2,252 research outputs found

    GPS Multipath Detection in the Frequency Domain

    Full text link
    Multipath is among the major sources of errors in precise positioning using GPS and continues to be extensively studied. Two Fast Fourier Transform (FFT)-based detectors are presented in this paper as GPS multipath detection techniques. The detectors are formulated as binary hypothesis tests under the assumption that the multipath exists for a sufficient time frame that allows its detection based on the quadrature arm of the coherent Early-minus-Late discriminator (Q EmL) for a scalar tracking loop (STL) or on the quadrature (Q EmL) and/or in-phase arm (I EmL) for a vector tracking loop (VTL), using an observation window of N samples. Performance analysis of the suggested detectors is done on multipath signal data acquired from the multipath environment simulator developed by the German Aerospace Centre (DLR) as well as on multipath data from real GPS signals. Application of the detection tests to correlator outputs of scalar and vector tracking loops shows that they may be used to exclude multipath contaminated satellites from the navigation solution. These detection techniques can be extended to other Global Navigation Satellite Systems (GNSS) such as GLONASS, Galileo and Beidou.Comment: 2016 European Navigation Conference (ENC 2016), May 2016, Helsinki, Finland. Proceedings of the 2016 European Navigation Conference (ENC 2016

    An autonomous GNSS anti-spoofing technique

    Get PDF
    open3siIn recent years, the problem of Position, Navigation and Timing (PNT) resiliency has received significant attention due to an increasing awareness on threats and the vulnerability of the current GNSS signals. Several proposed solutions make uses of cryptography to protect against spoofing. A limitation of cryptographic techniques is that they introduce a communication and processing computation overhead and may impact the performance in terms of availability and continuity for GNSS users. This paper introduces autonomous non cryptographic antispoofing mechanisms, that exploit semi-codeless receiver techniques to detect spoofing for signals with a component making use of spreading code encryption.openCaparra, Gianluca; Wullems, Christian; Ioannides, Rigas T.Caparra, Gianluca; Wullems, Christian; Ioannides, Rigas T

    A New System Noise Measurement Method Using a 2-bit Analog-To-Digital Converter

    Full text link
    We propose a new method to measure the system noise temperature, TsysT_{\rm sys}, using a 2-bit analog-to-digital converter (ADC). The statistics of the digitized signal in a four-level quantization brings us information about the bias voltage and the variance, which reflects the power of the input signal. Comparison of the variances in {\it hot} and {\it sky} circumstances yields TsysT_{\rm sys} without a power meter. We performed test experiments using the Kagoshima 6-m radio telescope and a 2-bit ADC to verify this method. Linearity in the power-variance relation was better than 99% within the dynamic range of 10 dB. Digitally measured TsysT_{\rm sys} coincided with that of conventional measurement with a power meter in 1.8-% difference or less for elevations of 10∘−88∘10^{\circ} - 88^{\circ}. No significant impact was found by the bias voltages within the range between -3.7 and +12.8% with respect to the threshold voltage. The proposed method is available for existing interferometers that have a multi-level ADC, and release us from troubles caused by power meters.Comment: to appear in the Publications of the Astronomical Society of Japan, Vol.62, No.5; 12 pages, 6 figure

    Multi Detector Fusion of Dynamic TOA Estimation using Kalman Filter

    Full text link
    In this paper, we propose fusion of dynamic TOA (time of arrival) from multiple non-coherent detectors like energy detectors operating at sub-Nyquist rate through Kalman filtering. We also show that by using multiple of these energy detectors, we can achieve the performance of a digital matched filter implementation in the AWGN (additive white Gaussian noise) setting. We derive analytical expression for number of energy detectors needed to achieve the matched filter performance. We demonstrate in simulation the validity of our analytical approach. Results indicate that number of energy detectors needed will be high at low SNRs and converge to a constant number as the SNR increases. We also study the performance of the strategy proposed using IEEE 802.15.4a CM1 channel model and show in simulation that two sub-Nyquist detectors are sufficient to match the performance of digital matched filter

    High dynamic global positioning system receiver

    Get PDF
    A Global Positioning System (GPS) receiver having a number of channels, receives an aggregate of pseudorange code time division modulated signals. The aggregate is converted to baseband and then to digital form for separate processing in the separate channels. A fast fourier transform processor computes the signal energy as a function of Doppler frequency for each correlation lag, and a range and frequency estimator computes estimates of pseudorange, and frequency. Raw estimates from all channels are used to estimate receiver position, velocity, clock offset and clock rate offset in a conventional navigation and control unit, and based on the unit that computes smoothed estimates for the next measurement interval
    • …
    corecore