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We present a novel linear observer with an extension dealing with polytopic uncertainties in a vehicle dynamic system to identify
the side-slip angle. The performance optimization issue is addressed by the minimization of 𝐻

∞
norm of the system considering

the estimation error as an output and the steer angle as an input. Contrary to the standard robust optimal design approaches, we use
a convex inner approximation technique to reduce the order of the observer and this enables us to derive suboptimal, fixed-order,
and efficiently practicable estimators. Moreover, the numerical examples performed on two-track nonlinear model of the system
are provided to illustrate the impacts of design parameters on the optimization results and the efficiency of the technique.

1. Introduction

Active vehicle safety systems such as rollover prevention, lane
departure avoidance, and yaw stability control require real
time information about the side-slip angle of vehicle in order
to function accurately during the run-time [1, 2]. Particularly,
the control of yaw rate is felt short to prevent drift-out in a
low-friction track. In addition to yaw rate control in a low-
friction track, the skid prevention system should be sup-
ported with a side-slip angle controller [3, 4]. Therefore, the
vehicle stability control unit requires the measurement of the
yaw rate and the side-slip angle of vehicle. Mainly, two types
of sensors such as optical and GPS based are used to meas-
ure the side-slip angle directly [5].The accuracy of GPS based
sensors hinges on the weather conditions and they may not
provide reliable data especially in bad weather conditions.
Although the optical ones can provide the accurate mea-
surements, both types of sensors are too expensive to use in
commercially competitive products [6]. Hence, it needs to be
estimated by virtual sensors [7].

In the literature, the topic is still hot and deserves interest
due to the importance of issue in human life. Twomainmeth-
ods are mostly used in the previous studies for the estimation
of side-slip angle. These are model based and kinematics-
based methods [1, 2]. Even though the kinematic-based ones

have significant advantages such as easy implementation and
robustness against uncertain parameters of the vehiclemodel,
they are sensitive to sensor errors. In [5, 8], they describe a
methodology for estimating vehicle slip angle based on a non-
linear model while Venhovens and Naab represent a stochas-
tic state estimator with Kalman filter using a linear model [9].
Besides, Kiencke and Daib compare both linear and nonlin-
ear model based estimators by using a high-order nonlinear
model [10]. In [11], they provide a nonlinearmodel based esti-
mator which has a comparatively acceptable computational
cost. According to the outcomes of these studies, there is a
clear trade-off between computational cost and accuracy.The
nonlinear model based estimators have considerable amount
of accuracy but high computational costs when compared to
the linearmodel based ones.Thus, the accuracy improvement
is a significant issue for the linear model based estimators.

However, the efficiency of the model based estimators
hinges on the knowledge of model parameters. It is well
known that the vehicle systems have lots of physical param-
eters, which are unknown or difficult to estimate. In addition
to this problem, some of the model parameters such as veloc-
ity and road friction coefficients vary during vehicle maneu-
vers. In order to cope with these difficulties, the adaptive
estimation strategies are proposed in [12–15]. The drawback
of these approaches is again their high computational costs.
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Therefore, they may not be efficiently implemented on
embedded systems. The vehicle models also have uncertain-
ties as well as varying model parameters. Hence, they should
be considered in design processes to obtain a robust estimate
of side-slip angle. In the previous studies, they increase the
level of robustness either by adding extra measurements such
as lateral tire forces or using six degree of freedom iner-
tial sensor cluster [16, 17]. By the help of these extra measure-
ments, their approaches do not depend on vehicle or friction
model anymore.Therefore, their estimators are robust against
parametric uncertainties of the model.

To the best of the author’s knowledge, there is no such
robust estimator design considering parametric uncertainties
especially on the vehicle model in the literature although
there are several studies for the robust estimators such as
algebraic Riccatti equation based approach [18], Krein space
estimation approach [19], and LMI based approach [20, 21];
one can refer to [22] for a survey on the topic. The standard
design of robust optimal estimator provides an estimatorwith
the same order of the generalised system derived from a
plant and weighted functions, which are mostly at very high
degrees [23]. However, a high order estimator may not be
efficiently used in commercially competitive products such
as four-wheel standard vehicles due to their high costs.

One of the main purposes of this study is to represent a
low order estimator. The main obstruction in the develop-
ment of fixed-order or structured estimators is that the solu-
tion set for the coefficients of characteristic polynomial is
generally nonconvex. Yet there is no polynomial-time solver
for nonconvex solution sets. In order to deal with this
problem, inner [24] and outer [25] convex approximation
techniques are used. Lasserre’s hierarchy of LMI relaxations
can be adopted to find the outer approximated region for
nonconvex sets which are semidefinite representable [26].
The main difference between these two techniques is that
the outer one provides the necessary condition and the inner
one provides the sufficient condition. Hence, we use inner
approximation to assure the solution located in the exact
region.The least conservative inner approximation technique
uses Linear Matrix Inequality (LMI) regions by the help
of the strict positive realness lemma [24]. According to
Henrion et al., the gap between approximated and nonconvex
regions extremely depends on the location of the central
polynomial [24]. Some of the geometrical constraints are
used to solve the 𝐻

∞
norm minimization problem via the

inner approximation technique [27]. This idea is extended
by Yang et al. using the information of bound on the norm
of model uncertainties. Thus, this technique eliminates the
geometric constraints on the definition of problem [28].

In this paper, we propose a design technique to obtain
a robust fixed-order 𝐻

∞
estimator for side-slip angle. The

estimator ensures suboptimal 𝐻
∞

norm level of the system
between steer angle and estimation error by considering the
uncertainties on velocity and cornering stiffness.

The notation to be used in the paper is fairly standard.
R stands for the set of real numbers and Z

+
symbolizes the

set of positive integers. The identity matrices are denoted by
𝐼. 𝑋 ≥ 0 (𝑋 > 0) denotes that 𝑋 is a positive semidefinite
(positive definite). The asterisk symbol (∗) denotes complex
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Figure 1: Single track model.

conjugate. 𝑏
𝑖
and 𝑏
𝑖,𝑗
denote the entry of vector 𝑏 and matrix

𝐵, respectively. 𝐴 ⊂ 𝐵 means that 𝐴 is a subset of 𝐵. The
overdot denotes the derivative with respect to time. Finally,
the notation ⋆ denotes off diagonal entries of a symmetric
matrix.

The rest of the paper is organized as follows. The vehicle
model, which is considered in the problem, is given in
Section 2. In Section 3, the convex inner approximation is
presented. The extension of the proposed method to 𝐻

∞

performance is studied in Section 4. The numerical example
is presented in Section 5 to demonstrate the effectiveness
of the fixed-order estimator. The paper is concluded with
remarks and future works in the final section.

2. The Vehicle Model

Lateral motion dynamics of a vehicle have been studied for
more than a half-century. A convenient vehicle model for low
𝑔 cornering maneuver is a single track model, also known
as bicycle model, shown in Figure 1. This model has essential
features of a vehicle’s lateral and yaw rate dynamics [29].

The main assumption of the model is the combination of
two front and two rear tires as one front and one rear tire,
respectively. Neglecting roll, pitch, and bounce dynamics, one
can derive the equation of motion of the single track model
as follows:

𝑀(V̇
𝑦
+ V
𝑥
𝑟) = 𝐹

𝑦𝑓
+ 𝐹
𝑦𝑟
,

𝐽
𝑧
̇𝑟 = 𝑙
𝑓
𝐹
𝑦𝑓

− 𝑙
𝑟
𝐹
𝑦𝑟
,

(1)

where 𝑀, V, 𝑟, 𝑙
𝑓
, and 𝑙

𝑟
represent total mass, velocity, yaw

rate (𝑟 ≡ 𝜓̇), distance from center of gravity to front, and
rear wheel, respectively. 𝐹

𝑦𝑓
(𝐹
𝑦𝑟
) denotes 𝑦-axis component

of the force vector for front tire (rear tire). Here, 𝐽
𝑧
denotes

the total inertia of vehicle on the 𝑧-axis.
Assuming that the tire model is linear, we can accept

𝐹
𝑦𝑓

= 𝐶
𝑓
𝛼
𝑓
, 𝐹
𝑦𝑟

= 𝐶
𝑟
𝛼
𝑟
and the side-slip angle
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𝛽 = tan(V
𝑦
/V
𝑥
) ≈ V
𝑦
/V
𝑥
where 𝛼 stands for the tire lateral slip

angle.Then, the classical linear bicyclemodel can be obtained
as

̇
𝛽 = −

1

𝑀V
(𝐶
𝑓
+ 𝐶
𝑟
) 𝛽

+ [−1 +

1

𝑀V2
(−𝑙
𝑓
𝐶
𝑓
+ 𝑙
𝑟
𝐶
𝑟
)] 𝑟 +

1

𝑀V
𝐶
𝑓
𝛿,

̇𝑟 =

1

𝐽
𝑧

(−𝑙
𝑓
𝐶
𝑓
+ 𝑙
𝑟
𝐶
𝑟
) 𝛽

−

1

𝐽
𝑧
V
(𝑙
2

𝑓
𝐶
𝑓
+ 𝑙
2

𝑟
𝐶
𝑟
) 𝑟 +

𝑙
𝑓

𝐽
𝑧

𝐶
𝑓
𝛿,

(2)

where 𝛿 represents the steering angle.Then, one can write the
transfer functions of the system from the steer angle, 𝛿, to the
side-slip angle, 𝛽, as

𝑝
1
(𝑠) =

𝑏
1
(𝑠)

𝑎 (𝑠)

= (𝐽
𝑧
V3𝐶
𝑓
𝑠 + (𝐶

𝑓
𝑙
2

𝑓
V2 − 𝐶

𝑓
𝑙
2

𝑓
− 𝑙
𝑓
𝑚V2

+ 𝑙
𝑓
𝐶
𝑟
𝑙
𝑟
− 𝐶
𝑟
𝑙
2

𝑟
V2) 𝐶
𝑓
)

× (𝑚V2𝐽
𝑧
𝑠
2

+ [𝑚V (𝐶
𝑓
𝑙
2

𝑓
− 𝐶
𝑟
𝑙
2

𝑟
) + 𝐽
𝑧
V (𝐶
𝑓
+ 𝐶
𝑟
)] 𝑠 − 2𝐶

2

𝑟
𝑙
2

𝑟

+ [(𝑙
2

𝑓
− 𝑙
2

𝑟
+ 2𝑙
𝑓
𝑙
𝑟
) 𝐶
𝑓
+ 𝑙
𝑟
𝑚V2] 𝐶

𝑟
− 𝐶
𝑓
𝐶
𝑟
𝑙
2

𝑟
)

−1

,

(3)

and from the steer angle, 𝛿, to the yaw rate, 𝜓̇, as

𝑝
2
(𝑠) =

𝑏
2
(𝑠)

𝑎 (𝑠)

= (𝑚V2𝐶
𝑓
𝑙
𝑓
𝑠

− V𝐶
𝑓
(𝐶
𝑓
𝑙
𝑓
V2 − 𝐶

𝑟
𝑙
𝑓
− 𝐶
𝑟
𝑙
𝑟
V2 − 𝐶

𝑓
𝑙
𝑓
))

× (𝑚V2𝐽
𝑧
𝑠
2

+ [𝑚V (𝐶
𝑓
𝑙
2

𝑓
− 𝐶
𝑟
𝑙
2

𝑟
) + 𝐽
𝑧
V (𝐶
𝑓
+ 𝐶
𝑟
)] 𝑠 − 2𝐶

2

𝑟
𝑙
2

𝑟

+ [(𝑙
2

𝑓
− 𝑙
2

𝑟
+ 2𝑙
𝑓
𝑙
𝑟
) 𝐶
𝑓
+ 𝑙
𝑟
𝑚V2] 𝐶

𝑟
− 𝐶
𝑓
𝐶
𝑟
𝑙
2

𝑟
)

−1

.

(4)

Since cornering stiffness parameters and velocity appearmul-
tiaffinely, we may deal with the uncertainties associated with
these parameters by introducing 𝑝

1
(𝑠, 𝜆) and 𝑝

2
(𝑠, 𝜆) poly-

nomials representing the systems inside the polytope vertices
where 𝜆 denotes the coordinate of the system in polytope.

Asmentioned above, the goal of our estimator is to reduce
𝐻
∞

norm of the system, which is defined between the steer
angle and the estimator error (𝑧 = 𝛽 −

̂
𝛽), through a fixed-

order estimator. 𝛽 and ̂
𝛽 stand for the actual side-slip angle

and the suboptimally estimated side-slip angle, respectively.
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Figure 2: System between performance output and steer angle
input.

To make the design as close as possible to the driver steering
command in real world, we assume that the steering angle
may not vary faster than 1Hz. Therefore, a second order low
pass filter in the form of

𝑊
1
(𝑠) =

𝑛
𝑓1
(𝑠)

𝑑
𝑓1
(𝑠)

=

39.4784

𝑠
2
+ 8.8858𝑠 + 39.4784

(5)

is placed just after the steering angle signal in order to
increase the realism and the efficiency of the design. More-
over, another weighting function to reduce the tracking error
is specified as follows:

𝑊
2
(𝑠) =

𝑛
𝑓2
(𝑠)

𝑑
𝑓2
(𝑠)

=

0.01

𝑠 + 0.01

, (6)

which is used after the output error signal. In Figure 2,wemay
see the schemeof the nominal system from the steer angle 𝛿 to
the performance output 𝑧. Hence the transfer function from
𝛿 to 𝑧 is obtained as

𝐺 (𝑠, 𝜆) = (𝑛
𝑓1
(𝑠) 𝑏
1
(𝑠, 𝜆) 𝑥 (𝑠) 𝑛

𝑓2
(𝑠)

− 𝑛
𝑓1
(𝑠) 𝑏
2
(𝑠, 𝜆) 𝑦 (𝑠) 𝑛

𝑓2
(𝑠))

× (𝑑
𝑓1
(𝑠) 𝑎 (𝑠, 𝜆) 𝑥 (𝑠) 𝑑

𝑓2
(𝑠))

−1

,

(7)

where 𝑦(𝑠) and 𝑥(𝑠) denote the numerator and denominator
polynomials of the estimator, respectively.

3. Convex Inner Approximation

In this section, we briefly recall the convex inner approxi-
mation technique proposed in [24] which is used to find the
fixed-order 𝑦(𝑠)/𝑥(𝑠) estimator. The proposed approximated
region is represented by an LMI using the theory of positive
polynomials. The core idea of this approach is based on the
strict positive realness (SPRness) of the rational function.

Let us define a region in the complex plane in the form of

D =

{
{

{
{

{

𝑠 ∈ C : [

1

𝑠
]

∗

[

𝛿
11

𝛿
12

𝛿
∗

12
𝛿
22

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Δ

[

1

𝑠
] < 0

}
}

}
}

}

. (8)
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Standard choices for Δ are the left half-plane (𝛿
11

= 0, 𝛿
12

=

1, 𝛿
22

= 0) for the continuous polynomial and the unit disk
(𝛿
11
= −1, 𝛿

12
= 0, 𝛿

22
= 1) for the discrete polynomial. Let

𝜕D = {𝑠 ∈ C : 𝛿
11
+ 𝛿
12
𝑠 + 𝛿
∗

12
𝑠
∗

+ 𝛿
22
𝑠𝑠
∗

= 0} (9)

be the one-dimensional boundary of the regionD. A polyno-
mial is calledD-stable, when its roots belong toD. Similarly,
a rational function is D-strict positive real (D-SPR) if and
only if its real part is positive when evaluated along 𝜕D.
As D stability is a less conservative convex condition than
quadratic stability [30], we choose to useD stability condition
in this study.

Let us now consider two polynomials, 𝑐(𝑠) = 𝑐
0
+ 𝑐
1
𝑠 +

⋅ ⋅ ⋅ + 𝑐
𝑛
𝑠
𝑛 and 𝑑(𝑠) = 𝑑

0
+𝑑
1
𝑠+ ⋅ ⋅ ⋅ +𝑑

𝑛
𝑠
𝑛 of degree 𝑛, with real

coefficient vectors

𝑐 = [𝑐
0
𝑐
1
⋅ ⋅ ⋅ 𝑐
𝑛
] , 𝑑 = [𝑑

0
𝑑
1
⋅ ⋅ ⋅ 𝑑
𝑛
] . (10)

𝑐(𝑠) is called central polynomial and it is the main design
parameter. Then Hermitian matrix 𝑃(𝑐) is constructed as

𝑃 (𝑐) = 𝑑
∗

𝑐 + 𝑐
∗

𝑑 − 2𝜖
1
𝑐
∗

𝑐, (11)

where 𝜖
1
denotes a small positive scalar.

After these definitions, we may use the key idea (D-
SPRness of the rational function) to describe the LMI region.

Corollary 1. For a givenD-stable polynomial 𝑐(𝑠), polynomial
𝑑(𝑠) is alsoD-stable if the rational function𝑑(𝑠)/𝑐(𝑠) isD-SPR.

In the sequel, we may formulate D-SPRness of 𝑑(𝑠)/𝑐(𝑠)
via polynomial positivity. The SPRness condition is charac-
terized by

Re 𝑑 (𝑠)
𝑐 (𝑠)

=

1

2

(

𝑑
∗

(𝑠)

𝑐
∗
(𝑠)

+

𝑑 (𝑠)

𝑐 (𝑠)

)

=

1

2

(

𝑑
∗

(𝑠) 𝑐 (𝑠) + 𝑐
∗

(𝑠) 𝑑 (𝑠)

𝑐
∗
(𝑠) 𝑐 (𝑠)

) ≥ 𝜖
1
.

(12)

Owing to this formulation, one can define the positivity con-
dition as follows:

𝑝 (𝑠) = 𝑑
∗

(𝑠) 𝑐 (𝑠) + 𝑐
∗

(𝑠) 𝑑 (𝑠) − 2𝜖
1
𝑐
∗

(𝑠) 𝑐 (𝑠) ⪰ 0 (13)

for all 𝑠 ∈ 𝜕D.
In addition to these aforementioned definitions, we will

show the asymptotic convergence of the estimation error of
side-slip angle to zero through the well-known Lyapunov
stability theorem. In order to do so, we choose a fictitious state
vector to be as

𝜉 (𝑡) = [](𝑡)
𝑑
𝑛

𝑧(𝑡)

𝑑𝑡
𝑛

]

∗

, (14)

where ](𝑡) is defined as

] (𝑡) = [ 𝑧(𝑡)

𝑑𝑧(𝑡)

𝑑𝑡

⋅ ⋅ ⋅

𝑑
𝑛−1

𝑧(𝑡)

𝑑𝑡
𝑛−1

]

∗

, (15)

and let

Π =
[

[

Π
1

− − −

Π
2

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

1 0

d
.
.
.

1 0

− − − −

0 1

.

.

. d
0 1

]

]

]

]

]

]

]

]

]

]

]

]

(16)

be the linear mappingmatrix of size 2𝑛×(𝑛+1). Now one can
reformulate the state vector definition as ](𝑡) = Π

1
𝜉(𝑡) and

]̇(𝑡) = Π
2
𝜉(𝑡). The projected stability matrix can be defined

as

Δ (𝑄) = Π
∗

(Δ ⊗ 𝑄)Π, (17)

where ⊗ is the Kronecker product.

Lemma 2. Given a D-stable polynomial 𝑐(𝑠) of degree 𝑛,
polynomial 𝑑(𝑠) is also D-stable if there exists a matrix 𝑄 of
size 𝑛 solving the LMI

𝑃 (𝑐) − Δ (𝑄) ⪰ 0, 𝑄 = 𝑄
∗

. (18)

Proof. A proof based on polynomials positivity is described
in [24]. Here we represent the asymptotic stability of the
system using Lyapunov function in order to guarantee the
performance for the time-varying parameters [31]. One can
write the quadratic Lyapunov function as

𝑉 (𝑡) = 𝜉
∗

(𝑡) Π
∗

1
𝑄Π
1
𝜉 (𝑡) (19)

since the Lyapunov function is defined by 𝑉(𝑡) = ]∗(𝑡)𝑄](𝑡).
The time-derivative of the Lyapunov function is 𝑉̇(𝑡) =

−𝜉
∗

(𝑡)Δ(𝑄)𝜉(𝑡) [32]. Then, the conditions

𝜉
∗

(𝑡) 𝑄𝜉 (𝑡) > 0,

−𝜉
∗

(𝑡) Δ (𝑄) 𝜉 (𝑡) < 0

(20)

guarantee the Lyapunov stability along the system trajectory
𝑑𝜉(𝑡) = 0. The proof can be concluded by applying Finsler’s
lemma to (20). The equivalent statements of Finsler’s lemma
state that there exists a vector 𝑐which ensures (18) and𝑄 > 0.
The condition 𝑄 > 0 can be omitted since 𝑐(𝑠) is stable.

Remark 3. Since 𝜖
1
needs to be any positive scalar, wemay set

a very low value to it. Hence, −2𝜖
1
𝑐
∗

𝑐 term can be negligible
in (11).

To the best of our knowledge, this technique is the least
conservative inner approximation in the literature.

4. 𝐻
∞

Performance

Most of the previous studies on𝐻
∞
performance are based on

the state space representation. Kučera’s [33] andKwakernaak’s
[34] works are some of the rare analyses on this performance
through polynomial representation. The salient advantage
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of this representation is that it provides an opportunity to
design a fixed-order estimator which guarantees an𝐻

∞
per-

formance.
Assume that the polynomial 𝑑(𝑠) is affected by an additive

norm-bounded uncertainty in the form of

𝑑
𝜁
(𝑠) = 𝑑 (𝑠) + 𝜁𝑛 (𝑠) ,

󵄨
󵄨
󵄨
󵄨
𝜁
󵄨
󵄨
󵄨
󵄨
≤ 𝛾
−1

, (21)

where 𝜁 is a real-valued scalar of unstructured uncertainty.
According to the small-gain theorem, robust stability of
polynomial is equivalent to the𝐻

∞
performance constraint

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑛(𝑠)

𝑑(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩∞

< 𝛾 (22)

on the transfer function [23].

Theorem 4. For a givenD-stable polynomial 𝑐(𝑠), the transfer
function 𝑛(𝑠)/𝑑(𝑠) is also D-stable and ensures the 𝐻

∞
per-

formance constraint if there exist a symmetric matrix 𝑄 and a
scalar 𝜖

2
such that

[

𝑐
∗

𝑑 + 𝑑
∗

𝑐 − 𝜖
2
𝑐
∗

𝑐 − Π
∗

(Δ ⊗ 𝑄)Π 𝑛
∗

𝑛 𝜖
2
𝛾
2] ⪰ 0. (23)

The proof of this theorem follows from the application of
Lemma 2 to uncertain polynomial 𝑑

𝜁
(𝑠) and then it yields the

uncertain LMI

𝑐
∗

(𝑑 + 𝜁𝑛) + (𝑑
∗

+ 𝑛
∗

𝜁) 𝑐 − Δ (𝑄) ⪰ 0 (24)

which is equivalent to the following quadratic inequality:

𝜂
∗

(𝑐
∗

(𝑑 + 𝜁𝑛) + (𝑑
∗

+ 𝑛
∗

𝜁) 𝑐 − Δ (𝑄)) 𝜂 ⪰ 0, (25)

for an arbitrary vector 𝜂. Defining 𝑟 := 𝜁𝑐𝜂, one can rewrite
(25) as follows:

[

𝜂

𝑟
]

∗

[

𝑐
∗

𝑑 + 𝑑
∗

𝑐 − Δ (𝑄) 𝑛
∗

𝑛 0
] [

𝜂

𝑟
] ⪰ 0. (26)

For the rest of the proof related with the performance criteria,
we may rewrite |𝜁| ≤ 𝛾

−1 bound over the uncertainty as 𝛾−2 −
𝜁
2

≥ 0 or equivalently in the form of quadratic inequality

𝜂
∗

𝑐
∗

𝑐𝜂 − 𝛾
2

𝑟
∗

𝑟 ≥ 0. (27)

Then, adopting the S-procedure on (26) and (27), it is
straightforward to obtain the LMI introduced in (23).

We can extendTheorem 4 to the case of uncertain system
𝑛(𝑠, 𝜆)/𝑑(𝑠, 𝜆), discussed in the modeling section, which
is located in the polytope with vertices (𝑛𝑖(𝑠)/𝑑𝑖(𝑠)) (𝑖 =

1, 2, . . . , 𝑁), where 𝑛𝑖(𝑠) = 𝑛
𝑖

0
+ 𝑛
𝑖

1
𝑠 + ⋅ ⋅ ⋅ + 𝑛

𝑖

𝑚
𝑠
𝑚 and 𝑑

𝑖

(𝑠) =

𝑑
𝑖

0
+ 𝑑
𝑖

1
𝑠 + ⋅ ⋅ ⋅ + 𝑑

𝑖

𝑚
𝑠
𝑚 for 𝑖 = 1, 2, . . . , 𝑁. From the structure

of our estimator design, shown in Figure 2, the numerator
and denominator of 𝐺(𝑠, 𝜆) are related with the estimator’s
numerator and denominator represented by 𝑦(𝑠) and 𝑥(𝑠)

polynomials.Therefore, we may define the coefficient vectors
𝑛
𝑖

(𝑥, 𝑦) and 𝑑𝑖(𝑥, 𝑦) for the vertices of polytope.

Lemma5. Given a stable 𝑐(𝑠) and 𝛾 > 0, the uncertain polyno-
mial 𝑑(𝑠, 𝜆) in the vertices of 𝑛𝑖(𝑠) and 𝑑

𝑖

(𝑠) ensures SPRness
of 𝑑(𝑠, 𝜆)𝑐−1(𝑠) and satisfies the𝐻

∞
performance constraint if

and only if there exist matrices 𝑄𝑖 = 𝑄
𝑖∗, vectors 𝑥, 𝑦, and

scalars 𝜖𝑖
2
, such that the inequalities

[

𝑐
∗

𝑑
𝑖

(𝑥, 𝑦) + 𝑑
𝑖

(𝑥, 𝑦)
∗

𝑐 − 𝜖
𝑖

2
𝑐
∗

𝑐 − Π
∗

(Δ ⊗ 𝑄
𝑖

)Π 𝑛
𝑖

(𝑥, 𝑦)
∗

𝑛
𝑖

(𝑥, 𝑦) 𝜖
𝑖

2
𝛾
2

]

⪰ 0,

(28)

are satisfied for all 𝑖 = 1, 2, . . . , 𝑁.

5. Numerical Results

This section investigates the effectiveness of the proposed
estimator. The single-track linear model is used to design
estimators. In order to make a realistic investigation, we
consider a two-track nonlinear model to test the proposed
estimators under some standard lateral dynamicsmaneuvers.
Fundamentally, the two-track nonlinear model is considered
as a complete vehicle model for lateral and longitudinal
dynamics which is well defined in Kiencke’s book (Section 8.4
the complete vehicle model, page 341) [35]. Since we focus
on the lateral movements, we may neglect the longitudinal
forces and define velocity as an input of the system. Due to
the page limitation, the detailed representation of themodel is
omitted.The parameters used for the vehicle model are given
as 𝑀 = 1500 kg, 𝑙

𝑓
= 1.4m, 𝑙

𝑟
= 1.7m, 𝑏

𝑟
= 𝑏
𝑓
= 1.6m

(distance between wheels), 𝑘
𝐺
= 1.3m, and 𝐽

𝑧
= 𝑀𝑘

2

𝐺
, where

𝑘
𝐺
is turning radius. The cornering stiffness value hinges on

several parameters such as the type of the tire, the inflating
pressure, and the vertical load. During the maneuver, the
velocity is not certain. Therefore, we consider them as
uncertainty parameters and assume that𝐶

𝑟𝑗
,𝐶
𝑓𝑗
, and V values

vary in [550N/deg 650N/deg], [590N/deg 610N/deg], and
[20 km/h 40 km/h] intervals for all 𝑗 = {𝑟, 𝑙}, respectively.
Here, 𝐶

𝑟𝑟
and 𝐶

𝑟𝑙
denote cornering stiffness parameters for

rear right and left tires. The front tires’ parameters are also
defined by the same way.

The uncertain parameters 𝐶
𝑟
, 𝐶
𝑓
, and V appear multi-

affinely in single-trackmodel and they can be overbounded in
design process. Therefore, the coefficients of 𝑏

1
(𝑠, 𝜆), 𝑏

2
(𝑠, 𝜆),

and 𝑎(𝑠, 𝜆) polynomials vary in 6 distinct intervals, producing
a polytope of systemwith𝑁 = 2

6

= 64 vertices.The polytopic
system can be defined as follows:

𝑏
1
(𝑠)

𝑎 (𝑠)

=

interval 1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[2.1869, 4.5221] 𝑠 +

interval 2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[−0.4460, −0.3923]

𝑠
2
+ [0.0487, 0.1111]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

interval 3
𝑠 + [0.0280, 0.1080]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

interval 4

,

𝑏
2
(𝑠)

𝑎 (𝑠)

=

interval 5
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[0.3258, 0.3369] 𝑠 +

interval 6
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[0.1191, 0.5056]

𝑠
2
+ [0.0487, 0.1111]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

interval 3
𝑠 + [0.0280, 0.1080]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

interval 4

.

(29)

As we noted in the introduction that the main motivation
of this work is to find fixed-order estimators which provide
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similar performance as full-order one. The full-order esti-
mator can be designed by using the theory in [36] which is
well known and easy to obtain through “hinfsyn” function
in MATLAb. In order to present the conservatism and the
achievements of fixed-order estimator, we design the full-
order𝐻

∞
estimator,

𝑦 (𝑠)

𝑥 (𝑠)

= (29.1527𝑠
4

+ 1668.0568𝑠
3

+ 53575.7938𝑠
2

+ 761774.0604𝑠

− 8190984.7539)

× (𝑠
5

+ 174.3576𝑠
4

+ 12000.3376𝑠
3

+ 461263.0713𝑠
2

+ 8421075.3411𝑠

+ 889136.54492)

−1

(30)

which ensures 𝛾 = 2. Although the full-order one is easy to
design and it provides the optimal result, it may be hard to
implement on a real system. In addition to this, the reliability
level of estimator is inversely proportional to the degree
of full-order estimator. Therefore, low-order estimators or
controllers, especially first or second order, are preferred.
Moreover, it is easier to tune low-order estimators compared
to full-order ones.

Our goal is to find the first degree estimator 𝑦(𝑠)/𝑥(𝑠)
which ensures the minimum achievable 𝐻

∞
norm of the

transfer function (7) for all possible values of the uncertain
parameter 𝜆. During the simulation studies, D-region is
considered as the open left-half plane, so 𝛿

11
= 𝛿
22

= 0,
𝛿
12
= 1, and 𝜖

2
= 1.

In order to define a convex problem, we should assign the
coefficients of central polynomial in the problem (28). The
basic strategy is that zeros of central polynomial are chosen
around the nominal system’s poles which are obtained by
using unity gain as the estimator and then move some of
the slow poles to improve the dynamic response. In order
to do so, we need to find the poles of this system which are
located at (−4.4429 ± 𝑖4.4429, −0.1210 ± 𝑖0.2598, −0.01) and
then we may add one more pole for first order estimator
and move the slow poles slightly to the left to improve the
dynamic response. Since the desired estimator is degree one,
we may choose the roots of central polynomial as (−4.4429 ±
𝑖4.4429, −0.1210 ± 𝑖0.2598, −0.1 ± 𝑖0.01). According to this
strategy, the central polynomial is

𝑐 (𝑠) = 𝑠
6

+ 9.3278𝑠
5

+ 43.5467𝑠
4

+ 18.7172𝑠
3

+ 5.7164𝑠
2

+ 0.7516𝑠 + 0.0327.

(31)

Finally, we obtain the first degree robust estimator,

𝑦 (𝑠)

𝑥 (𝑠)

=

1.8762𝑠 − 6.6020

5.8268𝑠 + 0.8428

, (32)

by solving the convex optimization problem: minimize 𝛾

subject to LMI problem (28) using YALMIP [37] with

M
ag

ni
tu

de
 (d

B)

Bode diagram

Frequency (rad/s)
10−4 10−3 10−2 10−1 100 101 102 103

−300

−250

−200

−150

−100

−50

0

50

20 ∗ log10(𝛾) = 11.5537 dB

Figure 3: Bode plot of the system for all vertices.
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Figure 4: Band limited white noise signal used for the simulation of
the steer angle input (green line) and filtered steer angle input (blue
line).

SeDuMi [38] solver.The estimator yields 𝛾 = 3.7817. One can
observe in Figure 3 that the performance criteria are ensured
for all 64 vertices by the proposed estimator.

In order to emphasize the robustness of the proposed
estimator, the system is driven by a steering angle (𝛿). The
realistic steer angle signal is produced by filtering the output
of the “Band-LimitedWhiteNoise” (BLWN) block inMatlab-
Simulink with the filter𝑊

1
where BLWNuses 10 for the noise

power value and 0.1s for the sample time value. One can see in
Figure 4 that the output of𝑊

1
filter, colored in blue, produces

a realistic steering angle signal for the simulation.The velocity
(V) and the cornering stiffness parameters (𝐶

𝑟𝑟
, 𝐶
𝑟𝑙
, 𝐶
𝑓𝑟
, and

𝐶
𝑓𝑙
) vary in the intervals shown in Figure 5.
The output of the full-order and proposed estimator are

presented in Figure 6. In some applications, the designer may
request a better dynamic response which can be obtained by
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Figure 6: Side-slip angle (blue line) and the estimation results of the full-order estimator (cyan line) and first (green line) and second (red
line) estimators.

changing the location of the central polynomial. The conser-
vatism of the proposed technique is extremely dependent on
the location of the central polynomial. For our example, we
may use −0.2 and −0.1 instead of slow complex conjugate
zeros (−0.1 ± 𝑖0.01) of central polynomial. In the sequel, we
can obtain the second estimator as

𝑦 (𝑠)

𝑥 (𝑠)

=

3.1823𝑠 − 13.0733

13.7075𝑠 + 1.6689

, (33)

solving LMI problem with 𝑐(𝑠) = 𝑠
6

+ 9.4278𝑠
5

+ 44.4695𝑠
4

+

22.9787𝑠
3

+ 7.1576𝑠
2

+ 1.1772𝑠 + 0.0648 central polynomial

and ensuring 𝛾 = 3.7817. One can see the improvement on
the dynamic response of the second estimator in Figure 6.

In the second part of the simulations, the nonlinear vehi-
cle model is driven on the standard lateral dynamics maneu-
vers: sine with dwell and fish hook. In the design section,
we consider the cornering stiffness parameters as uncertain
in the limited interval. However, instantaneous cornering
stiffness approaches to very low values when the lateral tyre
forces are near their saturation. Experimental research shows
that the lateral tyre forces are close to saturation level when
the slip angle exceeds three degrees boundary [39]. Although
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Figure 8: Side-slip angle (blue line) and the estimation results of the full-order estimator (cyan line) and first (green line) and second (red
line) estimators.

the proposed estimators are designed with different intervals
for cornering stiffness, their sensitivity level for parameter
changes is low as an outgrowth fact of 𝐻

∞
optimization

design. Here we compare the performance of our estimators
with the full-order one and check the robustness against the
parameter changes by using the sine with dwell maneuver.
In order to make a realistic simulation, we constitute the
cornering stiffness parameters for all four wheels by the help
of Gaussian function. Figure 7 presents steer angle input and
variation of cornering stiffness parameters.The results of sine

with dwell maneuver under the same velocity profile used
in the previous simulations are shown in Figure 8. During
the sine and dwell maneuver, the cornering stiffness of tires
exceeds our designed interval. Even in this case our second
estimator presents very close performance to the full-order
one. At the end of dwell part of maneuver, the vehicle body is
slipping and loosing its lane. However, the stabilization is not
the scope of this work.

Finally, the fish hook maneuver is used to check the per-
formance of the proposed estimators at the extreme case.
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Figure 10: Side-slip angle (blue line) and the estimation results of the full-order estimator (cyan line) and first (green line) and second (red
line) estimators.

In this example, we used constant velocity (30 km/h). One
can obtain from the results shown in Figures 9 and 10
that the estimators provide favorable performance up to the
extreme part of fish hook maneuver which starts at sixth
second. While the estimators still follow the side-slip angle
after the sixth second, the errors increase due to the drastic
decrease of the cornering stiffness parameter. However, the
skid prevention control or any control on lateral dynamics is
not the scope of this work. One can conclude that the per-
formance of the estimators at the extreme part of fish hook
maneuver is at the satisfactory level.

6. Conclusion

In this paper, we revisit the classical side-slip angle estimation
problem in the automotive industry. The presented method
employs the positive realness to define a convex body in a
nonconvex solution set in order to derive a low order esti-
mator.Therefore, the technique provides suboptimal solution
in terms of 𝐻

∞
norm of the transfer function between the

steer angle and estimation error. In addition to this, the
proposed technique can deal with uncertainties in a polytopic
form, which are coming from the system parameters such
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as cornering stiffness and velocity. Numerical simulations
are used to validate the performance of the designed esti-
mator. The results show that one can bound the 𝐻

∞
norm

of proposed scheme via the first order estimator. Besides
the disadvantages of full-order estimator, explained in the
numerical results part, the engineers in automotive industry
are familiar with low degree controllers and estimators such
as PI, PD, or PID. They may easily constitute and tune them
with a limited hardware. Therefore these types of estimators
are still popular. To sum up, our method develops a robust
fix-order observer design technique to estimate the side-slip
angle using the measurement of yaw rate.

Although the velocity of vehicle can be easily measured,
our design procedure takes it as an uncertain parameter due
to the inherent limitation of the proposed technique. How-
ever, the simulation shows that the variation of velocity plays
an important role in the estimation of side-slip angle. As a
future work, we plan to extend the design to adapt quasi-LPV
systems. This extension would enable us to use a nonlinear
model in the design procedure which would be more realistic
and would increase the accuracy of the estimation.
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