241 research outputs found

    A fuzzy clustering algorithm to detect planar and quadric shapes

    Get PDF
    In this paper, we introduce a new fuzzy clustering algorithm to detect an unknown number of planar and quadric shapes in noisy data. The proposed algorithm is computationally and implementationally simple, and it overcomes many of the drawbacks of the existing algorithms that have been proposed for similar tasks. Since the clustering is performed in the original image space, and since no features need to be computed, this approach is particularly suited for sparse data. The algorithm may also be used in pattern recognition applications

    A Minimalist Approach to Type-Agnostic Detection of Quadrics in Point Clouds

    Get PDF
    This paper proposes a segmentation-free, automatic and efficient procedure to detect general geometric quadric forms in point clouds, where clutter and occlusions are inevitable. Our everyday world is dominated by man-made objects which are designed using 3D primitives (such as planes, cones, spheres, cylinders, etc.). These objects are also omnipresent in industrial environments. This gives rise to the possibility of abstracting 3D scenes through primitives, thereby positions these geometric forms as an integral part of perception and high level 3D scene understanding. As opposed to state-of-the-art, where a tailored algorithm treats each primitive type separately, we propose to encapsulate all types in a single robust detection procedure. At the center of our approach lies a closed form 3D quadric fit, operating in both primal & dual spaces and requiring as low as 4 oriented-points. Around this fit, we design a novel, local null-space voting strategy to reduce the 4-point case to 3. Voting is coupled with the famous RANSAC and makes our algorithm orders of magnitude faster than its conventional counterparts. This is the first method capable of performing a generic cross-type multi-object primitive detection in difficult scenes. Results on synthetic and real datasets support the validity of our method.Comment: Accepted for publication at CVPR 201

    Possibilistic clustering for shape recognition

    Get PDF
    Clustering methods have been used extensively in computer vision and pattern recognition. Fuzzy clustering has been shown to be advantageous over crisp (or traditional) clustering in that total commitment of a vector to a given class is not required at each iteration. Recently fuzzy clustering methods have shown spectacular ability to detect not only hypervolume clusters, but also clusters which are actually 'thin shells', i.e., curves and surfaces. Most analytic fuzzy clustering approaches are derived from Bezdek's Fuzzy C-Means (FCM) algorithm. The FCM uses the probabilistic constraint that the memberships of a data point across classes sum to one. This constraint was used to generate the membership update equations for an iterative algorithm. Unfortunately, the memberships resulting from FCM and its derivatives do not correspond to the intuitive concept of degree of belonging, and moreover, the algorithms have considerable trouble in noisy environments. Recently, we cast the clustering problem into the framework of possibility theory. Our approach was radically different from the existing clustering methods in that the resulting partition of the data can be interpreted as a possibilistic partition, and the membership values may be interpreted as degrees of possibility of the points belonging to the classes. We constructed an appropriate objective function whose minimum will characterize a good possibilistic partition of the data, and we derived the membership and prototype update equations from necessary conditions for minimization of our criterion function. In this paper, we show the ability of this approach to detect linear and quartic curves in the presence of considerable noise

    Automatic post-processing for tolerance inspection of digitized parts made by injection moulding

    Get PDF
    This paper presents the advancements of an automatic segmentation procedure based on the concept of Hierarchical Space Partitioning. It is aimed at tolerance inspection of electromechanical parts produced by injection moulding and acquired by laser scanning. After a general overview of the procedure, its application for recognising cylindrical surfaces is presented and discussed through a specific industrial test case

    Image segmentation with adaptive region growing based on a polynomial surface model

    Get PDF
    A new method for segmenting intensity images into smooth surface segments is presented. The main idea is to divide the image into flat, planar, convex, concave, and saddle patches that coincide as well as possible with meaningful object features in the image. Therefore, we propose an adaptive region growing algorithm based on low-degree polynomial fitting. The algorithm uses a new adaptive thresholding technique with the L∞ fitting cost as a segmentation criterion. The polynomial degree and the fitting error are automatically adapted during the region growing process. The main contribution is that the algorithm detects outliers and edges, distinguishes between strong and smooth intensity transitions and finds surface segments that are bent in a certain way. As a result, the surface segments corresponding to meaningful object features and the contours separating the surface segments coincide with real-image object edges. Moreover, the curvature-based surface shape information facilitates many tasks in image analysis, such as object recognition performed on the polynomial representation. The polynomial representation provides good image approximation while preserving all the necessary details of the objects in the reconstructed images. The method outperforms existing techniques when segmenting images of objects with diffuse reflecting surfaces

    Comparison of algorithms for recognition of cylindrical features in a voxel-based approach for tolerance inspection

    Get PDF
    In injection molding production, automatic inspections are needed to control defects and evaluate the assigned functional tolerances of components and dies. With the “Smart Manufacturing” approach as a point of view, this paper resumes part of a wider research aiming the integration and the automation of a Reverse Engineering inspection process in components and die set-up. The paper compares two fitting approaches for recognition of portions of cylindrical surfaces. Therefore, they are evaluated in the respect of an automatic voxel-based feature recognition of 3D dense cloud of points for tolerance inspection of injection-molded parts. The first approach is a 2D Levenberg Marquardt algorithm coupled with a first guess evaluation made by the Kasa algebraic form. The second one is a 3D fitting based on the RANdom SAmple Consensus algorithm (RANSAC). The evaluation has been made according to the ability of the approaches of working on points associated to the voxel structure that locally divides the cloud to characterize planar and curved surfaces. After the presentation of the overall automatic recognition, the cylindrical surface algorithms are presented and compared trough test cases
    corecore