6,126 research outputs found

    Librational response of a deformed 3-layer Titan perturbed by non-keplerian orbit and atmospheric couplings

    Full text link
    The analyses of Titan's gravity field obtained by Cassini space mission suggest the presence of an internal ocean beneath its icy surface. The characterization of the geophysical parameters of the icy shell and the ocean is important to constrain the evolution models of Titan. The knowledge of the librations, that are periodic oscillations around a uniform rotational motion, can bring piece of information on the interior parameters. The objective of this paper is to study the librational response in longitude from an analytical approach for Titan composed of a deep atmosphere, an elastic icy shell, an internal ocean, and an elastic rocky core perturbed by the gravitational interactions with Saturn. We start from the librational equations developed for a rigid satellite in synchronous spin-orbit resonance. We introduce explicitly the atmospheric torque acting on the surface computed from the Titan IPSL GCM (Institut Pierre Simon Laplace General Circulation Model) and the periodic deformations of elastic solid layers due to the tides. We investigate the librational response for various interior models in order to compare and to identify the influence of the geophysical parameters and the impact of the elasticity. The main librations arise at two well-separated forcing frequency ranges: low forcing frequencies dominated by the Saturnian annual and semi-annual frequencies, and a high forcing frequency regime dominated by Titan's orbital frequency around Saturn. We find that internal structure models including an internal ocean with elastic solid layers lead to the same order of libration amplitude than the oceanless models, which makes more challenging to differentiate them by the interpretation of librational motion.Comment: 38 pages, 4 figures. Accepted for publication in Planetary and Space Scienc

    Image-based modelling of ocean surface circulation from satellite acquisitions

    Get PDF
    International audienceSatellite image sequences permit to visualise oceans' surface and their underlying dynamics. Processing these images is then of major interest in order to better understanding of the observed processes. As demonstrated by state-of-the-art, image assimilation allows to retrieve surface motion from image sequences, based on assumptions on the dynamics. In this paper we demonstrate that a simple heuristics, such as the Lagrangian constancy of velocity, can be used, and successfully replaces the complex physical properties described by the Navier-Stokes equations, for assessing surface circulation from satellite images. A data assimilation method is proposed that includes an additional term a(t) to this Lagrangian constancy equation. That term summarises all physical processes other than advection. A cost function is designed, which quantifies discrepancy between satellite data and model values. The cost function is minimised by the BFGS solver with a dual method of data assimilation. The result is the motion field and the additional term a(t). This last component models the forces, other than advection, that contribute to surface circulation. The approach has been tested on Sea Surface Temperature of Black Sea. Results are given on four image sequences and compared with state-of-the-art methods

    Tracking icebergs with time-lapse photography and sparse optical flow, LeConte Bay, Alaska, 2016–2017

    Get PDF
    We present a workflow to track icebergs in proglacial fjords using oblique time-lapse photos and the Lucas-Kanade optical flow algorithm. We employ the workflow at LeConte Bay, Alaska, where we ran five time-lapse cameras between April 2016 and September 2017, capturing more than 400 000 photos at frame rates of 0.5–4.0 min−1. Hourly to daily average velocity fields in map coordinates illustrate dynamic currents in the bay, with dominant downfjord velocities (exceeding 0.5 m s−1 intermittently) and several eddies. Comparisons with simultaneous Acoustic Doppler Current Profiler (ADCP) measurements yield best agreement for the uppermost ADCP levels (∼ 12 m and above), in line with prevalent small icebergs that trace near-surface currents. Tracking results from multiple cameras compare favorably, although cameras with lower frame rates (0.5 min−1) tend to underestimate high flow speeds. Tests to determine requisite temporal and spatial image resolution confirm the importance of high image frame rates, while spatial resolution is of secondary importance. Application of our procedure to other fjords will be successful if iceberg concentrations are high enough and if the camera frame rates are sufficiently rapid (at least 1 min−1 for conditions similar to LeConte Bay).This work was funded by the U.S. National Science Foundation (OPP-1503910, OPP-1504288, OPP-1504521 and OPP-1504191).Ye

    Research program of the Geodynamics Branch

    Get PDF
    This report is the Fourth Annual Summary of the Research Program of the Geodynamics Branch. The branch is located within the Laboratory for Terrestrial Physics of the Space and Earth Sciences Directorate of the Goddard Space Flight Center. The research activities of the branch staff cover a broad spectrum of geoscience disciplines including: tectonophysics, space geodesy, geopotential field modeling, and dynamic oceanography. The NASA programs which are supported by the work described in this document include the Geodynamics and Ocean Programs, the Crustal Dynamics Project and the proposed Ocean Topography Experiment (TOPEX). The reports highlight the investigations conducted by the Geodynamics Branch staff during calendar year 1985. The individual papers are grouped into chapters on Crustal Movements and Solid Earth Dynamics, Gravity Field Modeling and Sensing Techniques, and Sea Surface Topography. Further information on the activities of the branch or the particular research efforts described herein can be obtained through the branch office or from individual staff members

    Validation of surface velocity estimated from satellite images

    Get PDF
    This report concerns the validation of surface velocity estimated from satellite images. The estimation is obtained with a dynamic model based on shallow-water equations. We first compare the stationary assumption to the shallow-water heuristics to justify our choice. Second, we quantify the quality of the estimation by measuring the misfit between the model output and the altimetry measures. Experiments are achieved on Sea Surface Temperature data acquired by the NOAA/AVHRR satellites over the Black Sea. The altimetry measures are obtained by two radar sensors: Envisat and GFO. The good adequacy between the shallow-water output and the altimetry data validates our motion estimation approach.Ce rapport de recherche concerne la validation de l'estimation de la vitesse de surface à partir d'images satellite. Cette estimation est effectuée avec un modèle de la dynamique, basé sur les équations shallow-water. Nous comparons d'abord l'hypothèse de stationnarité aux équations shallow-water afin de justifier notre choix. Puis, nous quantifions la qualité des estimations en mesurant l'écart entre la sortie du modèle et les mesures d'altimétrie. Les expérimentations sont effectuées en utilisant des données de température de surface, acquises au-dessus de la Mer Noire avec les satellites NOAA/AVHRR. Les mesures altimétriques proviennent de deux capteurs radar : Envisat et GFO. La bonne adéquation entre la sortie du modèle shallow-water et les données altimétriques valide notre approche d'estimation du mouvement

    The study of sediment dynamics in a shallow estuary using integrated numerical modeling and satellite remote sensing

    Get PDF
    The primary objective of the study is to develop an effective tool to investigate the resuspension, deposition and transport of mixed cohesive and non-cohesive sediments in an estuary. The research has integrated 1) statistical analyses of the primary forcing, 2) numerical models for hydrodynamics, surface waves and sediment transport, and 3) the MODIS (Moderate Imaging Spectroradiometer) remotely sensed imagery, to investigate hydrodynamics and sediment dynamics in Mobile Bay, Alabama. First, based on long-term meteorological and tidal observations, statistical analyses have been conducted to predict extreme values of winds and water levels at different return periods in the estuary. Application of predicted extreme winds and surges is illustrated though the development of a storm wave atlas and through the estimation of erosion potential in the estuary. Secondly, three open-source community models for estuarine circulation, wind wave prediction, and sediment transport have been coupled and carefully tested against available field measurements. In particular, the sediment transport model has been improved by implementing the continuous deposition scheme, the general solution to the wave-current bottom boundary layer model (Grand and Madsen, 1979), and a formula of flocculation-influenced settling velocity (Whitehouse et al., 2000). Idealized test cases were designed to evaluate the performances of the integrated model system, in addition to model calibration and verification using field observations. Thirdly, a new algorithm has been developed based on the suspended sediment concentration measured from field water sampling and the corrected MODIS red-channel reflectance for Mobile Bay. The algorithm has been applied not only to winter-front and post-hurricane conditions to reveal the impact of different forcing agents on sediment dynamics in Mobile Bay, but also to the normal weather condition for providing guidance to calibrate the sediment transport model. Integration of these three different approaches has enabled us to understand how land-based particulates are transported, deposited and re-suspended in the estuary, and to disclose the dynamic changes of the suspended sediment concentration under normal and extreme forcing. The methodology and tools developed in this study can be used for other coastal areas

    Monitoring tropical cyclone intensity using wind fields derived from short-interval satellite images

    Get PDF
    Rapid scan visible images from the Visible Infrared Spin Scan Radiometer sensor on board SMS-2 and GOES-1 were used to derive high resolution upper and lower tropospheric environmental wind fields around three western Atlantic tropical cyclones (1975-78). These wind fields were used to derive upper and lower tropospheric areal mean relative vorticity and their differences, the net relative angular momentum balance and upper tropospheric mass outflow. These kinematic parameters were shown by studies using composite rawinsonde data to be strongly related to tropical cyclone formation and intensity changes. Also, the role of forced synoptic scale subsidence in tropical cyclone formation was examined. The studies showed that satellite-derived lower and upper tropospheric wind fields can be used to monitor and possibly predict tropical cyclone formation and intensity changes. These kinematic analyses showed that future changes in tropical cyclone intensity are mainly related to the "spin-up" of the storms by the net horizontal transport of relative angular momentum caused by convergence of cyclonic vorticity in the lower troposphere and to a lesser extent the divergence of anticyclone vorticity in the upper troposphere

    Severe Storms Branch research report (April 1984 April 1985)

    Get PDF
    The Mesoscale Atmospheric Processes Research Program is a program of integrated studies which are to achieve an improved understanding of the basic behavior of the atmosphere through the use of remotely sensed data and space technology. The program consist of four elements: (1) special observations and analysis of mesoscale systems; (20 the development of quanitative algorithms to use remotely sensed observations; (3) the development of new observing systems; and (4) numerical modeling. The Severe Storms Branch objectives are the improvement of the understanding, diagnosis, and prediction of a wide range of atmospheric storms, which includes severe thunderstorms, tornadoes, flash floods, tropical cyclones, and winter snowstorms. The research often shed light upon various aspects of local weather, such as fog, sea breezes, air pollution, showers, and other products of nonsevere cumulus cloud clusters. The part of the program devoted to boundary layer processes, gust front interactions, and soil moisture detection from satellites gives insights into storm growth and behavior
    • …
    corecore