrees of redundancy. The results of the reliability analysis indicated that the introduction of a standby liquefaction system could be the best option for liquefaction plants in terms of reliability, availability and profitability; this is because the annual profits of medium-sized FPSOs (3MTPA) were estimated to increase by approximately US296million,risingfromaboutUS296 million, rising from about US1,190 million to US1,485.98million,ifredundancywereimplemented.ThecostbenefitanalysisresultswerebasedontheaverageLNGprices(US1,485.98 million, if redundancy were implemented. The cost-benefit analysis results were based on the average LNG prices (US500/ton) in 2013 and 2014. Typically, centrifugal turbines, compressors and blowers are the main items of equipment in LNG liquefaction plants. Because centrifugal equipment tops the FPSO equipment failure list, a Condition Monitoring (CM) system for such equipment was proposed and tested to reduce maintenance and shutdown costs, and also to reduce flaring. The proposed CM system was based on a novel FFT-based segmentation, feature selection and fault identification algorithm. A 20 HP industrial air compressor system with a rotational speed of 15,650 RPM was utilised to experimentally emulate five different typical centrifugal equipment machine conditions in the laboratory; this involved training and testing the proposed algorithm with a total of 105 datasets. The fault diagnosis performance of the algorithm was compared with other methods, namely standard FFT classifiers and Neural Network. A sensitivity analysis was performed in order to determine the effect of the time length and position of the signals on the diagnostic performance of the proposed fault identification algorithm. The algorithm was also checked for its ability to identify machine degradation using datasets for which the algorithm was not trained. Moreover, a characterisation table that prioritises the different fault detection techniques and signal features for the diagnosis of centrifugal equipment faults, was introduced to determine the best fault identification technique and signal feature. The results suggested that the proposed automated feature selection and fault identification algorithm is effective and competitive as it yielded a fault identification performance of 100% in 3.5 seconds only in comparison to 57.2 seconds for NN. The sensitivity analysis showed that the algorithm is robust as its fault identification performance was affected by neither the time length nor the position of signals. The characterisation study demonstrated the effectiveness of the AE spectral feature technique over the fault identification techniques and signal features tested in the course of diagnosing centrifugal equipment faults. Moreover, the algorithm performed well in the identification of machine degradation. In summary, the results of this study indicate that the proposed two-pronged approach has the potential to yield a highly reliable LNG liquefaction system with significantly improved availability and profitability profiles

    Profitability, reliability and condition based monitoring of LNG floating platforms: a review

    Get PDF
    The efficiency and profitability of Floating, Production, Storage and Offloading platform (FPSO) terminals depends on various factors such as LNG liquefaction process type, system reliability and maintenance approach. This review is organized along the following research questions: (i) what are the economic benefit of FPSO and how does the liquefaction process type affect its profitability profile?, (ii) how to improve the reliability of the liquefaction system as key section? and finally (iii) what are the major CBM techniques applied on FPSO. The paper concluded the literature and identified the research shortcomings in order to improve profitability, efficiency and availability of FPSOs

    Mathematical Modelling of Energy Systems and Fluid Machinery

    Get PDF
    The ongoing digitalization of the energy sector, which will make a large amount of data available, should not be viewed as a passive ICT application for energy technology or a threat to thermodynamics and fluid dynamics, in the light of the competition triggered by data mining and machine learning techniques. These new technologies must be posed on solid bases for the representation of energy systems and fluid machinery. Therefore, mathematical modelling is still relevant and its importance cannot be underestimated. The aim of this Special Issue was to collect contributions about mathematical modelling of energy systems and fluid machinery in order to build and consolidate the base of this knowledge

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 314)

    Get PDF
    This bibliography lists 139 reports, articles, and other documents introduced into the NASA scientific and technical information system in August, 1988
    corecore