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Review Article
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There is a critical need to monitor and predict terrestrial primary production, the key indicator of ecosystem functioning, in a
changing global environment. Here we provide a brief review of three major approaches to monitoring and predicting terrestrial
primary production: (1) ground-based field measurements, (2) satellite-based observations, and (3) process-based ecosystem
modelling. Much uncertainty exists in the multi-approach estimations of terrestrial gross primary production (GPP) and net
primary production (NPP). To improve the capacity of model simulation and prediction, it is essential to evaluate ecosystem
models against ground and satellite-based measurements and observations. As a case, we have shown the performance of the
dynamic land ecosystem model (DLEM) at various scales from site to region to global. We also discuss how terrestrial primary
production might respond to climate change and increasing atmospheric CO

2
and uncertainties associated with model and data.

Further progress in monitoring and predicting terrestrial primary production requires a multiscale synthesis of observations and
model simulations. In the Anthropocene era in which human activity has indeed changed the Earth’s biosphere, therefore, it is
essential to incorporate the socioeconomic component into terrestrial ecosystem models for accurately estimating and predicting
terrestrial primary production in a changing global environment.

1. Introduction

Terrestrial net primary production (NPP) refers to the net
amount of carbon captured by plants through photosynthesis
per unit time over a given period and is a key component
of energy and mass transformation in terrestrial ecosys-
tems. NPP represents the net carbon retained by terrestrial
ecosystems after assimilation through photosynthesis (gross
primary production (GPP)) and losses due to autotrophic
respiration [1]. NPP is of fundamental importance to humans
because the largest portion of our food supply comes from
terrestrial NPP [2]. Additionally, NPP is an important indi-
cator of ecosystem health and services [3–5] and a critical

component of the global carbon cycle [6, 7] that provides
linkage between terrestrial biota and the atmosphere [8].
Research into terrestrial GPP andNPP, especially at a regional
and global scale, has attracted much attention [3, 4, 9–11].
This is because they measure the transfer of energy to the
biosphere and terrestrial CO

2
assimilation andprovide a basis

for assessing the status of a wide range of ecological processes
[12].

NPP is an important ecological variable for evaluating
trends in biospheric behavior [13] and investigating the
patterns of food, fiber, and wood production [4] across broad
temporal and spatial scales. Accurate estimations of global
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NPP can improve our understanding of the feedbacks among
the atmosphere-vegetation-soil interface in the context of
global change [14] and facilitate climate policy decisions.
Previous studies based on inventory analysis, empirical
and process models, and remote sensing approaches have
estimated global NPP in the range of 39.9–80 PgC yr−1 [3,
15–17]. In a recent meta-analysis study, Ito [18] reported
a global terrestrial NPP of 56.4 PgC yr−1. However, there
is large uncertainty (±8-9 PgC yr−1) in the estimation of
global terrestrial NPP in recent years (2000–2010) mak-
ing it difficult to evaluate the transfer of energy and the
status of ecological processes [18]. These uncertainties are
associated with sensitivity analysis and bias introduced by
gap filling of satellite data. In addition, remote-sensing
algorithm does not accurately account for environmental
stresses such as rooting depth especially in dry areas where
plants use deep roots to access and sustain water availability
[19].

At a global scale, multiple environmental factors includ-
ing climate, topography, soils, plant and microbial character-
istics, and anthropogenic and natural disturbances control
the timing and magnitude of terrestrial NPP [20]; however,
the relative contributions of these environmental factors
toward global NPP varies over time and space. Globally,
climate change including changes in temperature and pre-
cipitation had a relatively small-scale positive impact on
NPP during the period 1982–1999 [13]. However, during
the last decade (2000–2009), the effect of climate on global
NPP has been a subject of debate. Zhao and Running [6]
reported that warming-related increases in water stress and
autotrophic respiration in the Southern Hemisphere resulted
in an overall decline in global NPP, whereas Potter et al.
[21] found an increasing trend in global NPP due to rapidly
warming temperatures in the Northern Hemisphere during
the period 2000–2009. While climatic variables such as
solar radiation, temperature, and precipitation have been
recognized as a key factor controlling the terrestrial NPP
[6, 21], other environmental factors such as elevated CO

2
,

nitrogen deposition, and ozone exposure are also equally
important in controlling the timing and magnitude of ter-
restrial NPP [22]. Additionally, natural and anthropogenic
factors such as hurricanes, fires, logging, land cover and
land use change, and insect damage also have a significant
effect on terrestrial NPP [23–26]. Accurately quantifying the
effect of different environmental drivers including climate
on global terrestrial NPP requires an understanding of the
controlling physiological and ecological processes that deter-
mine the timing and magnitude of terrestrial carbon uptake
[27, 28].

Because there is substantial uncertainty in our knowledge
of the environmental factors that control the magnitude
of terrestrial NPP, continuous monitoring of global ter-
restrial NPP is critical for evaluating trends in biospheric
behavior [13], investigating large-scale patterns in food and
fiber production [4], and understanding the potential of
terrestrial ecosystems for carbon sequestration from the
atmosphere. Terrestrial NPP is identified as a primary
monitoring variable by a number of studies [4, 29] and

interested organizations (the Environmental Sustainability
Index; http://www.ciesin.columbia.edu/indicators/ESI/ and
the National Research Council Report; http://www.nap.edu/
bookds/0309068452/html/); however, continuous and con-
sistent measurement of global terrestrial NPP that integrates
ecosystem processes across broad temporal and spatial scales
[30] has not been possible. Although regular monitoring of
global terrestrial NPP has been feasible using imagery and
the satellite-borne Moderate Resolution Imaging Spectrora-
diometer (MODIS) sensor, such approaches are limited by
their coarse resolution and difficulty in convergingwith other
high resolution datasets and process-based models [14, 31,
32].

Although several approaches have been used to monitor
terrestrial primary production over the past two-decades
ranging from site-level observations [33–35] to large-scale
remote sensing [6, 13] and process-based modeling [3, 36–
38], or a combination of site-level observations, remote
sensing techniques, and/or process-based models [8, 9, 39],
these approaches are associated with significant uncertainties
where inconsistent estimates of terrestrial NPP are observed
in response to global change [40–42]. A wide range of uncer-
tainty comes from upscaling site- or stand-level primary
production to a regional and global scale [14, 43], structural
differences among models that are susceptible to forcing-
data and parameter values constrained by observations [44,
45], and limitations in the parameterization of light use
efficiency [31] and photosynthetically active radiation [31,
46]. Similarly, terrestrial primary production is not directly
estimated from the remote sensing measurements but is
modeled as a function of leaf area index and fraction of
photosynthetic active radiation (fPAR) or greenness index.
These indexes used to estimate terrestrial NPP are contam-
inated by atmospheric particles that would send misleading
signals to satellite sensors [47]. Additionally, process-based
models integrate the understanding of ecological and phys-
iological processes obtained from field measurements and
are particularly important to characterize the response of
terrestrial ecosystems to different environmental stressor [23,
48]. It is, therefore, essential to integrate site-level, remote-
sensing, and process-based modeling approach to accurately
monitor and predict terrestrial primary production across
broad temporal and spatial scales.

A variety of reviews have addressed various aspects
of NPP [18, 49, 50]; however, none have comprehensively
reviewed the existing approaches and associated uncertain-
ties as well as future needs. Therefore, the purpose of this
review is to (1) summarize the general approaches to estimate
GPP and NPP at multiple scales; (2) review major environ-
mental factors controlling the magnitude and timing of GPP
and NPP; (3) identify uncertainties associated with large-
scale GPP and NPP estimations; (4) recognize knowledge
gaps with possible future direction under changing environ-
mental conditions. Generally, three approaches have been
used to estimate gross andnet primary productivity in the ter-
restrial ecosystems: (1) ground-based monitoring including
biomass inventory [35] and eddy covariance measurement
[9]; (2) remote sensing-based observation [6]; (3) spatially
explicit ecosystem modeling [51]. Here, we provide a brief
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review of these approaches with an emphasis on satellite-
based observation and terrestrial ecosystem modeling.

2. Ground-Based Monitoring of Terrestrial
Primary Production

Ground-based monitoring of terrestrial primary production
provides a basis for accurately estimating global NPP because
it provides direct measurement of terrestrial primary pro-
duction for scaling up from site to global level as well as
calibrating and validating both satellite- and model-based
approaches. Ground-based measurements of terrestrial pri-
mary production rely on two approaches: biomass and flux
measurements. Since the International Biological Program
(IBP, 1965–1974), a number of ecosystem surveys have been
carried out to measure terrestrial primary production across
the globe. Traditionally, terrestrial primary production esti-
mation, using biomassmeasurement was carried out through
periodic measurements of root, stem, leaf, and fruit growth.
Recent technological advances allow for ground-based mon-
itoring of terrestrial NPP using meteorological towers that
measures the instantaneous exchange of CO

2
(net ecosystem

exchange (NEE)) between the atmosphere and terrestrial
ecosystems. Terrestrial NPP is calculated indirectly by adding
heterotrophic respiration to NEE. Eddy covariance technique
[52] is employed worldwide across different biomes including
forest, cropland, grassland, and desert. Below, we provide
a brief overview of two most widely used ground-based
monitoring of terrestrial primary production: (a) biomass
inventory and (b) flux measurements using eddy covariance
technique.

2.1. Biomass Inventory. The biomass inventory data provide
valuable sources of information for estimation of biomass
and NPP in forest, cropland, and grassland at landscape
and regional scales [53, 54]. Since the early 1980s, regional
or national inventories, with a large number of statistically
valid plots, have been widely regarded as a powerful tool
for estimating forest and crop biomass at broad scales [55,
56]. Inventory-based method estimates forest biomass using
biomass expansion factor (BEF) that converts stem volume
to biomass to account for noncommercial components, that
is, branches, root, and leaves, and so forth [57–59]; however,
other studies have indicated that total stem volume varies
with forest age, site class, and stand density [60–63]. An
alternative approach to tree biomass estimation includes
the allometric equation, which can be converted to CO

2

equivalents by scaling [64]. Estimates of forest biomass
based on an allometric equation have been used widely to
examine the impacts of forest management [65], land-use
change [66], and increase in atmospheric CO

2
[67]. While

allometric equations are important for estimating forest
biomass and are used widely in growth and yield models
(e.g., Forest Vegetation Simulator), they fail in distinguishing
and quantifying the relative contribution of land cover and
land-use change and several environmental factors including
climate, elevated CO

2
, and air pollution on carbon uptake.

Recently, Houghton [68] has recognized that keeping land

cover and land use change exclusive of the environmental
change is critically important because it helps to separate
direct anthropogenic effects from indirect or natural effects
and lower the uncertainty of the land cover and land-use
change flux.

2.2. Flux Measurements Using Eddy Covariance Technique.
Eddy covariance technique estimates CO

2
exchange rate

between atmosphere and plant canopy by measuring the
covariance between fluctuation in vertical wind velocity and
CO
2
mixing ratio [69, 70]. Eddy covariance techniquemade it

possible to directly and continuously measure vertical turbu-
lent fluxes within atmospheric boundary layers on short and
long time scales (from 30min to year). At the ecosystem scale,
FLUXNET towers measure net ecosystem CO

2
exchange

(NEE), which is equal to GPP minus ecosystem respiration
[70] (i.e., the quantity of CO

2
respired by both autotrophs

(plants) and heterotrophs (primarily microbes)). Since the 19
s, there has been increasing interest in estimating net CO

2

exchange in terrestrial ecosystems based on eddy covariance
measurements [71]. The eddy covariance approach is capable
of detecting small changes in net CO

2
exchange between

terrestrial ecosystems and the atmosphere over various time
scales [69]. The international FLUXNET [52] has established
a network of FLUXNET towers on six of seven continents,
including a number of regional networks of eddy covariance
measurements (such as CarboeuropeIP, AmeriFlux, Fluxnet-
Canada, LBA, AsiaFlux, ChinaFlux, CarboAfrica, KoFlux,
TCOS-Siberia, and Afriflux). The flux data derived from
these networks provide unprecedented detailed information
to the broad community of scientists who need flux data to
test, calibrate, validate, and improve land surface schemes
in climate models, dynamic vegetation models, remote
sensing algorithms, hydrological models, and process-based
ecosystem models. Eddy flux measurement also provides a
unique tool for understanding eco-physiologicalmechanisms
and environmental controls of ecosystem carbon processes
in the context of global change. However, for the large-
scale estimation of terrestrial primary production, current
eddy covariance measurement sites are still too few and
unevenly distributed. The regional extrapolation of carbon-
storage capacity from a single field site to the whole study
area/region has been based on an assumption of homogeneity
in ecosystem functioning across this region, which brings
large uncertainties. For instance, Xiao et al. [9] found that
the upscaled eddy covariance terrestrial primary production
(GPP) for the conterminous US was 14% higher compared
to MODIS. The net carbon exchange between the biosphere
and the atmosphere at the regional scale, however, can be very
different from the product of a site-specific rate of exchange
and the area of the region because terrestrial ecosystems have
differential responses due to vegetation type, disturbance his-
tory, soil, and climate variables that vary over space and time
[72]. In addition to upscaling issues, complex topography and
unstable atmospheric condition can substantially alter the
carbon fluxes due to nighttime gravitational or drainage flows
[73], resulting in differences in carbon fluxes in the range
of 80–200% compared to measurements based on inventory
approach [74].
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3. Satellite-Based Monitoring of Terrestrial
Primary Production

Ground-based measurements of terrestrial primary produc-
tion are usually made at spatial scales in the range of less
than one to a few hundred square meters making it difficult
to estimate terrestrial primary production at a regional and
global scale. Additionally, ground-based measurements of
terrestrial NPP are constrained by topographic complexity
and other adverse environmental factors. Satellite-based
monitoring of terrestrial primary production is particularly
important over large areas where ground-based methods
(inventory and eddy covariance) are not feasible. Satellite-
based estimations provide a repeated, consistent measure-
ment of terrestrial primary production across broad temporal
and spatial scales. Below we provide a brief overview of
satellite-based monitoring of terrestrial primary production
with a focus on NASA’s Moderate-Resolution Imaging Spec-
troradiometer (MODIS).

Remote sensing based estimation of terrestrial primary
production has advanced tremendously over the past few
decades, and these datasets provide essential information
associated with emissions of CO

2
into the atmosphere at

regional, continental, and global scales. Because carbonfluxes
(GPP and NPP) are difficult to measure over larger areas due
to high spatial heterogeneity, satellite observations provide
consistent, spatially fine-scale estimates [75] and allow us to
monitor ecosystem patterns and activities at larger scales [6].
Since the pioneering work of Tucker et al. [76] on the corre-
lation between remote sensing-derived vegetation index (i.e.
the Normalized Difference Vegetation Index (NDVI)) and
photosynthetic activity, satellite remote sensing has become
a primary source of data on regional ecosystem patterns and
terrestrial primary production. Additionally, satellite based
observations have been coupledwithmathematicalmodels to
quantify the carbon fluxes across the globe. For instance, over
the last decades, production efficiency models (PEM) have
been developed based on available satellite data, to monitor
primary production and investigate the carbon cycle at large
scales [31, 77]. One of the most promising tools to track
changes in the productivity of terrestrial and marine ecosys-
tem is based on GPP/NPP products derived from NASA’s
Moderate-Resolution Imaging Spectroradiometer (MODIS),
a satellite-mounted instrument that collects surface spectral
signatures to quantify the changes in terrestrial primary
production over large areas. Below, we describe detail algo-
rithms on how MODIS keeps track of changes in primary
productivity over time to enhance our understanding on
how satellite observations are used to estimate terrestrial
productivity.

Detailed information onMOD17 algorithm is available in
the MOD17 AlgorithmTheoretical Basis Document (ATBD)
[78] or MOD17 user’s guide. Here we provide a simple
overview of MOD17. The MOD17 algorithm can be mainly
divided into two steps. First, we calculate daily GPP and
MODIS photosynthesis product (PSNnet). The daily GPP
is calculated as a function of conversion efficiency, incident
short wave radiation, and fraction of photosynthetically

active radiation. PSNnet is obtained after subtracting main-
tenance respiration from the daily GPP. Second, we calculate
annual NPP by summation of all 8-day PSNnet products after
subtractingmaintenance respiration of live wood and growth
respiration of whole plant. Below, we provide a detailed
description of the two steps.

The first step is calculation of daily GPP (gCm−2 d−1)
and PSNnet (gCm−2 d−1), where PSNnet is equal to GPP
minus maintenance respiration (MR) (gCm−2 d−1) of leaves
and fine roots, for each 8-day period. The standard global 8-
day compositeMOD17A2products are formedby summation
of these 8-day daily GPP and PSNnet with the first Julian
day of the 8-day period as MOD17A2 time information in 10
degree HDF-EOS file name. Daily GPP is calculated similar
to Heinsch et al [79] as follows:

GPP𝜀 × (SWrad × 0.45) × fPAR, (1)

where 𝜀 is the conversion efficiency (i.e., the amount of carbon
a specific biome can produce per unit of energy) and SWrad
(MJm−2 d−1) is the daily sum of incident solar short wave
radiation, which ismultiplied by 0.45 [80] to estimate fraction
of photosynthetically active radiation (fPAR; MJm−2 d−1).
SWrad is from the Data Assimilation Office (DAO) at NASA
Goddard Space Flight Center (GSFC) andwill be discussed in
detail later. fPAR is from MOD15A2, 8-day composite fPAR,
and LAI, which is based on the maximum fPAR value.

Daily 𝜀 (gCMJ−1) is calculated from maximum 𝜀 under
optimal conditions [79] when controlled by environmental
stresses (lower temperature and drought) and is calculated as
follows:

𝜀 = 𝜀max × 𝑓 (𝑇min) × 𝑓 (VPD) , (2)

where 𝜀max is the maximum biome-specific value under well-
watered conditions, 𝑇minis daily minimum temperature (∘C),
and VPD is daytime vapor pressure deficits (Pa). Linear
interpolation functions of 𝑓(𝑇min) and 𝑓(VPD) convert 𝑇min
and VPD to scalars ranging from 1 (optimal conditions) to
0 (extremely stressed conditions). Currently, 𝜀max is constant
for a given biome. For different days, 𝑇min, VPD, and
SWradare variable to weather conditions; hence, 𝜀 would
be strongly related to different weather situations and GPP
would change daily. For most ecosystems, the scalar of 𝑇min
controls photosynthesis during a relative short period at the
beginning and end of the growing season. Duringmost of the
growing season, the scalar of 𝑇min would be 1 due to higher
𝑇min and would exert no constraint on assimilation so VPD
and SWrad would be the two primary meteorological factors
governing daily GPP in the MOD17 algorithm.

Maintenance respiration (MR, gCm−2 d−1) by leaf and
root is exponentially related to daily average temperature
(𝑇avg,

∘C) as follows:

MR leaf =Leaf Mass× leaf mr base × 𝑄[(𝑇avg−20)/10]
10

MR root =Fine Root Mass ×froot mr base× 𝑄[(𝑇avg−20)/10]
10

,̂

(3)
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where Leaf Mass is retrieved from MOD15A2 LAI using
biome-specific specific leaf area (SLA). Fine Root Mass is
estimated from biome-specific constant ratios between leaf
and fine root. 𝑄

10
is a respiration quotient and is assigned to

be 2.0 across biomes. Leaf mr base and froot mr base are the
maintenance respiration of leaves and fine toots per unitmass
at 20∘C.

The second step is the calculation of annual NPP
(gCm−2 y−1) by summation of all 8-day composite PSNnet
and subtraction of MR of living wood and growth respiration
(GR, gCm−2 y−1) of whole-plant as follows:

NPP = ∑PSNnet − Livewood MR − Leaf GR

− Froot GR − Livewood GR − Deadwood GR,
(4)

where Livewood MR and Livewood GR are themaintenance
respiration and growth respiration of living wood, respec-
tively. Leaf GR, Froot GR, andDeadwood GRare the growth
respiration of leaves, fine roots, and dead wood, respectively.

The most significant assumption made in the MOD17
logic is that biome specific physiological parameters do not
vary with space or time. These parameters are outlined in
the Biome Properties Lookup Table (BPLUT). For each pixel,
biome types are translated from MOD12Q1 Land Cover into
MOD17 biomes. An initial evaluation of the MODIS 2001
GPP product wasmade by comparingMODISGPP estimates
with ground-based GPP estimates over 25 km2 areas at a
northern hardwoods forest site and a boreal forest site.

In addition to estimating NPP and vegetation patterns,
remote sensing-based observations provide input data (i.e.,
land cover maps, leaf area index, fPAR, etc.) to set bound-
ary conditions in the climate models, hydrological models,
and process-based ecosystem models [81]. While a remote
sensing based approach provides continuous and quantitative
observations about ecosystem changes at large scale, they
are subjected to large errors, if uncorrected. These errors
come from atmospheric contamination of the remote sensing
signal that interacts with ozone, water vapor, aerosols, and
other atmospheric constituents [82]. Additionally, atmo-
spheric haze and scattering from terrestrial surfaces can
severely reduce data consistency [83]. There is a need to
validate remote sensing based estimates of global primary
production against ground measurements on a landscape
and regional scale. On the other hand, remote sensing
based estimates of terrestrial NPP do not isolate the relative
contribution of different environmental and anthropogenic
factors. Therefore, a better understanding of terrestrial pri-
mary production requires integrating process-based models
with remote sensing approaches and validating the model
output with field-based measurements (biomass inventory
and eddy covariance measurement).

4. Process-Based Model
Simulation and Prediction

Terrestrial ecosystem models provide a powerful tool to
integrate our understanding on ecosystem processes and

measurements/observations at multiple scales to investigate
net primary production in response to multiple environ-
mental factors in the complicated world [38, 51, 84]. Since
the 1990s, there has been a dramatic increase in the use of
terrestrial ecosystemmodels to estimate theNPPof terrestrial
ecosystems at various spatial and temporal scales. Ecosystem
modeling has evolved from empirical modeling that usually
considers empirical correlation between ecosystem variables
and climate elements (such as temperature, precipitation,
and radiation) to process-based modeling, which is capable
of investigating multiple responses of ecosystem processes
to both environmental and anthropogenic factors at both
regional [51, 84, 85] and global scales [3, 48, 86]. Process-
based models play a central role in assessing and predicting
the primary productivity and carbon cycle of the terrestrial
biosphere in past, present, and future conditions [87]. Melillo
et al. [3] provide the first NPP estimation using a process-
based model (terrestrial ecosystem model (TEM)) at global
scale, with an emphasis on responses of terrestrial NPP to
climate and atmospheric CO

2
increase. Since then, an array

of ecosystemmodels have been developed and applied to esti-
mate NPP as influenced by multiple environmental factors,
including climate, atmospheric CO

2
, nitrogen availability,

natural disturbances, air pollution, land use, and land cover
change [84, 88, 89].

Modeling representation of photosynthesis and auto-
trophic respiration varies among terrestrial biosphere mod-
els. In process-based ecosystemmodels, a modified Farquhar
model is usually used to simulate gross primary production.
We take the dynamic land ecosystem model (DLEM, [51]) as
an example to address how GPP and NPP are represented
in modeling scheme. In DLEM, the canopy is divided into
sunlit and shaded layers. GPP (gCm−2 day−1) is calculated by
scaling leaf assimilation rates (𝜇mol CO

2
m−2 s−1) up to the

whole canopy:

GPPsun = 12.01 × 10
−6
× 𝐴 sun × Plaisun × day 1 × 3600

GPPshade = 12.01 × 10
−6
× 𝐴 shade × Plaishade × day 1 × 3600

GPP = GPPsun + GPPshade,

(5)

where GPPsun andGPPshade are gross primary productivity of
sunlit and shaded canopy, respectively; 𝐴 sun and 𝐴 shade are
assimilation rates of sunlit and shaded canopy; Plaisun and
Plaishade are the sunlit and shaded leaf area indices; day l is
daytime length (second) in a day. 12.01×10−6 is a constant to
change the unit from 𝜇mol CO

2
to gram C.

The DLEM determines the C assimilation rate (𝐴) as
the minimum of three limiting rates, 𝑤

𝑐
, 𝑤
𝑗
, 𝑤
𝑒
, which are

functions that represents the assimilation rates as limited
by the efficiency of the photosynthetic enzymes system
(Rubisco-limited), the amount of PAR captured by the leaf
chlorophyll (light-limited), and the capacity of the leaf to
export or utilize the products of photosynthesis (export-
limited) for C

3
species, respectively. For C

4
species, 𝑤

𝑒
refer

to the PEP carboxylase limited rate of carboxylation. The
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canopy sunlit and shaded carbon assimilation rate can be
estimated as

𝐴 = min (𝑤
𝑐
, 𝑤
𝑗
, 𝑤
𝑒
) × Indexgs

𝑤
𝑐
=

{
{

{
{

{

(𝑐
𝑖
− Γ
∗
) 𝑉max

𝑐
𝑖
+ 𝐾
𝑐
(1 + 𝑜

𝑖
/𝐾
𝑜
)

for C
3
plants

𝑉max for C
4
plants

𝑤
𝑗
=

{
{

{
{

{

(𝑐
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(6)

where 𝑐
𝑖
is the internal leaf CO

2
concentration (Pa); 𝑜

𝑖
is the

O
2
concentration (Pa); Γ

∗
is the CO

2
compensation point

(Pa); 𝐾
𝑐
and 𝐾

𝑜
are the Michaelis-Menten constants for

CO
2
and O

2
, respectively; 𝛼 is the quantum efficiency; ø is

the absorbed photosynthetically active radiation (W⋅M−2);
Vmax is the maximum rate of carboxylation which varies
with temperature, foliage nitrogen concentration, and soil
moisture:

𝑉max = 𝑉max 25𝑎
(𝑇day−25)/10
Vmax 𝑓 (𝑁)𝑓 (𝑇day) 𝛽𝑡, (7)

where 𝑉max 25 is the value at 25 and 𝑎Vmax is a temperature
sensitivity parameter; 𝑓(𝑇day) is a function of temperature
related metabolic processes; 𝑓(𝑁) is nitrogen scalar of pho-
tosynthesis which is related to foliage nitrogen content. 𝛽

𝑡
is a

function, ranging from one to zero, which represents the soil
moisture and lower temperature effects on stomatal resistance
and photosynthesis.

The DLEM separates autotrophic respiration into main-
tenance respiration (Mr, unit: gCm−2 day−1) and growth
respiration (Gr, unit: gCm−2 day−1). Gr is calculated by
assuming that the fixed part of assimilated C will be used to
construct new tissue (for turnover or plant growth). During
these processes, 25% of assimilated C is supposed to be used
as growth respiration. Maintenance respiration is related to
surface temperature and biomass nitrogen content [51]. NPP
is thus calculated as

Gr = 0.25 × GPP

NPP = GPP −Mr − Gr.
(8)

Terrestrial ecosystem models are important tools for
synthesizing a huge quantity of data, analyzing and predicting
large-scale ecosystem processes, and providing a dynamic
constraint on uncertainties in a variety of issues related
to complex ecosystem processes, as well as heuristics clue
for empirical studies [90–92]. This process-based modelling
approach avoids many of the limitations of forest biomass
inventories, eddy covariancemeasurement, and inversemod-
elling by accounting for ecosystem processes and spatial
variations in environmental factors. Theoretically, the use of
the spatially explicit ecosystem modelling approach provides

us with the ability to determine the relative roles of climate,
CO
2
, land use and land cover change, air pollution, and

disturbances to changes in terrestrial primary production
and other carbon fluxes. However, this approach also has its
own limitations because of the uncertainties associated with
estimates of key model parameters as well as an incomplete
understanding of ecosystem processes [84, 93]. The accuracy
of process-based modeling on estimation of terrestrial pri-
mary production depends on comparison of simulated NPP
across broad temporal and spatial scales with observations
at a stand or landscape level (biomass inventory and eddy
covariance techniques) and with satellite based estimates at
a regional and global level.

5. Evaluating Process-Based Ecosystem Model
against Ground and Satellite Observations

Model validation is essential for establishing the credibility of
ecosystemmodels. Rastetter [92] divided various approaches
for validating a biogeochemical model into four categories:
(1) tests against short-term data; (2) space-for-time sub-
stitutions; (3) reconstruction of the past; (4) comparison
with other models. To evaluate the accuracy of simulated
terrestrial primary production, modeled GPP or NPP has
been validated against experimental and observational data
from field measurements and biomass inventory and also
evaluated against satellite-based estimates and though model
intercomparison. Here we use the DLEM model as a case
for demonstrating how we validate and evaluate ecosystem
models.

5.1. Evaluating against Flux Measurement Data. The DLEM-
simulated GPP was compared with the observational data
from the AmeriFlux towers in the Southeastern United
States. These sites include Duke Forest Hardwoods, Duke
Forest Loblolly Pine, Shidler Tallgrass Prairie site, and ARM-
SouthernGreat Plains (SGP) site.We extractedGPP fromour
regional simulation (8 km × 8 km resolution) for the specific
sites and compared that with eddy covariance estimates.
Our results show that DLEM-simulated GPP is in a good
agreement with eddy covariance based GPP for both forests
and grassland sites (Figures 1(a)–1(d)). Generally, the model
results fit well with observed GPP at Duke Hardwoods, Duke
Loblolly, and Shidler Tallgrass except ARM-Southern Great
Plain site. The ARM-Southern Great Plain site is a cropland
site where measurements were available for limited time
period when the vegetation is not in the most active growth
period resulting in poor performance of model prediction.

5.2. Evaluating against Stand and Regional Biomass Inventory
Data. The DLEM-simulated NPP was also compared to the
site observation data in the Southern United States (SUS).
We selected 138 measurements from the multibiome forest
NPP dataset published by theOak RidgeNational Laboratory
(ORNL) Distributed Active Archive Center. We extracted
simulated NPP from our regional simulation outputs (8 km ×

8 km per pixel) to match the geographic information of these
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Figure 1: Evaluation of DLEM-simulated GPP against eddy covariancemeasured daily GPP (gC/m2/day) at sites: (a) Duke Forest Hardwoods
(US-DK2, NC, USA, deciduous broadleaf forest) from 2003 to 2005; (b) Duke Forest Loblolly Pine (US-DK3, evergreen needleleaf forest)
from 2003 to 2005; (c) Shidler Tallgrass Prairie (US-shd, OK, USA, C4 grassland) from 1998 to 1999; (d) ARM SGPMain (US-arm, OK, USA,
cropland) from 2003 to 2006.

138 sites. There was a good agreement between the simulated
and measured aboveground NPP (Figure 2(a), slope = 1.09,
and 𝑅2 = 0.82).

For the purpose of regional validation, we compared
DLEM simulated crop NPP with survey reports based on
Huang et al. [94] at a national level across China. Our
DLEM simulated NPP matched well with Huang et al.’s
[94] observed NPP collected across 30 provinces in China
(Figure 2(b), slope = 0.96, 𝑅2 = 0.73). Additionally, we
compared the model simulated state-level vegetation carbon
of the southern ecosystem against the reported value based
on forest inventory dataset (http://www.fia.fs.fed.us/). The
comparisons (Figure 2(c)) showed that the vegetation carbon
simulated by DLEM matched well with the results derived
from the forest inventory database for year 1987 and 1997.

5.3. Evaluating against Satellite-Based Estimates. We evalu-
ated the temporal pattern of crop NPP in China during
the period 1982–2005 against the remote sensing dataset
(Figure 3). We particularly compared our simulated crop

NPP with results from the Global Production Efficiency
Model (GLO-PEM), which has a spatial resolution of 8
km and runs at a 10-day time step. GLO-PEM was driven
almost entirely by satellite-derived variables, including both
the Normalized Difference Vegetation Index (NDVI) and
meteorological variables [77, 95]. We overlaid the GLO-
PEM NPP images with the yearly cropland distribution data
that we had developed and extracted previously. Similarly,
we obtained the Moderate Resolution Imaging Spectrora-
diometer (MODIS) MOD 17 NPP from 2002 to 2005 and
the Advanced Very High Resolution Radiometer (AVHRR)
NPP from 1981 to 2001 [4]. The results showed that the
DLEM-simulated NPP had the same temporal pattern with
relatively higher values than those provided by GLO-PEM
and by MODIS MOD 17. A possible explanation for the
underestimation by GLO-PEM might be due to the fact
that nitrogen is not factored into the model. MODIS MOD
17 results might be influenced by the LAI, which tends to
be underestimated by MODIS MOD 17 [96]. Similarly, the
uncertainties of input data and parameters adopted in DLEM
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Figure 2: Comparisons of (a) modeled annual aboveground NPP against 138 field measurements in the SUS selected from Zheng et al. [120];
(b) modeled annual NPP against survey based crop NPP between 1980’s and 1990’s from Huang et al. [94]; (c) modeled vegetation carbon
against forest inventory outputs in 1987 and 1997 based from Birdsey and Lewis [130].

could lead to higher simulated NPP; for example, we did not
include vegetable crop types in this study and assumed that
all croplands were dominant by cereal crop types.

We further evaluated DLEM’s performance in simulating
the spatial pattern of global GPP and NPP across the
terrestrial biosphere by comparing it with MODIS product.
The spatial pattern of themodeledGPP andNPP is consistent
with that of MODIS GPP and NPP (Figure 4). However,the
algorithms of MODIS for estimating NPP are not well

calibrated for cropland. A comparison of NPP measured
at eddy covariance flux towers in China’s cropland with
MODIS-estimated NPP [97] indicated that MODIS has
significantly underestimated the cropland NPP, which partly
explained the higher estimates from the DLEM relative to
MODIS products.

Finally, as a surrogate for the direct validation, model
intercomparisons can be used to check the applicability of
various kinds of ecosystem models [88]. Ecosystem models
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Figure 3: Temporal change in annual net primary production
(NPP) (relative to the average for 1981–2005) of China’s croplands
estimated by DLEM-Ag model, GLO-PEM model, AVHRR, and
MODIS database during 1981–2005) (modified fromRen et al. [131]).

differ among each other in terms of differentmodel structure,
parameters, and the processes that control photosynthetic
carbon uptake. The estimates of terrestrial primary produc-
tion among models, therefore, depend on inherent assump-
tions and complexity ofmodel structure and formulation. For
instance, previousmodel intercomparison studies [88, 89, 98]
report large uncertainty associated with representation of
vegetation structure, soil moisture dynamics, and ecosystem
response to drought or humidity stress resulting in sub-
stantial differences in terrestrial primary production among
the models. Although these models differ in assumptions,
structure, parameters, and process representation, their inter-
comparison canhighlightmodelweaknesses, inconsistencies,
and uncertainties, which could provide insights for further
model improvements. In addition, their intercomparison
forces us to examine the interaction among data, model
structure, parameter sets, and predictive uncertainty.

6. Assessing Terrestrial Primary Production
Response to Climate Change and Increasing
Atmospheric CO2

Previous research has emphasized on how global change
factors affect terrestrial primary production across broad
temporal and spatial scales. Observational evidence suggest
that earth’s surface temperature has increased by 0.76∘C over
the past 150 years and is expected to increase by 1.5–6.4∘C
by the end of 21st century [99]. Historically, precipitation
varied among regions over the period 1900–2005 but is
expected to increase by 0.5–1% per decade in the 21st century
at a global level [99]. These climate change factors would
have a significant effect on ecosystem structure and function
resulting in growing season extension [100], carbon loss [101],
and changes in water balance [102]. Additionally, studies
suggest that elevated CO

2
contributes to an enhancement

in terrestrial primary production [67, 103, 104]; however,
such enhancement may be counterbalanced by negative
effects of ozone [105, 106]. Although tropospheric ozone has
been considered as an important environmental factor that

controls terrestrial net primary production, its effect varies
depending on regions [105, 106] and therefore could be less
important compared to other environmental factors at a
global scale. Another factor that might contribute to changes
in terrestrial primary production is anthropogenic nitrogen
inputs. Nitrogen enrichment has been primarily thought to
stimulate terrestrial primary production in the temperate
forest [107]; however, excessive nitrogen input likely leads to
soil acidification, nutrient cation leaching, thus limiting plant
growth [108]. Therefore, in this review, we only considered
the effect of climate change and elevated CO

2
because they

are the major factors affecting terrestrial primary production
at a global scale [6, 13, 21].

6.1. Climate Change Impact on Terrestrial Primary Production.
Climate factors (i.e., temperature, precipitation, and radia-
tion) are key drivers to control changes in terrestrial primary
production [38]. Plants assimilate carbon for growth through
photosynthesis, which is strongly affected by temperature.
Plants also need nutrients from the soil (i.e., nitrogen and
phosphorus), and plant responses to climate change can be
substantially modified by the nutrient availability. Nutrient
availability itself can also be affected by climate factors, espe-
cially temperature, because the rate of soil nutrient mineral-
ization strongly depends on temperature. Below the optimum
temperature, the activity of photosynthesis increases with
increasing temperature in accordance with the Arrhenius
relationship [109]. At higher temperature, photosynthesis
decreases due to conformational changes in key enzymes.
This decrease is reversible at moderately high temperatures
but becomes increasingly irreversiblewith increased duration
and intensity of high temperature exposure [110]. Many
previous studies suggest that global warming resulted in
an increase in NPP [13, 111] during the period 1982–1999,
especially in northern high latitude ecosystems. In the low lat-
itude region, changes in long-termNPP patterns weremainly
controlled by colimitations of sunlight and precipitation.

The temporal and spatial patterns of precipitation are
also critical to terrestrial ecosystem processes [38]. Tao
et al. [112] indicate that the precipitation was the key factor
determining the spatial distribution and temporal trends of
NPP in China during 1981–2000. Zhao and Running [6]
suggest a reduction in the global NPP of 0.55 PgC due to
large-scale droughts, especially in the Southern Hemisphere,
where decreased NPP counteracted the increased NPP over
the Northern Hemisphere. However, Potter et al. [21] found
an increasing trend in globalNPPdue to rapidwarming trend
that alleviated heat limitations in high latitude ecosystems
in the Northern Hemisphere during the period 2000–2009.
Additionally, comparison of 14 ecosystem models suggested
that water availability is the primary limiting factor for NPP
in global terrestrial ecosystem models [113].

While Intergovernmental Panel on Climate Change
(IPCC, 2007) reported that the earth temperature is projected
to increase during the 21st century that could largely alter
ecosystem structure and function, it is still unclear how
terrestrial primary production would respond to future
climate change. Song et al. [114], using a dynamic land
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Figure 4: Spatial patterns of MODIS-derived and DLEM-simulated GPP and NPP for year 2010. MODIS-derived GPP (a) and NPP (c) and
DLEM-simulated GPP (b) and NPP (d).

1

1.2

1.4

1.6

1.8

2

2000 2020 2040 2060 2080
Year

G
PP

 (k
g C

/m
2
/y

ea
r)

(a)

0.5

0.6

0.7

0.8

0.9

2000 2020 2040 2060 2080
Year

N
PP

 (k
g C

/m
2
/y

ea
r)

(b)

Figure 5: Projection of terrestrial primary production in response to climate change and increasing atmospheric CO
2
from 2000 to the 2090

as simulated by DLEM (a) change in gross primary production and (b) change in net primary production (modified from Song et al. [114]).

ecosystem model, projected an increase in GPP and NPP by
0.6 KgCm−2 yr−1 and 0.2 KgCm−2 yr−1, respectively, during
the period 2000–2099 (Figure 5) across the Southeastern
US. Across the globe, Sitch et al. [115] projected global
NPP under four SRES scenarios (A1FI, A2, B1, and B2)
using five dynamic global vegetation models (DGVMs) and
found reduction in terrestrial NPP due to climate. While
five models show divergence in their response to climate,
all models resulted in decrease in NPP in the tropics
and extratropics. These results indicate that the estimated
effect of climate on terrestrial NPP varies depending on
emission scenarios and model structure and parameters
used to simulate plant physiological response to global
change.

While inventory and satellite based approaches provide
estimates of terrestrial primary production at a global scale,
these approaches do not allow us to separate the effects of
climate and elevated CO

2
. For instance, Zhao and Running

[6] found that extreme events such as drought in the Southern
Hemisphere resulted in a decline in terrestrial NPP, while
Potter et al. [21] report an increase in NPP during the period
2000–2009. However, these studies do not necessarily specify
whether such decline is due to specific climate factors or a
combination of climate and elevated CO

2
or other environ-

mental drivers. At a global scale, climate in the absence of
elevated CO

2
reduced terrestrial NPP, while doubling CO

2

concentration under changing climatic condition increased
global NPP by 25% [37].
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Table 1: Published values of global terrestrial GPP and NPP based on observations, satellites, and/or process-based model.

Source Basis GPP (PgC yr−1) NPP (PgC yr−1)

Melillo et al. [3] TEMmodel NA 53.2

Field et al. [20] CASA model NA 48.0

Schlesinger [126] Review NA 51.97

Cao and Woodward [37] CEVSA model NA 57.0

Ruimy et al. [50] Model intercomparison NA 45.5

Cramer et al. [15] Model intercomparison 113 55.4 (44.4∼66.3)

Zhao et al.[127] MODIS 109.29 56.02

Beer et al. [8] Diagnostic models 123 ± 8 NA

Yuan et al. [46] Ameriflux and MODIS 110.5 NA

Ryu et al. [128] MODIS and process-based model 118 ± 26 NA

Jung et al. [129] Machine learning approach 119.4 ± 5.9 NA

Ito [18] Meta-analysis NA 56.2 ± 14.3

Potter et al. [21] MODIS and CASA model NA 50.05

This study DLEMmodel 110.4 54.6

6.2. CO
2
Impact on Terrestrial Primary Production. The

primary responses of plants to elevated atmospheric CO
2

concentration are increased photosynthesis and reduced
stomatal conductance [116]. Stomata play an essential role
in the regulation of both water losses by transpiration and
CO
2
uptake for photosynthesis and plant growth. In order

to optimize CO
2
uptake and water losses in rapidly changing

environmental conditions, plants have evolved the ability to
control stomatal conductance in response to multiple envi-
ronmental factors such as solar radiation, temperature, VPD,
and wind speed. Mechanistic scheme has been developed
by Farquhar et al. [109] to describe leaf-level photosynthesis
response to CO

2
. Ball [117] developed the Ball-Berry empir-

ical model to describe the behavior of stomatal conductance
to water vapor as a function of environmental conditions
and net photosynthetic rate. These two schemes have been
widely used in existing process-based models to describe
plant responses to CO

2
increase.

Vegetation/Ecosystem Modeling and Analysis Project
(VEMAP) analyzed the responses of NPP to doubled CO

2

from 355 to 710 ppmv among three biogeochemistry models
and found that, for the conterminous United States, doubled
atmospheric CO

2
causes NPP to increase by 5–11% [10].

King et al. [118] used a georeferenced model of ecosystem
dynamics to explore the sensitivity of global carbon storage
to changes in atmospheric CO

2
and climate; the results

suggest that a doubling of atmospheric CO
2
from 280 ppm

to 560 ppm enhances equilibrium global NPP by 16.9%. In
a similar model intercomparison study using five dynamic
global vegetation models (DGVMs), Sitch et al. [115] found
that interaction of climate and atmospheric CO

2
increased

terrestrial NPP for four different SRES scenarios over the 21st
century.

We also compared DLEM-simulated NPP and GPP with
previous studies (Table 1) based on observation, remote
sensing, and other process-based models. DLEM simulated
a global GPP of 116 PgC yr−1 for year 2010 which is within the
range of 109–119 PgC yr−1 based on previous studies. For the
same year, DLEM simulated a global NPP of 56.5 PgC yr−1
compared to the range of 44–66 PgC yr−1 estimated by
previous studies. While most of the previous studies (Table 1)
are based on different approaches, they have their own
limitations in terms of field measurements, accuracy associ-
ated with satellite estimates, and accuracy of the ecosystem
models. For instance, satellite measurements are sensitive
to changes in atmospheric chemistry. Similarly, ecosystem
models lack structural complexity to capture belowground
processes [119]. Therefore, it is necessary to integrate field
observations, satellite based approach, and ecosystemmodels
to accurately quantify the terrestrial primary production
across broad temporal and spatial scales.

6.3. Uncertainty in Estimating Terrestrial Primary Production.
Multiple approaches for estimating and predicting terrestrial
primary production lead to diversified conclusions (Table 1).
Uncertainty in the estimations of terrestrial primary produc-
tivity may arise from input datasets (climate, land use, etc.,)
and inventory datasets (for model calibration and validation)
as well as from the model structure itself. The analysis of
the seventeen models shows that global NPP ranged from
39.9 to 80.5 PgC [40]. Many factors such as model structure,
parameters, input data, and scaling may be responsible for
such large uncertainty. Onemajor source of uncertainty is the
available inventoryNPP datasets formodel parameterization,
calibration, and validation [120]. The NPP is measured at
plot or field scales that may not represent the NPP at the
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0.5∘ by 0.5∘ grid cell that is commonly used by global scale
models.Therefore, direct intercomparison between field data
obtained in different studies or comparison of these results
with coarse resolution models can be misleading. In a model
intercomparison for which all models reported results at 0.5∘
by 0.5∘ grid size, there was no suitable and consistent field
NPP available sincemost measurements are conducted in the
small areas ranging from <1 to several ha [15]. The second
problemwith available inventory datasets is the belowground
biomass measurement. The belowground biomass is often
not measured but is instead estimated using standard for-
mulas. This may provide misleading results. Lauenroth et al.
[121] have reported that amount of uncertainty associated
with estimates of NPP was significantly influenced by the
variability in the input data. For example, due to greater
variability in the field measured belowground data than
aboveground data, estimates of belowground NPP tended to
have more uncertainty than estimates of aboveground NPP.
Therefore, lack of available input dataset provides a significant
uncertainty in models that estimate NPP at global scale using
coarse resolution grid size.

In addition to the inventory NPP datasets for model
calibration and validation, the input datasets such as land use
and climate are other sources of uncertainty in most of the
models. At the global scale, the impacts may be very small for
land use as compared to climate or meteorological datasets
[122]. Jung et al. [122] estimated GPP using different land
cover maps, spatial land cover resolutions, meteorological
data sets, and process-based terrestrial ecosystem models.
Their results indicate a clear hierarchy of effects: a small effect
of using different land covermaps, a somewhat higher but still
relatively small effect of the spatial land cover resolution, a
substantial effect due to changing the meteorological forcing,
and the largest effect caused by using different models. In this
way, model structure provides the largest uncertainty in the
terrestrial primary productivity.

In the models, uncertainty in the estimation of NPP
arises from different representations of ecological processes
by different models. Because the components of terrestrial
ecosystems and the interactions among them are complicated
or not well understood, simplifying assumptions must be
made to describe them in numerical models. Different mod-
eling strategies may adopt different simplifying assumptions,
leading to different model complexity and behavior. The
uncertainties in the models are very large, both in terms
of parameter-based and model structure related uncertainty.
Models may range from the simple, empirically derived,
correlation of net primary productivity with air temperature
and precipitation (e.g., [123]) to the detailed models with
detailed biochemistry (e.g. DLEM, LPJ, CLM).

Recent studies indicated that major uncertainties in
simulating interannual variations of gross carbon uptake are
strongly linked to the way of how and if biogeochemical
cycles (carbon, water, and nitrogen) interact within the
models which controls their sensitivity to meteorological
conditions [122]. The observed relationships between forest
GPP and mean annual temperature are strongly related to
a corresponding gradient of nitrogen availability [124].There-
fore, accurate model representation of interactions among

carbon, nitrogen, and water cycles is the key to reduce
uncertainty in simulating terrestrial primary production [51,
125].

7. Toward a Multiscale Synthesis of
Observations and Model Simulations

For theNPP estimation at large scales, none of the approaches
mentioned above could solely fill in the gap of our under-
standing. Experiments and observations are always con-
ducted at a specific scale. Multiscale experiments and obser-
vations provide data but are not capable of quantifying
underlying mechanisms of changes in terrestrial primary
production as influenced by multiple environmental factors.
At the same time, modeling studies have been developing by
integrating better understanding and more representations
of biotic and abiotic processes. In order to provide diagno-
sis, quantification, and attribution of multiscale terrestrial
primary production across the globe, it is critically needed
to synthesize the various observation data and the modeled
output at diverse spatial scales ranging from site to region
to globe and temporal steps ranging from day to decade.
More specifically, (1) a common driving database needs to be
developed to characterize the environmental changes and to
drive the model runs. The database includes time series of
site-specific and gridded climate, atmospheric composition,
land-cover/land-use change, and land management practices
and auxiliary dataset on elevation, slope, aspect, vegetation
cover types, soil properties, and so on. (2) The magnitude,
spatial, and temporal patterns of terrestrial primary produc-
tion need to be quantified by various approaches and datasets,
including site-specific flux measurements, regional invento-
ries, MODIS-derived GPP/NPP, and model simulations in
a multimodel fashion. (3) Based on model evaluation and
intercomparison, multiple model simulation experiments
need to be conducted to distinguish the relative contributions
of controlling processes and to identify their changes over
space and time. Multiscale synthesis efforts need to provide
useful information to reflect the status of terrestrial primary
production, which could show further feedback to climate
system, as well as to improve our understanding of the
mechanisms responsible for terrestrial primary production.
(4) Multiple approaches lead to diversified conclusions in
terms of quantification and attribution of terrestrial primary
production. Therefore, assessments of uncertainty will be an
integral part of any synthesis project. In particular, uncer-
tainties associated with each input driving dataset, model
structure, parameters, scaling, and measurement need to
be addressed. We expect that such a multiscale synthesis
will provide a systematic assessment on terrestrial primary
production and its driving forces at varied spatial scales.

Moreover, we are living in the new world of the Anthro-
pocene in which human activity has indeed changed the
earth’s biosphere [132, 133]. Human activity such as land use
change has been a primary factor affectingmagnitude, spatial,
and temporal patterns of terrestrial primary production
across the globe. Fromboth scientific and policy perspectives,
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therefore, it is essential to incorporate socioeconomic compo-
nent into terrestrial ecosystem models for better estimating
and predicting terrestrial primary production in a changing
global environment.
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