103 research outputs found

    JaxNet: Scalable Blockchain Network

    Get PDF
    Today's world is organized based on merit and value. A single global currency that's decentralized is needed for a global economy. Bitcoin is a partial solution to this need, however it suffers from scalability problems which prevent it from being mass-adopted. Also, the deflationary nature of bitcoin motivates people to hoard and speculate on them instead of using them for day to day transactions. We propose a scalable, decentralized cryptocurrency that is based on Proof of Work.The solution involves having parallel chains in a closed network using a mechanism which rewards miners proportional to their effort in maintaining the network.The proposed design introduces a novel approach for solving scalability problem in blockchain network based on merged mining.Comment: 55 pages. 10 figure

    Fairer, faster, more foreseeable: incentives, throughput and stability of proof of work blockchains

    Get PDF
    Blockchains employ internal and external incentive structures to influence participant behaviour, maintain network security, and ensure stable throughput. Internal incentives, like block rewards and transaction fees, are embedded within the blockchain design, while external incentives arise from market forces and competition. Both incentive structures are crucial for shaping blockchain behaviour and network efficiency. The primary motivation of this thesis is to examine how misaligned incentive structures can negatively affect stability in Proof-of-Work blockchains, focusing on stable block and transaction throughput. The thesis aims to provide novel insights into the negative impact of unstable throughput on individual agents and the network as a whole. Additionally, it evaluates potential attack vectors resulting from misconstructed incentive structures, past exploits, and proposes fairer and more robust mechanisms to align incentives, ensuring higher throughput stability and network security. The contributions of this thesis include the development of an open-source simulation framework called PoolSim. It enables the analysis of miner behaviour under different mining pool reward distribution schemes, including the profitability evaluation of queue-based manipulation strategies and pool-hopping between such pools. The thesis introduces the uncle traps attack, specific to Ethereum queue-based mining pools, which adversely affects block throughput and presents a fix to the uncle block reward distribution mechanism. Furthermore, this thesis examines the impact of difficulty adjustment algorithms on block throughput. It identifies instability in block solve times due to cyclicality observed in Bitcoin Cash and analyses how miners' behaviour contributes to this phenomenon. A novel difficulty algorithm based on a negative exponential filter is derived, eliminating oscillations and ensuring more stable block solve times. Lastly, the thesis addresses transaction throughput improvement by presenting a gas price prediction model for Ethereum. It combines deep-learning-based price forecasting with an urgency-based algorithm, optimising the trade-off between timely inclusion and transaction cost. Empirical analysis and real-world evaluation demonstrate significant cost savings with minimal delays compared to existing mechanisms.Open Acces

    Forking in Time

    Get PDF
    This article focuses on the way blockchains construct time and the implications that has on governance, paying particular attention to the original Bitcoin network. Blockchains enforce succession through consensus, and for this reason, the philosopher Nick Land argues that “The Blockchain solves the problem of spacetime”. The article uses Land’s argument as a starting point for understanding the crucial role time plays in the governance of blockchain networks. It asks if the technology can, in fact, be understood to solve the problem of absolute succession, to investigate ways in which forking, both a byproduct of distributed consensus and the mechanism through which blockchains are upgraded, breaks the power concentrating around Land’s definite article Blockchain

    A Survey on Consensus Mechanisms and Mining Strategy Management in Blockchain Networks

    Full text link
    © 2013 IEEE. The past decade has witnessed the rapid evolution in blockchain technologies, which has attracted tremendous interests from both the research communities and industries. The blockchain network was originated from the Internet financial sector as a decentralized, immutable ledger system for transactional data ordering. Nowadays, it is envisioned as a powerful backbone/framework for decentralized data processing and data-driven self-organization in flat, open-access networks. In particular, the plausible characteristics of decentralization, immutability, and self-organization are primarily owing to the unique decentralized consensus mechanisms introduced by blockchain networks. This survey is motivated by the lack of a comprehensive literature review on the development of decentralized consensus mechanisms in blockchain networks. In this paper, we provide a systematic vision of the organization of blockchain networks. By emphasizing the unique characteristics of decentralized consensus in blockchain networks, our in-depth review of the state-of-the-art consensus protocols is focused on both the perspective of distributed consensus system design and the perspective of incentive mechanism design. From a game-theoretic point of view, we also provide a thorough review of the strategy adopted for self-organization by the individual nodes in the blockchain backbone networks. Consequently, we provide a comprehensive survey of the emerging applications of blockchain networks in a broad area of telecommunication. We highlight our special interest in how the consensus mechanisms impact these applications. Finally, we discuss several open issues in the protocol design for blockchain consensus and the related potential research directions

    Predictive Modeling for Fair and Efficient Transaction Inclusion in Proof-of-Work Blockchain Systems

    Get PDF
    This dissertation investigates the strategic integration of Proof-of-Work(PoW)-based blockchains and ML models to improve transaction inclusion, and consequently molding transaction fees, for clients using cryptocurrencies such as Bitcoin. The research begins with an in-depth exploration of the Bitcoin fee market, focusing on the interdependence between users and miners, and the emergence of a fee market in PoW-based blockchains. Our observations are used to formalize a transaction inclusion pattern. To support our research, we developed the Blockchain Analytics System (BAS) to acquire, store, and pre-process a local dataset of the Bitcoin blockchain. BAS employs various methods for data acquisition, including web scraping, web browser APIs, and direct access to the blockchain using Bitcoin Core software. We utilize time-series data analysis as a tool for predicting future trends, and transactions are sampled on a monthly basis with a fixed interval, incorporating a notion of relative time represented by block-creation epochs. We create a comprehensive model for transaction inclusion in a PoW-based blockchain system, with a focus on factors of revenue and fairness. Revenue serves as an incentive for miners to participate in the network and validate transactions, while fairness ensures equal opportunity for all users to have their transactions included upon paying an adequate fee value. The ML architecture used for prediction consists of three critical stages: the ingestion engine, the pre-processing stage, and the ML model. The ingestion engine processes and transforms raw data obtained from the blockchain, while the pre-processing phase transforms the data further into a suitable form for analysis, including feature extraction and additional data processing to generate a complete dataset. Our ML model showcases its effectiveness in predicting transaction inclusion, with an accuracy of more than 90%. Such a model enables users to save at least 10% on transaction fees while maintaining a likelihood of inclusion above 80%. Furthermore, adopting such model based on fairness and revenue, demonstrates that miners' average loss is never higher than 1.3%. Our research proves the efficacy of a formal transaction inclusion model and ML prototype in predicting transaction inclusion. The insights gained from our study shed light on the underlying mechanisms governing miners' decisions, improving the overall user experience, and enhancing the trust and reliability of cryptocurrencies. Consequently, this enables Bitcoin users to better select suitable fees and predict transaction inclusion with notable precision, contributing to the continued growth and adoption of cryptocurrencies

    Design and implementation of InBlock, a distributed IP address registration system

    Get PDF
    The current mechanism to secure Border Gateway Protocol relies on the resource public key infrastructure (RPKI) for route origin authorization. The RPKI implements a hierarchical model that intrinsically makes lower layers in the hierarchy susceptible to errors and abuses from entities placed in higher layers. In this article, we present InBlock, a distributed autonomous organization that provides decentralized management of IP addresses based on blockchain, embedding an alternative trust model to the hierarchical one currently implemented by the RPKI. By leveraging on blockchain technology, InBlock requires consensus among the involved parties to change existent prefix allocation information. InBlock also fulfills the same objectives as the current IP address allocation system, i.e., uniqueness, fairness, conservation, aggregation, registration, and minimized overhead. InBlock is implemented as a set of blockchain smart contracts in Ethereum, performing all the functions needed for the management of a global pool of addresses without human intervention. Any entity may request an allocation of addresses to the InBlock registry by solely performing a (crypto) currency transfer to the InBlock. We describe our InBlock implementation and we perform several experiments to show that it enables fast address registering and incurs in very low management costs.Publicad
    • …
    corecore