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Abstract

This work presents two schemes of measuring the linear and angular kinematics
of a rigid body using a kinematically redundant array of triple-axis accelerometers
with potential applications in biomechanics. A novel angular velocity estimation algo-
rithm is proposed and evaluated that can compensate for angular velocity errors using
measurements of the direction of gravity. Analysis and discussion of optimal sensor
array characteristics are provided. A damped 2 axis pendulum was used to excite all
6 DoF of the a suspended accelerometer array through determined complex motion
and is the basis of both simulation and experimental studies. The relationship be-
tween accuracy and sensor redundancy is investigated for arrays of up to 100 triple
axis (300 accelerometer axes) accelerometers in simulation and 10 equivalent sensors
(30 accelerometer axes) in the laboratory test rig. The paper also reports on the sensor
calibration techniques and hardware implementation.

1 Introduction

Human motion tracking for biomedical monitoring applications has received significant at-
tention in the engineering and medical research communities in recent years (see [1, 2] for
recent surveys). Stroke is one application area where Zhou [1] noted that detecting and
tracking human limb movements will be essential to a home based rehabilitation service
allowing the information to be used to modify movements and hence accelerate recovery.

The goal of any human motion tracking system is to collect data on human movements,
and process them in a meaningful way so as to provide information pertinent to the underly-
ing structure. To date most systems have been based on processing camera images of body
worn markers [2, 3]. Body-worn sensors such as goniometers [4], pressure tubes [5], gyro-
scopes and accelerometers [6, 7, 8, 9, 10] have also been implemented in a range of activities
and clinical conditions [10, 11, 12, 8]. There are strong reasons to consider inertial-based
sensors in biomechanical analysis. They are small, light-weight, low-powered, inexpensive,
and unobtrusive and so can be arranged so that they do not interfere with the person’s
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movements. They can be considered as viable for use outside a specialist laboratory and
could be integrated into existing orthotics and clothing. Problems remain with pure inertial
measurements since they can only provide acceleration terms and are thus sensitive to signal
noise. However this work identifies two methods to reduce this problem: sensor redundancy
and the constant gravity vector. Other restraints such as foot acceleration signatures or
kinematic constraints can also be considered but are not covered in this paper.

Most inertial based motion tracking consists of individual units, usually consisting of a
triple-axis gyroscope and a triple-axis accelerometer to estimate a state vector at a single
point on the limb. This work will consider the advantages to be gained from using only triple-
axis accelerometers as the sensor[13], but recovering more accurate state information from
a redundant array of such sensors. This approach is appropriate for ambulatory monitoring
applications in medicine [14] and the use of redundant sensors ensures measurements are less
susceptible to factors such as deformation of the soft tissues beneath an individual IMU.

The use of linear accelerometers to measure rotational kinematics has been a subject
of research since the 1960s [15, 16]. For planar motion, the inverse kinematic solution is
trivial [17] and has few practical applications; for example, the motion of a human knee
[18]. Most practical applications require that motion in all 6 Degrees Of Freedom (DoF)
is accounted for. The so-called ‘cube configuration’ uses 6 single axis accelerometers each
aligned along the diagonal of a different face of a cube. This configuration has been the focus
of several studies [19, 20, 21], including an implementation in hardware [22]. Analytical [23]
and empirical [24] studies have shown the 6 sensor configuration to be intrinsically unstable
and limited in application of over short time intervals. Arrays of 9 accelerometers provide
an alternative, stable solution [25, 26, 27].

The arrays of 6 and 9 accelerometer axis use specific configurations of multiple single-axis
accelerometers. Modern MEMS accelerometers are widely available in triple-axis packages
containing 3 mutually orthogonal accelerometer axes. The theoretical minimum number of
triple-axis accelerometers required to measurement motion in 6 DoF is 4 (incorporating a
total of 12 linear accelerometers axis). Schemes using triple-axis accelerometers [28, 29, 30,
31, 32] do not require specific geometric specific configurations, only that the position of a
sensor within an array is known. As each sensor is able to provide a vector measurement of
acceleration in 3 dimensions, the physical orientation of the sensor is irrelevant provided that
the orientation is known. The theoretical invariance of each sensor’s position and orientation
within the sensor array mean triple-axis accelerometer arrays have a clear practical advantage
over single-axis accelerometer arrays.

Accelerometer arrays designed to incorporate a number of redundant sensors exploit the
invariance of an inverse kinematic solution to the position of any individual sensor and
such schemes typically use a matrix pseudoinverse [33, 34]. Few studies have addressed
the relationship between the performance and redundancy of the system; most studies are
numerical and limited to sensor arrays of no more than 24 sensitive axes [35] [34].

Due to past limitations of accelerometer technology, research into accelerometer sensors
arrays has been largely limited to numerical and theoretical work. It has only been with
the relatively recent developments in Microelectromechanical (MEMS) that empirical studies
have became feasible [22, 28, 36, 30]. Few empirical studies exist for redundant accelerometer
arrays and such studies are/have been limited to a number of sensors that represent a small
margin of redundancy [37] [38].
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Figure 1: Schematic describing the i’th accelerometer relative to the ridged body kinematic
frame

This paper presents two schemes for the measurement of translational and angular motion
using a kinematically redundant array of triple-axis, accelerometers and the investigates rela-
tionship between redundancy and performance in both simulation and experimental studies.
Both simulation and experimental investigations use a two axis pendulum to generate 6 DoF
motion of the suspended body, enabling results to be directly compared. The redundancy of
the implemented systems is significantly greater than that of previous investigations, the ex-
perimental system consists of ten triple-axis accelerometers (thirty individual accelerometer
axes).

2 Solving inverse kinematics with accelerometers

Consider n triple-axis accelerometers fixed and aligned to a rigid body such as an orthosis
on a subject’s limb at known positions relative to the body coordinate frame. The position
of the i’th sensor is described by the vector Bdi defined in the body frame and provides the
measurement vector iα. The motion of the body is described by the linear accelerations ẍ,
ÿ and z̈ of the body origin and the rotation velocities p, q and r around the body x, y and z

axes respectively. This is represented as the schematic shown as Figure 1 where the mutually
orthogonal unit vectors x̂B, ŷB and ẑB, and x̂i, ŷi and ẑi define the coordinated frames of
the body and i’th sensor respectively. If the i’th sensor is not aligned to the body frame then
it can be considered aligned to the arbitrary frame i′ defined by the mutually orthogonal
unit vectors x̂i′ , ŷi′ and ẑi′ (shown in Figure 1), providing the measurement vector i′α. The
orientation of frame i′ relative to frame i is described by the rotation matrix i

i′R so that the
aligned acceleration measurement iα may be obtained using equation (1).

iα = i
i′R

i′α (1)

2.1 Forward kinematics

The linear acceleration measured by the i’th sensor, iα, may be defined by the kinematics
of the body origin using equation (2) where Bω and Ba describe the angular velocity and
linear acceleration of the rigid body origin respectively. This represents the sum of linear,
tangential and centripetal accelerations.

iα = Bω̇ × Bdi +
Bω × (Bω × Bdi) +

Ba (2)
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iα =
[

αx αy αz

]T
(3)

Bω =
[

p q r
]T

(4)

Bdi =
[

dx dy dz
]T

(5)

Ba =
[

ẍ ÿ z̈
]T

(6)

Equation (2) may be rearranged as equation (7) where Gi is a constant matrix defined by
the position of the i’th sensor and s is a state vector describing the kinematics of the body
origin.

iα = Gis (7)

Gi =





0 -dx -dx 0 dz -dy dy 0 dz
I3 -dy 0 -dy -dz 0 dx dx dz 0

-dz -dz 0 dy -dx 0 0 dy dx



 (8)

and
s =

[

ẍ ÿ z̈ p2 q2 r2 ṗ q̇ ṙ pq qr rp
]T

(9)

2.2 Inverse kinematics solutions

2.2.1 Combinatorial method

The inverse kinematic solution can be found directly from equation (7) through an inversion
of Gi. If the number of sensors fixed to the body is 4 then accelerometer measurements
may be arranged as the vector αC and the corresponding square matrix C constructed as
described by equations (10) and (11). C may be inverted to provide the inverse kinematic
solution shown as equation (12).

αC =
[

1αT 2αT 3αT 4αT
]T

(10)

C =
[

G1
T G2

T G3
T G4

T
]T

(11)

s = C-1αC (12)

This solution cannot directly incorporate n triple-axis accelerometer for n 6= 4. If n > 4 then
there exists m unique combinations of sensors and possible C matrices where m is defined
by equation (13). A single value of s may be computed as the mean of the m possible values,
as described by equation (14) where sj a value for a given combination of four triple-axis
accelerometer.

m =

(

n

4

)

=
n!

24(n− 4)!
(13)

s =
1

m

m
∑

j=0

sj (14)

If the positions of any sensors are equal or if all sensors exist on a plane (for a non-planar
system) then Gi is singular and cannot be inverted. For n > 4, a unique value of C-1 must
be computed for each combination. This method may result in a considerable computational
load as an array of n sensors requires m 12×12 matrix inversions and multiplications.
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2.2.2 Pseudoinverse method

For n accelerometer measurements arranged in the vector αP , the non-square matrix P may
be constructed and the inverse kinematic solution may be computed as equation (17) where
+ denotes the pseudoinverse. This is a similar approach to that of existing inverse kinematic
solutions for redundant accelerometer arrays [33, 34].

αP =
[

1αT 2αT 3αT ... nαT
]T

(15)

P =
[

G1
T G2

T G3
T ... Gn

T
]T

(16)

s = P+αP (17)

The Moore-Penrose pseudoinverse of P may be calculated as equation (18) provided that
the rows or P are linearly independent and the matrix represents > 4 sensors.

P+ = (P TP )-1P T (18)

If the positions of any sensors are equal or if all sensors exist on a plane (for a non-planar
system) then the rows of P are not linearly independent and equation (18) may not be
used. The computational requirement of this method considerably is less than that of the
combinatorial method as only one n×12 matrix inversion and multiplication is required for
n sensors.

It should also be noted that the pseudoinverse is identical to an inverse computed using
the non-zero singular values from a singular value decomposition of the matrix. Thus the
sensitivity of the solution can be evaluated from the ratio of the largest to the smallest singu-
lar value (equivalent to the condition number of the matrix) as well as the composition of the
two uniary matrices associated with the decomposition. This analysis confirms the findings
presented later in ??, optimal array configurations. Other matrix methods are available to
solve equation (17) such as QR decomposition with back substitution, or minimising the l1
norm.

2.3 Angular velocity estimation

The state vector s does not directly yield individual angular velocity terms. This is a problem
common to all accelerometer-only inertial measurement methods and many solutions have
proposed. Cardou et al. provide a discussion and analysis of the different approaches to this
problem and present a method more robust than many existing solutions [39].

Here we propose a novel angular velocity estimation algorithm that employs the gradi-
ent descent approach but combines this with a complementary filter structure to achieve
advantages in computational efficiency and well described error dynamics. The method is
similar to that described in Madgwick et al [40]. The angular velocity estimation is further
improved by the orientation estimation algorithm presented in section 3 to compensate for
bias errors in the estimated angular velocity.

The available angular velocity terms may be used to construct an objective function
f(ω̃, s) as shown in equation (19) where ω̃ is the estimated angular velocity. If f(ω̃, s) = 0
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then ω̃ = ±ω. As each angular velocity term is only available as the product of itself or
another, the sign of each quantity is lost and cannot be recovered directly.

f(ω̃, s) =

















p̃2 − p2

q̃2 − q2

r̃2 − r2

p̃q̃ − pq

q̃r̃ − qr

r̃p̃− rp

















(19)

ω̃ =
[

p̃ q̃ r̃
]T

(20)

The gradient of the solution surface (defined by ηp, ηq and ηr) created by f(ω̃, s) may be
used to compute the direction of the error in the estimated angular velocity as equation (23)
where Jf is the Jacobian of f(ω̃, s).





ηp
ηq
ηr



 = JT
f (ω̃)f(ω̃, s) (21)

=





2p̃ 0 0 q̃ 0 r̃

0 2q̃ 0 p̃ r̃ 0
0 0 2r̃ 0 q̃ p̃





T

















p̃2 − p2

q̃2 − q2

r̃2 − r2

p̃q̃ − pq

q̃r̃ − qr

r̃p̃− rp

















(22)

=





2p̃(p̃2 − p2) + q̃(p̃q̃ − pq) + r̃(r̃p̃− rp)
2q̃(q̃2 − q2) + p̃(p̃q̃ − pq) + r̃(q̃r̃ − qr)
2r̃(r̃2 − r2) + q̃(q̃r̃ − qr) + p̃(r̃p̃− rp)



 (23)

The direction of this vector may be combined with a magnitude computed as the difference
between the magnitudes of the estimated angular velocities and actual angular velocities.
The estimated error in the angular velocity, ẽ, is therefore calculated as the dot product
shown in equation (24). Due to the loss of sign in the available angular velocity terms the
error will be computed relative to the closest value of ±ω.

ẽ =





sign(ηp)
sign(ηq)
sign(ηr)



 ·
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√
r2
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∣











(24)

The estimated angular velocity is computed from the angular acceleration and estimated
error in the angular velocity using equation (25). This is represented as the block diagram
shown as Figure 2.

ω̃ =

∫

(ω̇ −Kẽ) (25)
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Figure 2: Complementary filter used for angular velocity estimation

2.3.1 Stability and response to initial conditions

A simplified analysis of the proposed complementary filter is possible if the estimated error
term, ẽ, is assumed to be equal to the true error term, e. The complementary filter can then
be seen to represent a first order system with error dynamics governed by equation (26).
The system is therefore stable for all values of K > 0 and the error can be expected to decay
exponentially at a rate governed by K.

ė = −Ke (26)

As the estimated error may only be computed relative to the closest value of ±ω, ω̃ will
converge to the closest value of either ±ω. A correct sign assertion may be assured if the
dynamics in ω̇ are of a sufficiently large magnitude relative to the convergence rate of ω̃
governed by K, at the zero-crossing point of ω. A sufficient magnitude of ω̇ relative to the
convergence rate of ω̃ would mean that integral drift would not dominate the ω̃ dynamics
and the value of ω̃ would not drift across zero and hence cause an incorrect sign.

3 Orientation estimation and angular velocity compen-

sation

In many applications it can be assumed that the mean linear accelerations measured over
an extended period of time represents gravity. The direction of gravity measured relative to
the acceleormeter array may therefore be used to estimate the attitude of the array relative
to the Earth’s surface. As will be shown in section 6.3, sensor measurement and alignment
errors result in a bias error in the estimated angular velocity at low velocities. Knowledge
of the accelerometer array orientation may be used to correct for steady state errors in the
estimation angular velocity.

Mahony et al. [41] have presented an orientation estimation algorithm for conventional
IMUs consisting of gyroscopes and accelerometers. The algorithm is equally applicable to
the accelerometer array presented in this paper as the inverse kinematic solution yields
linear accelerations and angular velocities. Equations (27) to (30) represent a quaternion
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implementation [42] of this algorithm where B
E q̂ is the estimated orientation of the Earth

relative to the body, represented as a quaternion of elements q0 to q3. The gains KP and KI

represent proportional and integral gains respectively. Theˆaccent denotes the normalised
unit vector and the ⊗ operator denotes a quaternion product.

B
Eq =

∫

B
E q̇ (27)

B
E q̇ =

1

2
B
E q̂ ⊗

[

0 (Bω − δ)T
]

(28)

δ = KPǫ+KI

∫

ǫ (29)

ǫ = Ba×





2q1q3 − q0q2
2q0q1 + q2q3

q20 − q21 − q22 + q23



 (30)

The error in the estimated angular velocity is represented by the integral feedback term.
The compensated estimated angular velocity is therefore obtained as equation (31).

ω̃′ = ω̃ −Ki

∫

ǫ (31)

4 2 axis pendulum kinematics

A 2 axis pendulum was the chosen subject of simulation and experimental studies as it
approximates a number of human joints and the oscillatory motion is analogous to gait and
excites all 6 DoF of the suspended body. The damped motion results in both low and high
magnitude rates and the complex motion of the 2 axis joint results in rotational kinematics
in all three axes of the suspended body. The pendulum is represented by the schematic
shown as Figure 3 where θ1 and θ2 represent the angle in each axis of the joint. The 2 axis
pendulum equations of motion have been derived as equations (32) and (33) where c1 and
c2 are the damping ratio of each axis of the joint.

θ̈1 = 2θ̇1θ̇2 tan θ2 −
g sin θ1
l cos θ2

− c1θ̇1

m cos2 θ2
(32)

θ̈2 = −θ̇21 cos θ2 sin θ2 −
g

l
cos θ1 sin θ2 −

c2θ̇2

m
(33)

The body kinematics are computed as the forward kinematics described by equations
(34) to (37) where Ba, Bω and Bω̇ describe the translational acceleration, angular velocity
and angular acceleration respectively of the body frame in directions relative to the body
frame. E

BR describes the orientation of the body frame relative to the Earth frame.

Ba = g





- sin θ2
sin θ1 cos θ2
cos θ1 cos θ2



 (34)
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Figure 3: 2 axis pendulum schematic

Bω =





θ̇1 cos θ2
θ̇2

θ̇1 sin θ2



 (35)

Bω̇ =





θ̈1 cos θ2 − θ̇1θ̇2 sin θ2
θ̈2

θ̈1 sin θ2 + θ̇1θ̇2 cos θ2



 (36)

E
BR =





cos θ2 0 sin θ2
sin θ1 sin θ2 cos θ1 - sin θ1 cos θ2
- cos θ1 sin θ2 sin θ1 cos θ1 cos θ2



 (37)

5 Simulation studies

Simulation studies were used for the initial testing of the proposed methods and to investigate
the relationship between system accuracy and redundancy. Simulations used the damped 2
axis pendulum model with an array of n triple-axis accelerometers positioned evenly around
a 360◦ helix concentric with the length of the pendulum and with a radius of 0.05 m. Figure 4
shows the pendulum and triple-axis accelerometers as drawn by the simulation software. For
convenience, all sensors were aligned with the pendulum body coordinate frame; arbitrary
orientations are used and calibrated for in the experimental studies discussed in section 6.

The forward kinematics were computed to provide ideal sensor accelerometer measure-
ments and processed through a sensor model to simulate the frequency response and noise
characteristics. The sensor model was a simplification of a Simulink based accelerometer
behavioural model provided by the manufacturer (Analog Devices). The noise model con-
sisted of zero mean additive Gaussian noise with a standard deviation of 0.045ms−2 chosen to
match the experimental data. The signal was then processed through a first order low-pass
filter with a cut-off frequency of 50 Hz. The angular velocity estimation filter used a fixed
gain of K = 0.5. Pendulum model parameters were fixed so that m = 0.5 kg, l = 0.3 m,
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Figure 4: Schematic of pendulum with triple-axis accelerometers mounted in helix pattern

g = 9.8 ms−2, c1 = 0.1 Nsm−1 and c2 = 0.3 Nsm−1, with initial conditions of θ1 = θ2 = 60◦,
and θ̇1 = θ̇2 = 0. The simulation was run for 30 seconds with a discrete-time step of 1 ms.

To investigate the relationship between the redundancy and accuracy of a sensor array,
simulations were conducted for arrays consisting of between 5 and 100 triple-axis sensors.
For each array the mean of the RMS errors in the x, y and z dimensions was computed for
the linear acceleration, angular acceleration and angular velocity. The error in the estimated
orientation was not investigated as integral drift would fail to represent a meaningful rela-
tionship. Results were obtained using both the combinatorial and pseudoinverse method to
enable a comparison.

The integral drift inherent to the angular velocity estimation algorithm would introduce
a bias in the estimated velocity at low rates. This random steady state error meant that the
apparent relationship between the angular velocity error and redundancy was non-monotonic.
To compensate for this, the mean result of 5 simulations was computed for each value of
redundancy. The results for angular acceleration and velocity are shown as Figure 5 and
Figure 6. It can be seen that the combinatorial method results in an greater error than the
pseudoinverse method at greater computational expense. Simulations of the combinatorial
method for arrays > 33 sensors were abandoned as the time taken to process arrays of this
size became impractical. The non-monotonic relationship observed in the estimated angular
velocity is due to the ‘random walk’ in this state that comes about at low velocities and
is constrained by the feedback in the angular velocity estimation filter. This random walk
is due to the noise (in simulation) of the Analog Devices accelerometers. As the angular
velocity is reduced (due to damping), noise dominates the signal and the estimated angular
velocity is then largely governed by the integration of the angular acceleration which again
is largely made up of the sensor noise causing a random walk. This error does not directly
relate to the number of sensors.

Oscillatory motion of the pendulum and the frequency response of the sensors results in a
minimum achievable error represented by the oscillatory error components due to the phase-
lag of the sensor outputs (due to a simulated anti-aliasing filter). This minimum achievable
error was computed by running a simulation using an accelerometer error model comprised
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Figure 5: Angular acceleration error vs. sensor redundancy
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Figure 6: Angular velocity error vs. sensor redundancy

of only the anti-aliasing filter, i.e. zero noise. The resultant error is the same for arrays of
all sizes and represents the minimum achieve error. The respective minimum achieve errors
are indicated in Figure 5 and Figure 6.

The pendulum testbed allows more complex motion to be evaluated. If the initial con-
ditions use a nonzero velocity vector and dissimilar damping coefficients, all cross terms in
equation 7 can be elicited at a range of frequencies. The spectrum of any individual ac-
celerometer axis will contains frequencies up to the natural frequency of the pendulum and
hence the results can be demonstrated to work across this frequency range. The upper graphs
in figure 6 and 7 demonstrate this result for a simulation of a cluster of 20 accelerometers
placed in a 5 cm radius helix beginning half way down the pendulum and continuing to the
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end. When viewed in isolation this is readily observed to be a non obvious complex motion.
(If acceptable to the editors, a footnote could be included here with the URL of a YouTube
video). The error residuals are given in the lower graphs of Figures 7 and 8.
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6 Experimental studies

The experimental studies were conducted to validate the above simulation results. The stud-
ies were designed to be as similar to the simulation studies as possible and used a redundant
array of 10 triple-axis accelerometers. Unlike the simulation studies, the experimental studies
were subject to 2 significant sources of error: sensor calibration errors (of gains and biases)
and sensor installation errors (of position and alignment).

6.1 Hardware

Experimental studies required data to be acquired from an array of 10 triple-axis accelerom-
eters at a sample rate of at least 1 kHz and with as high a resolution as practicable; sensor
resolution had been identified as a limiting factor in similar studies [17]. To meet these
requirements, custom equipment was developed for this research project. The equipment
consisted of the DAQ32 data acquisition board, the DAQ32 PC Interface software and 10
triple-axis accelerometer probes.

6.1.1 Data acquisition equipment

The DAQ32 is a 32 channel USB data acquisition board built around Microchip’s high-
end dsPIC33FJ256GP710 Digital Signal Controller. The DAQ32 features a filtered power
supply for analogue sensors and 32 analogue input channels each sampled at 1.024 kHz. Each
channel is oversampled by a factor of 8 and the truncated mean result used for enhanced
filtering and accuracy.

6.1.2 Accelerometer probes

Each accelerometer probe consisted of an Analog Devices’ ADXL335 triple-axis accelerom-
eter with signal and power supply conditioning circuitry assembled on the accelerometer
package to minimise size and weight. The probe’s 0.4 m lead consisted of wires twisted
together so that the power supply wires would provide a level of electromagnetic shielding
to the accelerometer signals. Fine wire connections were sunk in a silicon sealant to provide
mechanical durability. The complete probe (shown in Figure 9) occupied a volume of a 5
mm cube and weighed less than 1 g (excluding lead).

6.1.3 Test rig

The pendulum was constructed from 2 perpendicular sheets of aluminium so that the 10
accelerometer probes on the surface of the sheets formed an approximate helix with a length
of 350 mm and radius of 50 mm. Each accelerometer was mounted at arbitrary orientations
varying up to 180◦. The position of each accelerometer was measured. The pendulum joint
was constructed from 2 precision servo potentiometers so that angular position of each axis
could be measured. The 32 analogue channels required by the 10 triple-axis accelerometer
probes and 2 potentiometers were all accommodated by the DAQ32. Figure 10 shows the
pendulum with attached accelerometer probes and annotated potentiometer axes θ1 and θ2.
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Figure 9: Complete accelerometer probe next to a 150 mm ruler

Figure 10: 2 axis pendulum with attached accelerometer probes and annotated potentiometer
axes θ1 and θ2

Simulation was based on a helix, the experimental rig needed to be as rigid as possible so
a cross structure was chosen. This is equivalent to a four-spoke helix. This is a reasonable
compromise to allow the experimental rig to be manufactured. The cross structure in the
pendulum allows for greater rigidity in the pendulum and higher accuracy when placing the
sensors.
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6.2 Calibration

6.2.1 Axis gain and bias

As the accelerometer output is linear, the calibrated measurement, α, may be obtained from
the un-calibrated measurement, u, using the relationship described by (38). The vector b

and diagonal matrix K account for the individual axis bias and sensitivity respectively. The
skew matrix S accounts for non-orthogonality and coupling between the accelerometer axes.
The gain smn defines the proportion of axis n affecting axis m.

α = SKu− b

=





1 sxy sxz
syx 1 syz
szx szy 1









kx 0 0
0 ky 0
0 0 kz









ux

uy

uz



−





bx
by
bz





(38)

A stationary accelerometer will measure the direction and magnitude of the Earth’s
gravitational field due to the reaction force on the mass within the MEMS structure. For a
calibrated sensor, the measured magnitude will be constant at all orientations of the sensor.
That is, equation (39) will be true for all said measurements where g is the magnitude of
gravity. Therefore, K and b may be found as the solution to equation 40 where uj represents
the un-calibrated sensor measurement at the j’th orientation within a calibration dataset.
Although it is possible to compound S and K in to a single matrix, it was found this would
limit the success of an optimisation algorithm as it became sensitive to the initial guesses of
the gain parameters.

g = ‖SKu− b‖ (39)

min
S,K,b∈ℜ

∑

j

(g − ‖SKuj − b‖)2 (40)

A calibration dataset was collected using an automated calibration gimbal capable of ro-
tating independently around the pan, roll and tilt axes. The pendulum (with attached
accelerometer probes) was fixed to the gimbal so that it could be rotated to any orientation.
An automated routine was composed to rotate the gimbal pitch and roll axis through their
full range in 10◦ steps so that every combination of pitch and roll angle was achieved. At
each orientation, the gimbal was allowed 10 seconds to come to rest and then the mean of
each accelerometer output was taken for a 15 second period.

A value of g was obtained as 9.812 ms−2 for the geographical location of the studies [43].
Equation (40) was solved using MATLAB’s Optimisation toolbox’s fminunc function and
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. Initial values for gains and biases
were chosen as the typical values detailed in the AXDL335 datasheet. Calibration was
verified by comparing the measured magnitude of gravity with the known magnitude at each
orientation within the calibration dataset. Figure 11 shows typical calibrated measurements
of one accelerometer for the full calibration dataset.

6.2.2 Alignment

Hardware installation errors mean that a misalignment must be accounted for in each triple-
axis accelerometer. Alignment errors as low as 0.1◦ have been shown to result in significant
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Figure 11: Validation the calibrated accelerometer gains and biases

errors in estimated kinematic states [33]. An aligned triple-axis accelerometer measurement,
iα, is related to the misaligned measurement i′α by the rotation matrix i

i′R as described by
equation (1). The alignment may be equivalently represented by the quaternion i

i′q. If the
array is stationary, equation (41) will be true for sensors at all orientations. Therefore i

i′q

may be found as the solution to (42) where i′αj and
Baj represent the measured acceleration

of the i’th accelerometer and the acceleration of the body at the j’th orientation respectively.
As the acceleration of the body is unknown, one fiducial sensor must be chosen to provide
a measurement equal to Ba. An alternative kinematic minimisation approach for alignment
calibration was also implemented but performance was found to be no better than simply
choosing a convenient sensor to be the fiducial.

Ba = i
i′ q̂

∗ ⊗ i′α⊗ i
i′ q̂ (41)

min
i

i′
q∈ℜ

∑

j

[

i
i′ q̂

∗ ⊗ i′αj ⊗ i
i′ q̂ − Baj

]2

(42)

Equation (42) was solved using the same calibration dataset and method described in section
6.2.1. The fiducial sensor was chosen as that judged to be best aligned to the pendulum on
visual inspection. This gravitational based attitude calibration scheme is similar to previ-
ously proposed techniques; however, the use of a quaternion representation avoids problems
of non-orthogonality associated with a rotation matrix based approach [44].

6.3 Results

The pendulum was left to swing with motion in both axis remain in phase until rest while
data from each of the 10 triple-axis accelerometers and 2 joint potentiometers was recorded.
The ‘true’ suspended body kinematics were then estimated for the first 30 seconds of the
dataset using the potentiometer data and kinematic model within a moving horizon state
estimation algorithm.
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ṗǫ

q̇ǫ

ṙǫ

Figure 12: Angular accelerations of pendulum measured by accelerometer array (top) and
residuals (bottom)

Figure 12 and Figure 13 show the pendulum kinematics states as estimated using the
pseudoinverse method and data from all 10 sensors. The angular velocity estimation algo-
rithm used a gain of K = 2 and the orientation estimation algorithm used gains of KP = 5
and KI = 1.0. Each figure consists of 2 plots: the upper plot represents the measured or
estimated state and the lower plot represents the corresponding error. Small errors in align-
ment calibration and the constant acceleration of gravity result in an angular velocity bias
error and low velocities (see Figure 13). This error is compensated in p and q but cannot be
compensated in r as this axis of rotation eventually aligns with the direction of gravity.

To investigate the relationship between error and redundancy, the suspended body kine-
matics were computed using the pseudoinverse method for each combination of sensors for
the available array of ten sensors, thus results from four to ten sensors were possible. Since
the number of combinations for a given number of sensors is defined by

(

10

n

)

, 210 results were
possible for 4 sensors, rising to 252 for 5 sensors and then falling to give only the single result
when the fully redundant array of 10 sensors was computed. Performance is quantified as
the mean of the RMS error in the x, y and z DoF for linear acceleration, angular acceleration
and angular velocity. These results are shown as box plots in Figure 14 The results compare
well with the simulation studies given in section 5. The anomalous rise apparent in the
third graph of Figure 14 when all 10 sensors are used to calculate angular velocity. This is
an artifact of the imperfect alignment of sensors causing the information of one sensor to
dominate the calculation. This would suggest a practical system could make a confidence
estimate of individual sensors and down grade sensors that might be close to saturation,
becomes mechanically misaligned (or knocked), or operating at a low signal to noise ratio.
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Figure 14: Relationship between error and sensor redundancy for linear acceleration (left),
angular acceleration (middle), angular velocity (right)

7 Discussion

This paper has shown a clear advantage of higher levels of redundancy. Incorporating a
large number of sensors requires a practical consideration of the computational load. The
pseudoinverse method has shown to not only provide greater accuracy but to do so at signif-
icantly less computational expense. As the matrix inversion is required to be computed only
once, the computational load of the pseudoinverse is proportional to the number of sensors
in the array.

Due to sensor alignment errors and the constant acceleration of gravity, the estimate of
angular velocity r was subject to a bias error at low velocities (< 0.5 rads−1). Observations
of the direction of gravity enabled the orientation estimation algorithm to compensate for
such errors in p and q; however, compensation is not possible when the axis of r is parallel
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with the gravity vector. Such compensation may be achieved if the algorithm is extended to
incorporate information from a magnetometer [41].

An accelerometer array cannot be used to directly determine the direction of an angular
velocity. The angular velocity estimation algorithm presented can potentially assert an
incorrect sign when angular velocities and accelerations are both of low magnitude. The
velocity estimation method appeared to be robust in dealing with this problem although a
sign switch is possible.

An accelerometer array IMU presents a number of benefits to a biomedical application.
Unlike a conventional IMU it is able to provide direct measurement of angular acceleration
which may provide new insight to movement studies. Redundancy provides increased levels
of accuracy, potentially allowing a system to be created where a single (more expensive) high
quality sensor may be substituted for many (cheaper) lower quality sensors.

Calibration has been limited to being off-line using a specific calibration dataset. If future
work can achieve an on-line calibration method capable of estimating changes in individual
accelerometer locations and orientations using the natural motion of the subject, then use
of accelerometer arrays can be extended to non-rigid bodies. This would be of interest to
biomedical applications as it would allow the use of accelerometers woven into a wearable
fabric. In the interim, sensors could be embedded within a rigid orthosis such as an angle
foot orthosis, or onto rigid clothing inserts. In either case, the resulting sensor will allow
continuous, low power and accurate measurements with minimum obstruction to patient
movements and lifestyle.

This paper has demostrated how redundancy in an array of acceleroemters can improve
measurement accuracy. Redundancy of such homogenous arrays opens avenues for further
exploration on object dynamics, in particular considering relaxing the constraints by consid-
ering multiple sensors attached to an elastic object, such as skin, or constrained to move in a
complex relationship (such as clothing), or subject to vibration modes, (such as an aeroplane
wing) or included a segmentation such as biomechanical joint was included as a constraint.

8 Conclusion

This paper analyses the benefits of using large arrays of accelerometers. Results include both
simulation studies of up to 100 tri-axial sensors and empirical results of an array of up to 10
MEMS accelerometers. A comparison is given between simulation and empirical data based
on a 2 axis pendulum simulating a knee.

Two methods are reported for the reconstruction of an acceleration state vector to rep-
resent the limb. Both methods allow the pre-computation of the necessary matrix inverse.
The method based on computing a pseudoinverse (using singular value decomposition) is
shown to achieve better accuracy than that based on combinatorial averaging of the sensors,
and at less computational expense.

A limitation of accelerometer arrays is that it is not possible to recover the sign of the
angular velocities directly so a method is given that tracks velocity transitions through this
zero transition. Finally, the paper gives a method for assessing the optimal placement of
sensors in a large planar array, describes a hardware solution and discusses a method for
calibrating large arrays of accelerometer sensors.
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Appendix A - Planar simplification

If motion is constrained to a planar coordinate system so that translational motion occurs
only in the x and y dimensions and rotational motion only around the z axis, each sensor
is reduced to a dual-axis arrangement and equations (3), (8) and (9) simplify to equations
(43), (44) and (45) respectively. For planar systems the rotational velocity is denoted by
ω. The planar simplification gives a useful insight into the arrangement of redundant sensor
constellations (see ??).

iα =
[

αx αy

]T
(43)

Gi =

[

1 0 -dx -dy
0 1 -dy dx

]

(44)

s =
[

ẍ ÿ ω2 ω̇
]T

(45)

Angular velocity estimation

For the simplified planar system, the objective function is simply the difference between the
squared estimated angular velocity term and the squared angular velocity term yielded by
the state vector s. The error originally defined in equation (24) in the estimated angular
velocity may be redefined as the scalar quantity of equation (46).

ẽ = sign(ω̃(ω̃2 − ω2))
∣

∣

∣
|ω̃| −

√
ω2

∣

∣

∣
(46)

Appendix B - Optimal array configurations

For ideal accelerometers, all valid array configurations perform equally. In practice, errors
due to noise and signal saturation in accelerometer measurements will mean that some array
configurations perform better than others. We wish to evaluate the effect of individual array
characteristics to understand what determines an optimal array. An accelerometer array
may be characterised by the following:

1. Position of the kinematic origin relative to a given sensor constellation;

2. Orientation of the kinematic origin relative to a given sensor constellation;

3. Sensor constellation, i.e. a set of specific sensor locations; and

4. Volume occupied by a given the sensor constellation.

Qin et al. [34] use inspection of matrix singular values to determine the suitability of a sensor
configuration and determined that an optimal design is represented by an isotropic matrix;
that is, a matrix with a condition number of one where all singular values are identical and
nonzero. This is achieved by a sensor constellation represented by the vertices of a Platonic
solid. The analysis of other authors exist for planar [45, 46] and 3D [47] [48] accelerometer
arrays.
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ẍ

1

2
l

ω

p

ÿ
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Array volume and kinematic origin

To analyse the effect of the kinematic origin location and array volume we will consider a
simplified planar array of 2 dual-axis accelerometers represented by the measurements α′

1 to
α′
4, each incorporating an error (δ1 to δ4). The kinematic origin of the array is equidistant

from each sensor and may be displaced by a distance p along the origin y axis (remaining
equidistant from each sensor). The volume of the array is defined by the distance of sep-
aration, l. The system is described by the schematic shown in Figure 15. Equation (47)
describes the forward kinematic solution.

α′ = Hs+ δ (47)
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(48)

The inverse kinematic solution may be arranged to provide the measured kinematic states
of the body origin in terms of the true kinematic states and measurement errors as shown
by equations (49) and (50). In these equations, ẍ′, ÿ′, ω2′ and ω̇′ represent the measured
kinematic states of the body origin.

s′ = H−1α′

= H−1(Hs+ δ)

= s+H−1δ

(49)
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(50)

For this simplified equidistant configuration it can be seen from equation (50) how the
distance from the origin (p) and sensor separation (l) may be manipulated to minimise the
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error in the measured kinematics states. The error in the measured angular states (ω2′ and
ω̇′) is independent of the origin displacement and inversely proportional to the sensor sepa-
ration. Error components in the measured linear states (ẍ′, ÿ′) are proportional to the origin
displacement and inversely proportional to the sensor separation. This method extends to
assessing redundant planar sensor arrays, and leads to a weighted average (linear accelera-
tions) or a weighted sum of difference (angular acceleration). Thus it can be demonstrated
that an optimal array would maximise the sensor separation. The kinematics origin should
be located at the point where the expected mean acceleration is minimised. Where more
specific information is not available this could be considered as the centre of mass of the
limb. Other authors have arbitrarily chosen the centre of volume as the kinematic origin of
a sensor array [33, 34], so assuming a homogeneous body the methodology we describe gives
a justification for their decision.

Analysis of the equidistant planar structure supports Qin’s assertion [34] that a reason-
able sensor array would be to distribute the sensors on the vertices of a Platonic solid. This
only applies if the body is assumed to be rotating around the centre of the sensor constella-
tion. Where more sensors than vertices are used in the IMU, a consideration of the singular
values of the reconstruction matrix is an appropriate method to optimise sensor placement.
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