19 research outputs found

    Smart System Side Slip Tester with Exponential Filter

    Get PDF
    According to Article 6, Paragraph 1, of Law No. 55 of 2012 Concerning Cars, cars that are not roadworthy are particularly harmful for the safety of passengers and other road users. The front wheel ring, which has a significant impact on the safety of the motorized vehicle, is one of the technical requirements for roadworthiness. The front wheel pins make sure the car can go straight, which is related to the steering system's safety and has an impact on fuel economy. Through routine testing at the motor vehicle testing facility owned by the Transportation Service, the front wheel valve examination is performed using a front wheel blade test tool known as the Side Slip Tester. Previously, a lot of the automobile test equipment used at various test facilities was impractical and inaccurate. The construction of a smart system for evaluating wheel blades on cars is covered in this study, along with the implementation of an exponential filter to improve and lower the noise in sensor readings of ADC signals. By comparing the readings of the manufactured tool with a calibrated dial indicator, tests and calibrations are performed. The graph shows that the response to the input signal is quick and excellent for noise filtering, so based on the results of the exponential filter test, 0.2 is the ideal weight for the ADC reading filter. The 9 mm side slip bench shear test yields a maximum error result of 3% following tool calibration

    Interdisciplinary design methodology for systems of mechatronic systems focus on highly dynamic environmental applications

    Get PDF
    This paper discusses a series of research challenges in the design of systems of mechatronic systems. A focus is given to environmental mechatronic applications within the chain “Renewable energy production - Smart grids - Electric vehicles”. For the considered mechatronic systems, the main design targets are formulated, the relations to state and parameter estimation, disturbance observation and rejection as well as control algorithms are highlighted. Finally, the study introduces an interdisciplinary design approach based on the intersectoral transfer of knowledge and collaborative experimental activities

    Model-Based Estimation for Vehicle Dynamics States at the Limit Handling

    Get PDF
    This technical brief proposes a new model-based estimation method for the vehicle sideslip angle, yaw rate, roll angle, and roll rate using unscented Kalman filter (UKF). Since a vehicle wheel could potentially lift off the ground during the limit handling, a switched vehicle roll dynamics model (wheel lift and no wheel lift) is developed and integrated within the proposed modelbased estimation approach considering the availability of wheel speed sensor. The simulation results and analyses demonstrate the performance enhancement of the proposed estimation method over the method not considering wheel lift during the limit handling

    A Study of Coordinated Vehicle Traction Control System Based on Optimal Slip Ratio Algorithm

    Get PDF
    Under complicated situations, such as the low slippery road surface and split-μ road surface, traction control system is the key issue to improve the performance of vehicle acceleration and stability. In this paper, a novel control strategy with engine controller and active pressure controller is presented. First and foremost, an ideal vehicle model is proposed for simulation; then a method for the calculation of optimal slip ratio is also brought. Finally, the scheme of control method with engine controller and active brake controller is presented. From the results of simulation and road tests, it can be concluded that the acceleration performance and stability of a vehicle equipped with traction control system (TCS) can be improved

    Fixed-Order Robust H

    Get PDF
    We present a novel linear observer with an extension dealing with polytopic uncertainties in a vehicle dynamic system to identify the side-slip angle. The performance optimization issue is addressed by the minimization of H∞ norm of the system considering the estimation error as an output and the steer angle as an input. Contrary to the standard robust optimal design approaches, we use a convex inner approximation technique to reduce the order of the observer and this enables us to derive suboptimal, fixed-order, and efficiently practicable estimators. Moreover, the numerical examples performed on two-track nonlinear model of the system are provided to illustrate the impacts of design parameters on the optimization results and the efficiency of the technique

    A High-Performance Control Method of Constant V

    Get PDF

    Vehicle Dynamics, Lateral Forces, Roll Angle, Tire Wear and Road Profile States Estimation - A Review

    Get PDF
    Estimation of vehicle dynamics, tire wear, and road profile are indispensable prefaces in the development of automobile manufacturing due to the growing demands for vehicle safety, stability, and intelligent control, economic and environmental protection. Thus, vehicle state estimation approaches have captured the great interest of researchers because of the intricacy of vehicle dynamics and stability control systems. Over the last few decades, great enhancement has been accomplished in the theory and experiments for the development of these estimation states. This article provides a comprehensive review of recent advances in vehicle dynamics, tire wear, and road profile estimations. Most relevant and significant models have been reviewed in relation to the vehicle dynamics, roll angle, tire wear, and road profile states. Finally, some suggestions have been pointed out for enhancing the performance of the vehicle dynamics models

    Stability Control of Front and Rear Wheel Independent Drive Type Electric Vehicle on Roads with Low Friction Coefficient

    Get PDF
    In recent years, the development of electric vehicles has accelerated. In this manuscript, a new control method is proposed to maintain the stability of the front and rear wheel independent drive type electric vehicle (FRID EV) on the roads with a low friction coefficient. This control method specifies an optimized bound proportionally to the state of the road’s surface for the torque values produced by the front and rear electric motors to prevent the vehicle from slipping. In addition, a fuzzy logic-based braking system is proposed to improve the vehicle performance during decelerating. The vehicle is described by the model with three degrees of freedom that provides good accuracy. The tires are modeled based on the magic formula. To evaluate the effectiveness of the proposed method, simulations have been carried out in MATLAB/SIMULINK software environment. The results show that the proposed control method can well maintain the stability of the electric vehicle on dry and slippery roads, during moving straight, accelerating or decelerating, as well as turning. As a result, the vehicle is prevented from slipping and locking the wheels
    corecore