1,143 research outputs found

    Upscaling fluxes from towers to regions, continents and global scales using datadriven approaches

    Get PDF
    Quantifying the current carbon cycle of terrestrial ecosystems requires that we translate spatially sparse measurements into consistent, gridded flux estimates at the regional scale. This is particularly challenging in heterogeneous regions such as the northern forests of the United States. We use a network of 17 eddy covariance flux towers deployed across the Upper Midwest region of northern Wisconsin and Michigan and upscale flux observations from towers to the regional scale. This region is densely instrumented and provides a unique test bed for regional upscaling. We develop a simple Diagnostic Carbon Flux Model (DCFM) and use flux observations and a data assimilation approach to estimate the model parameters. We then use the optimized model to produce gridded flux estimates across the region. We find that model parameters vary not only across plant functional types (PFT) but also within a given PFT. Our results show that the parameter estimates from a single site are not representative of the parameter values of a given PFT; cross-site (or joint) optimization using observations from multiple sites encompassing a range of site and climate conditions considerably improves the representativeness and robustness of parameter estimates. Parameter variability within a PFT can result in substantial variability in regional flux estimates. We also find that land cover representation including land cover heterogeneity and the spatial resolution and accuracy of land cover maps can lead to considerable uncertainty in regional flux estimates. In heterogeneous, complex regions, detailed and accurate land cover maps are essential for accurate estimation of regional fluxes

    Upscaling carbon fluxes from towers to the regional scale: Influence of parameter variability and land cover representation on regional flux estimates

    Get PDF
    Quantifying the current carbon cycle of terrestrial ecosystems requires that we translate spatially sparse measurements into consistent, gridded flux estimates at the regional scale. This is particularly challenging in heterogeneous regions such as the northern forests of the United States. We use a network of 17 eddy covariance flux towers deployed across the Upper Midwest region of northern Wisconsin and Michigan and upscale flux observations from towers to the regional scale. This region is densely instrumented and provides a unique test bed for regional upscaling. We develop a simple Diagnostic Carbon Flux Model (DCFM) and use flux observations and a data assimilation approach to estimate the model parameters. We then use the optimized model to produce gridded flux estimates across the region. We find that model parameters vary not only across plant functional types (PFT) but also within a given PFT. Our results show that the parameter estimates from a single site are not representative of the parameter values of a given PFT; cross-site (or joint) optimization using observations from multiple sites encompassing a range of site and climate conditions considerably improves the representativeness and robustness of parameter estimates. Parameter variability within a PFT can result in substantial variability in regional flux estimates. We also find that land cover representation including land cover heterogeneity and the spatial resolution and accuracy of land cover maps can lead to considerable uncertainty in regional flux estimates. In heterogeneous, complex regions, detailed and accurate land cover maps are essential for accurate estimation of regional fluxes

    Upscaling key ecosystem functions across the conterminous United States by a water-centric ecosystem model

    Get PDF
    We developed a water-centric monthly scale simulation model (WaSSI-C) by integrating empirical water and carbon flux measurements from the FLUXNET network and an existing water supply and demand accounting model (WaSSI). The WaSSI-C model was evaluated with basin-scale evapotranspiration (ET), gross ecosystem productivity (GEP), and net ecosystem exchange (NEE) estimates by multiple independent methods across 2103 eight-digit Hydrologic Unit Code watersheds in the conterminous United States from 2001 to 2006. Our results indicate that WaSSI-C captured the spatial and temporal variability and the effects of large droughts on key ecosystem fluxes. Our modeled mean (±standard deviation in space) ET (556 ± 228 mm yr−1) compared well to Moderate Resolution Imaging Spectroradiometer (MODIS) based (527 ± 251 mm yr−1) and watershed water balance based ET (571 ± 242 mm yr−1). Our mean annual GEP estimates (1362 ± 688 g C m−2 yr−1) compared well (R2 = 0.83) to estimates (1194 ± 649 g C m−2 yr−1) by eddy flux-based EC-MOD model, but both methods led significantly higher (25–30%) values than the standard MODIS product (904 ± 467 g C m−2 yr−1). Among the 18 water resource regions, the southeast ranked the highest in terms of its water yield and carbon sequestration capacity. When all ecosystems were considered, the mean NEE (−353 ± 298 g C m−2 yr−1) predicted by this study was 60% higher than EC-MOD\u27s estimate (−220 ± 225 g C m−2 yr−1) in absolute magnitude, suggesting overall high uncertainty in quantifying NEE at a large scale. Our water-centric model offers a new tool for examining the trade-offs between regional water and carbon resources under a changing environment

    Modeling and Monitoring Terrestrial Primary Production in a Changing Global Environment: Toward a Multiscale Synthesis of Observation and Simulation

    Get PDF
    There is a critical need to monitor and predict terrestrial primary production, the key indicator of ecosystem functioning, in a changing global environment. Here we provide a brief review of three major approaches to monitoring and predicting terrestrial primary production: (1) ground-based field measurements, (2) satellite-based observations, and (3) process-based ecosystem modelling. Much uncertainty exists in the multi-approach estimations of terrestrial gross primary production (GPP) and net primary production (NPP). To improve the capacity of model simulation and prediction, it is essential to evaluate ecosystem models against ground and satellite-based measurements and observations. As a case, we have shown the performance of the dynamic land ecosystem model (DLEM) at various scales from site to region to global. We also discuss how terrestrial primary production might respond to climate change and increasing atmospheric CO2 and uncertainties associated with model and data. Further progress in monitoring and predicting terrestrial primary production requires a multiscale synthesis of observations and model simulations. In the Anthropocene era in which human activity has indeed changed the Earth’s biosphere, therefore, it is essential to incorporate the socioeconomic component into terrestrial ecosystem models for accurately estimating and predicting terrestrial primary production in a changing global environment

    Modeling and Monitoring Terrestrial Primary Production in a Changing Global Environment: Toward a Multiscale Synthesis of Observation and Simulation

    Get PDF
    There is a critical need to monitor and predict terrestrial primary production, the key indicator of ecosystem functioning, in a changing global environment. Here we provide a brief review of three major approaches to monitoring and predicting terrestrial primary production: (1) ground-based field measurements, (2) satellite-based observations, and (3) process-based ecosystem modelling. Much uncertainty exists in the multi-approach estimations of terrestrial gross primary production (GPP) and net primary production (NPP). To improve the capacity of model simulation and prediction, it is essential to evaluate ecosystem models against ground and satellite-based measurements and observations. As a case, we have shown the performance of the dynamic land ecosystem model (DLEM) at various scales from site to region to global. We also discuss how terrestrial primary production might respond to climate change and increasing atmospheric CO2 and uncertainties associated with model and data. Further progress in monitoring and predicting terrestrial primary production requires a multiscale synthesis of observations and model simulations. In the Anthropocene era in which human activity has indeed changed the Earth’s biosphere, therefore, it is essential to incorporate the socioeconomic component into terrestrial ecosystem models for accurately estimating and predicting terrestrial primary production in a changing global environment

    Assessing the ability of MODIS EVI to estimate terrestrial ecosystem gross primary production of multiple land cover types

    Full text link
    © 2016 Elsevier Ltd Terrestrial ecosystem gross primary production (GPP) is the largest component in the global carbon cycle. The enhanced vegetation index (EVI) has been proven to be strongly correlated with annual GPP within several biomes. However, the annual GPP-EVI relationship and associated environmental regulations have not yet been comprehensively investigated across biomes at the global scale. Here we explored relationships between annual integrated EVI (iEVI) and annual GPP observed at 155 flux sites, where GPP was predicted with a log-log model: ln(GPP)=a×ln(iEVI)+b. iEVI was computed from MODIS monthly EVI products following removal of values affected by snow or cold temperature and without calculating growing season duration. Through categorisation of flux sites into 12 land cover types, the ability of iEVI to estimate GPP was considerably improved (R2 from 0.62 to 0.74, RMSE from 454.7 to 368.2 g C m−2 yr−1). The biome-specific GPP-iEVI formulae generally showed a consistent performance in comparison to a global benchmarking dataset (R2 = 0.79, RMSE = 387.8 g C m−2 yr−1). Specifically, iEVI performed better in cropland regions with high productivity but poorer in forests. The ability of iEVI in estimating GPP was better in deciduous biomes (except deciduous broadleaf forest) than in evergreen due to the large seasonal signal in iEVI in deciduous biomes. Likewise, GPP estimated from iEVI was in a closer agreement to global benchmarks at mid and high-latitudes, where deciduous biomes are more common and cloud cover has a smaller effect on remote sensing retrievals. Across biomes, a significant and negative correlation (R2 = 0.37, p < 0.05) was observed between the strength (R2) of GPP-iEVI relationships and mean annual maximum leaf area index (LAImax), and the relationship between the strength and mean annual precipitation followed a similar trend. LAImax also revealed a scaling effect on GPP-iEVI relationships. Our results suggest that iEVI provides a very simple but robust approach to estimate spatial patterns of global annual GPP whereas its effect is comparable to various light-use-efficiency and data-driven models. The impact of vegetation structure on accuracy and sensitivity of EVI in estimating spatial GPP provides valuable clues to improve EVI-based models

    Decreasing net primary production due to drought and slight decreases in solar radiation in China from 2000 to 2012

    Get PDF
    Terrestrial ecosystems have continued to provide the critical service of slowing the atmospheric CO2 growth rate. Terrestrial net primary productivity (NPP) is thought to be a major contributing factor to this trend. Yet our ability to estimate NPP at the regional scale remains limited due to large uncertainties in the response of NPP to multiple interacting climate factors and uncertainties in the driver data sets needed to estimate NPP. In this study, we introduced an improved NPP algorithm that used local driver data sets and parameters in China. We found that bias decreased by 30% for gross primary production (GPP) and 17% for NPP compared with the widely used global GPP and NPP products, respectively. From 2000 to 2012, a pixel-level analysis of our improved NPP for the region of China showed an overall decreasing NPP trend of 4.65 Tg C a−1. Reductions in NPP were largest for the southern forests of China (−5.38 Tg C a−1), whereas minor increases in NPP were found for North China (0.65 Tg C a−1). Surprisingly, reductions in NPP were largely due to decreases in solar radiation (82%), rather than the more commonly expected effects of drought (18%). This was because for southern China, the interannual variability of NPP was more sensitive to solar radiation (R2 in 0.29–0.59) relative to precipitation (R2 \u3c 0.13). These findings update our previous knowledge of carbon uptake responses to climate change in terrestrial ecosystems of China and highlight the importance of shortwave radiation in driving vegetation productivity for the region, especially for tropical forests

    Comparison of Gross Primary Productivity Derived from GIMMS NDVI3g, GIMMS, and MODIS in Southeast Asia

    Get PDF
    Gross primary production (GPP) plays an important role in the net ecosystem exchange of CO2 between the atmosphere and terrestrial ecosystems. It is particularly important to monitor GPP in Southeast Asia because of increasing rates of tropical forest degradation and deforestation in the region in recent decades. The newly available, improved, third generation Normalized Difference Vegetation Index (NDVI3g) from the Global Inventory Modelling and Mapping Studies (GIMMS) group provides a long temporal dataset, from July 1981 to December 2011, for terrestrial carbon cycle and climate response research. However, GIMMS NDVI3g-based GPP estimates are not yet available. We applied the GLOPEM-CEVSA model, which integrates an ecosystem process model and a production efficiency model, to estimate GPP in Southeast Asia based on three independent results of the fraction of photosynthetically active radiation absorbed by vegetation (FPAR) from GIMMS NDVI3g (GPPNDVI3g), GIMMS NDVI1g (GPPNDVI1g), and the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD15A2 FPAR product (GPPMOD15). The GPP results were validated using ground data from eddy flux towers located in different forest biomes, and comparisons were made among the three GPPs as well as the MOD17A2 GPP products (GPPMOD17). Based on validation with flux tower derived GPP estimates the results show that GPPNDVI3g is more accurate than GPPNDVI1g and is comparable in accuracy with GPPMOD15. In addition, GPPNDVI3g and GPPMOD15 have good spatial-temporal consistency. Our results indicate that GIMMS NDVI3g is an effective dataset for regional GPP simulation in Southeast Asia, capable of accurately tracking the variation and trends in long-term terrestrial ecosystem GPP dynamics

    Impacts of Climate Extremes on Terrestrial Productivity

    Full text link
    Terrestrial biosphere absorbs approximately 28% of anthropogenic CO2 emissions. This terrestrial carbon sink might become saturated in a future climate regime. To explore the issues associated with this topic, an accurate estimate of gross primary production (GPP) of global terrestrial ecosystems is needed. A major uncertainty in modeling global terrestrial GPP is the parameter of light use efficiency (LUE). Most LUE estimates in global models are satellite-based and coarsely measured with emphasis on environmental variables. Others are from eddy covariance towers with much greater spatial and temporal data quality and emphasis on mechanistic processes, but in a limited number of sites. In this study, we conducted a comprehensive global study of tower-based LUE from 237 FLUXNET towers, and scaled up LUEs from in-situ tower level to global biome level. We integrated the tower-based LUE estimates with key environmental and biological variables at 0.5º × 0.5º grid-cell resolutions, using a random forest regression (RFR) approach. Then we developed a RFR-LUE-GPP model using the grid-cell LUE data. In order to calibrate the LUE model, we developed a data-driven RFR-GPP model using random forest regression method only. Our results showed LUE varies largely with latitude. We estimated a global area-weighted average of LUE at 1.23±0.03 gC m-2 MJ-1 APAR, which led to an estimate of global gross primary production (GPP) of 107.5±2.5 Gt C /year from 2001 to 2005. Large uncertainties existed in GPP estimations over sparsely vegetated areas covered by savannas and woody savannas at middle to low latitude (i.e. 20ºS to 40ºS and 5ºN to 40ºN) due to the lack of available data. Model results were improved by incorporating Köppen climate types to represent climate/meteorological information in machine learning modeling. This brought a new understanding to the recognized problem of climate-dependence of spring onset of photosynthesis and the challenges in accurately modeling the biome GPP of evergreen broad leaf forests (EBF). The divergent responses of GPP to temperature and precipitation at mid-high latitudes and at mid-low latitudes echo the necessity of modeling GPP separately by latitudes. We also used a perfect-deficit approach to identify forest canopy photosynthetic capacity (CPC) deficits and analyze how they correlate to climate extremes, based on observational data measured by the eddy covariance method at 27 forest sites over 146 site-years. We found that droughts severely affect the carbon assimilation capacities of evergreen broadleaf forest and deciduous broadleaf forest. The carbon assimilation capacities of Mediterranean forests were highly sensitive to climate extremes, while marine forest climates tended to be insensitive to climate extremes. Our estimates suggest an average global reduction of forest canopy photosynthetic capacity due to unfavorable climate extremes of 6.3 Pg C (~5.2% of global gross primary production) per growing season over 2001-2010, with evergreen broadleaf forests contributing 52% of the total reduction. At biome-scale, terrestrial carbon uptake is controlled mainly by weather variability. Observational data from a global monitoring network indicate that the sensitivity of terrestrial carbon sequestration to mean annual temperature (T) breaks down at a threshold value of 16oC, above which terrestrial CO2 fluxes are controlled by dryness rather than temperature. Here we show that since 1948 warming climate has moved the 16oC T latitudinal belt poleward. Land surface area with T \u3e16oC and now subject to dryness control rather than temperature as the regulator of carbon uptake has increased by 6% and is expected to increase by at least another 8% by 2050
    • …
    corecore