1,499 research outputs found

    Low Cost Inertial Sensors for the Motion Track-ing and Orientation Estimation of Human Upper Limbs in Neurological Rehabilitation

    Get PDF
    This paper presents the feasibility of utilizing low cost inertial sensors such as those found in Sony Move, Nintendo Wii (Wii Remote with Wii MotionPlus) and smartphones for upper limb motion mon-itoring in neurorehabilitation. Kalman and complementary filters based on data fusion are used to estimate sensor 3D orientation. Furthermore, a two-segment kinematic model was developed to estimate limb segment position tracking. Performance has been compared with a high-accuracy measurement system using the Xsens MTx. The experimental results show that Sony Move, Wii and smartphones can be used for measuring upper limb orientation, while Sony Move and smartphones can also be used for specific applications of upper limb segment joint orientation and position tracking during neurorehabilitation. Sony Move’s accuracy is within 1.5° for Roll and Pitch and 2.5° for Yaw and position tracking to within 0.5 cm over a 10 cm movement. This accuracy in measurement is thought to be adequate for upper limb orientation and position tracking. Low cost inertial sensors can be used for the accurate assessment/measurement of upper limb movement of patients with neurological disorders and also makes it a low cost replacement for upper limb motion measurements. The low cost inertial sensing systems were shown to be able to accurately measure upper limb joint orienta-tion and position during neurorehabilitation

    Compensation of Magnetic Disturbances Improves Inertial and Magnetic Sensing of Human Body Segment Orientation

    Get PDF
    This paper describes a complementary Kalman filter design to estimate orientation of human body segments by fusing gyroscope, accelerometer, and magnetometer signals from miniature sensors. Ferromagnetic materials or other magnetic fields near the sensor module disturb the local earth magnetic field and, therefore, the orientation estimation, which impedes many (ambulatory) applications. In the filter, the gyroscope bias error, orientation error, and magnetic disturbance error are estimated. The filter was tested under quasi-static and dynamic conditions with ferromagnetic materials close to the sensor module. The quasi-static experiments implied static positions and rotations around the three axes. In the dynamic experiments, three-dimensional rotations were performed near a metal tool case. The orientation estimated by the filter was compared with the orientation obtained with an optical reference system Vicon. Results show accurate and drift-free orientation estimates. The compensation results in a significant difference (p<0.01) between the orientation estimates with compensation of magnetic disturbances in comparison to no compensation or only gyroscopes. The average static error was 1.4/spl deg/ (standard deviation 0.4) in the magnetically disturbed experiments. The dynamic error was 2.6/spl deg/ root means square

    3D Orientation Estimation Using Inertial Sensors

    Get PDF
    Recently, inertial sensors have been widely used in the measurement of 3D orientations because of their small size and relative low cost. One of the useful applications in the area of Neurorehabilitation is to assess the upper limb motion for patients who are under neurorehabilitation. In this paper, the computation of the 3D orientation is discussed utilising the outputs from accelerometers, gyroscopes and magnetometers. Different 3D orientation representations are discussed to give recommendations for different use scenarios. Based on the results form the 3D orientation, 2D and 3D position tracking techniques are also calculated by considering the joint links and kinematics constraints from the upper limb segments. The results showed that the performance using complementary filter can make good estimation of the orientation.

    Methods and good practice guidelines for human joint kinematics estimation through magnetic and inertial wearable sensors

    Get PDF
    According to the World Health Organization, the ability to move is recognized as a key factor for the human well-being. From the wearable Magnetic and Inertial Measurement Units (MIMUs) signals it is possible to extract several digital mobility outcomes including the joint kinematics. To this end, it is first required to estimate the orientation of the MIMUs by means of a sensor fusion algorithm (SFA). After that, the relative orientation is computed and then decomposed to obtain the joint angles. However, the MIMUs do not provide a direct output of the physical quantity of interest which can be only determined after an ad hoc processing of their signals. It follows that the joint angle accuracy mostly depends on multiple factors. The first one is the magnitude of the MIMU measurements errors and up to date there is still a lack of methods for their characterization. A second crucial factor is the choice of the SFA to use. Despite the abundance of formulations in the literature, no-well established conclusions about their accuracy have been reached yet. The last factor is the biomechanical model used to compute the joint angles. In this context, unconstrained methods offer a simple way to decompose the relative orientation using the Euler angles but suffer from the inherent issues related to the SFA. In contrast, constrained approaches aim at increasing the robustness of the estimates by adopting models in which an objective function is minimized through the definition of physiological constraints. This thesis proposed the methods to accurately estimate the human joint kinematics starting from the MIMU signals. Three main contributions were provided. The first consisted in the design of a comprehensive battery of tests to completely characterize the sources of errors affecting the quality of the measurements. These tests rely on simple hypotheses based on the sensor working principles and do not require expensive equipment. Nine parameters were defined to quantify the signal accuracy improvements (if any) of 24 MIMUs before and after the refinement of their calibration coefficients. The second contribution was focused on the SFAs. Ten among the most popular SFAs were compared under different experimental conditions including different MIMU models and rotation rate magnitudes. To perform a “fair” comparison it was necessary to set the optimal parameter values for each SFA. The most important finding was that all the errors fall within a range from 3.8 deg to 7.1 deg thus making it impossible to draw any conclusions about the best performing SFA since no statistically significant differences were found. In addition, the orientation accuracy was heavily influenced by the experimental variables. After that, a novel method was designed to estimate the suboptimal parameter values of a given SFA without relying on any orientation reference. The maximum difference between the errors obtained using optimal and suboptimal parameter values amounted to 3.7 deg and to 0.6 deg on average. The last contribution consisted in the design of an unconstrained and a constrained methods for estimating the joint kinematics without considering the magnetometer to avoid the ferromagnetic disturbances. The unconstrained method was employed in a telerehabilitation platform in which the joint angles were estimated in real time. Errors collected during the execution of a full-body protocol were lower than 5 deg (considered the acceptability threshold). However, this method may be inaccurate after few minutes since no solutions can be taken to mitigate the drift error. To overcome this limitation a constrained method was developed based on a robotic model of the upper limb to set appropriate constraints. Errors relative to a continuous robot motion for twenty minutes were lower than 3 deg at most suggesting the feasibility of employing these solutions in the rehabilitation programs to properly plan the treatment and to accurately evaluate the outcomes

    Design and Validation of a Portable Wireless Data Acquisition System for Measuring Human Joint Angles in Medical Applications

    Get PDF
    A prototype sensor system to capture and measure human joint movements in medical applications was developed. An algorithm that uses measurements from two IMU sensors to estimate the angle of one human joint was developed. Custom-made hardware and software were developed. Validation results showed 0.67° maximum error in static condition, 1.56° maximum RMSE for dynamic measurements and 2.5° average error during fast movements’ tests. The prototype has been successfully used by medical teams

    Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion

    Get PDF
    Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error)

    An ISB-consistent Denavit-Hartenberg model of the human upper limb for joint kinematics optimization: validation on synthetic and robot data during a typical rehabilitation gesture

    Get PDF
    Several biomedical contexts such as diagnosis, rehabilitation, and ergonomics require an accurate estimate of human upper limbs kinematics. Wearable inertial measurement units (IMU s) represent a suitable solution because of their unobtrusiveness, portability, and low-cost. However, the time-integration of the gyroscope angular velocity leads to an unbounded orientation drift affecting both angular and linear displacements over long observation interval. In this work, a Denavit-Hartenberg model of the upper limb was defined in accordance with the guidelines of the International Society of Biomechanics and exploited to design an optimization kinematics process. This procedure estimated the joint angles by minimizing the difference between the modelled and IMU-driven orientation of upper arm and forearm. In addition, reasonable constraints were added to limit the drift influence on the final joint kinematics accuracy. The validity of the procedure was tested on synthetic and experimental data acquired with a robotic arm over 20 minutes. Average rms errors amounted to 2.8 deg and 1.1 for synthetic and robot data, respectively. Clinical Relevance - The proposed method has the potential to improve robustness and accuracy of multi-joint kinematics estimation in the general contexts of home-based tele-rehabilitation interventions. In this respect adoption of multi-segmental kinematic model along with physiological joint constraints could contribute to address current limitations associated to unsupervised analysis in terms of monitoring and outcome assessment

    Measuring motion with kinematically redundant accelerometer arrays: theory, simulation and implementation

    Get PDF
    This work presents two schemes of measuring the linear and angular kinematics of a rigid body using a kinematically redundant array of triple-axis accelerometers with potential applications in biomechanics. A novel angular velocity estimation algorithm is proposed and evaluated that can compensate for angular velocity errors using measurements of the direction of gravity. Analysis and discussion of optimal sensor array characteristics are provided. A damped 2 axis pendulum was used to excite all 6 DoF of the a suspended accelerometer array through determined complex motion and is the basis of both simulation and experimental studies. The relationship between accuracy and sensor redundancy is investigated for arrays of up to 100 triple axis (300 accelerometer axes) accelerometers in simulation and 10 equivalent sensors (30 accelerometer axes) in the laboratory test rig. The paper also reports on the sensor calibration techniques and hardware implementation

    Pushing the limits of inertial motion sensing

    Get PDF
    corecore