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Abstract

Blockchains employ internal and external incentive structures to influence participant be-

haviour, maintain network security, and ensure stable throughput. Internal incentives, like

block rewards and transaction fees, are embedded within the blockchain design, while external

incentives arise from market forces and competition. Both incentive structures are crucial for

shaping blockchain behaviour and network efficiency.

The primary motivation of this thesis is to examine how misaligned incentive structures can

negatively affect stability in Proof-of-Work blockchains, focusing on stable block and transaction

throughput. The thesis aims to provide novel insights into the negative impact of unstable

throughput on individual agents and the network as a whole. Additionally, it evaluates potential

attack vectors resulting from misconstructed incentive structures, past exploits, and proposes

fairer and more robust mechanisms to align incentives, ensuring higher throughput stability

and network security.

The contributions of this thesis include the development of an open-source simulation frame-

work called PoolSim. It enables the analysis of miner behaviour under different mining pool

reward distribution schemes, including the profitability evaluation of queue-based manipulation

strategies and pool-hopping between such pools. The thesis introduces the uncle traps attack,

specific to Ethereum queue-based mining pools, which adversely affects block throughput and

presents a fix to the uncle block reward distribution mechanism.

Furthermore, this thesis examines the impact of difficulty adjustment algorithms on block

throughput. It identifies instability in block solve times due to cyclicality observed in Bitcoin

Cash and analyses how miners’ behaviour contributes to this phenomenon. A novel difficulty

algorithm based on a negative exponential filter is derived, eliminating oscillations and ensuring

more stable block solve times.

Lastly, the thesis addresses transaction throughput improvement by presenting a gas price

prediction model for Ethereum. It combines deep-learning-based price forecasting with an

urgency-based algorithm, optimising the trade-off between timely inclusion and transaction

cost. Empirical analysis and real-world evaluation demonstrate significant cost savings with

minimal delays compared to existing mechanisms.
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Chapter 1

Introduction

1.1 Motivation

In the context of blockchains, internal (or embedded) incentive mechanisms are incentives that

are built into the design of the blockchain itself, which influence the behaviour of participants

in the network. These mechanisms can include block rewards, transaction fees, and other incen-

tives that motivate miners to contribute their computing power to the network and maintain

the security and integrity of the blockchain. External incentive mechanisms, on the other hand,

are incentives that are not built into the design of the blockchain, but rather come from outside

the network. These can include market forces, competition between mining pools, and the

availability of alternative blockchains. External incentives can influence the behaviour of min-

ers and other participants in the network, but they are not directly controlled by the blockchain

protocol itself. Overall, both internal and external incentive mechanisms play a vital role in

shaping the behaviour of participants in blockchain networks and affecting the overall security

and efficiency of the network. By understanding and optimising these incentives, blockchain

designers can create more robust and stable networks.

Key measures of stability in Proof-of-Work blockchains are block and transaction throughput.

Stable block throughput is critical for Proof-of-Work blockchains because it ensures the reli-

ability and efficiency of the network. Block throughput refers to the number of blocks that

1
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can be added to the blockchain in a given time period, which directly affects the transaction

processing capacity of the network. If block throughput is unstable, it can cause delays in

transaction confirmations (transaction throughput), which in turn can lead to higher transac-

tion fees, longer wait times, and ultimately decreased user satisfaction. Additionally, unstable

block throughput can make the network vulnerable to attacks, such as denial-of-service attacks,

and can make it more difficult for the network to maintain consensus. Therefore, stable block

throughput is critical for the overall functionality and security of Proof-of-Work blockchains.

The primary motivation of this thesis is to explore how misaligned incentive structures can

directly impact the stability of Proof-of-Work blockchains. We shall define stability in the

context of stable block and transaction throughput. The incentive mechanisms investigated in

this thesis will be both external and internal mechanisms of Proof-of-Work chains. By doing

so, we seek to provide novel insights on how both individual agents and the network itself

may be negatively affected from unstable throughput. Furthermore, we aim to (i) evaluate

the extent to which such misalignment may result in attack vectors, (ii) evaluate the degree

to which such vectors have been exploited in the past, and lastly, (iii) introduce more robust

mechanisms that align incentives for participating agents to ensure overall throughput stability

and network security.

1.2 Objectives

The following points outline the objectives of this thesis.

Objective 1: Development of an Extensible Mining Pool Simulation Framework. For

this objective, the aim is to develop an open-source, extensible, discrete event-based simulation

framework. Previous work on mining pools (e.g., [ZWW+17]) relied on event simulations to

identify novel attack strategies under different mining pool reward schemes. However, there is

a lack of extensible and open-source mining pool simulation tools. Hence, an objective is to

develop an extensible framework that facilitates research on mining pools and allows academics

to validate their hypotheses through simulations at ease.
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Objective 2: Investigate the Manipulation of Mining Pool Reward Schemes. While

the research on the fairness of traditional mining pool rewards schemes is quite extensive

(e.g.,[Ros11]), the authors of [ZWW+17] have demonstrated that some mining pool reward

schemes can still (rather easily) become subject to manipulation. Specifically, queue-based

mining pools are yet to be proven to be fair and have shown to offer attack vectors whereby

miners can increase their profits at the cost of others. Hence, an objective of this thesis is to

explore the extent to which there are further attack vectors rooted in mining pools and whether

these could result in negative effects in terms of network stability (e.g., lower block rate, lower

profits for miners).

Objective 3: Examine the Robustness of Internal Stability Mechanisms in PoW

Blockchains. This objective investigates the impact of internal mechanisms that are em-

ployed by PoW blockchains to ensure stability in terms of block throughput. This may include

mechanisms, such as the difficulty adjustment algorithm or internal incentive structures, such

as the block reward and transaction fees. The aim is to examine the extent to which such

mechanisms are robust with respect to miner behaviour and whether these can be manipulated

at the cost of other network participants (e.g., other users that may suffer from lower block

throughput).

Objective 4: Ensuring Reliable Transaction Throughput in PoW Blockchains. This

objective specifically focuses on improving transaction throughput in Proof-of-Work blockchains.

The most common way of ensuring that a transaction gets confirmed (i.e., included in a valid

block) is to set an appropriate transaction fee. However, the tools and mechanisms that exist

to recommend appropriate fees vary greatly by design. Oftentimes, the sender of a transaction

ends up overpaying for their transaction to be included in a block, as the risk of the transac-

tion not getting included is simply too high. This is a major issue from a usability point of

view as transaction throughput can be rather unreliable if recommendation mechanisms are

not accurate. The objective is to examine the existing tools that are used for recommending

transaction fees and to explore alternative, more accurate mechanisms.
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1.3 Contributions

This thesis investigates the effects of misaligned incentive mechanisms in the context of Proof-of-

Work blockchains. These mechanisms can lead to economic disadvantages for individual agents,

such as miners, as well as to severe instabilities in block and transaction throughput. The thesis

examines both external and internal incentive mechanisms of Proof-of-Work blockchains and

presents empirical findings that are validated through simulations. Additionally, the thesis

proposes new mechanisms that would eliminate the discussed vulnerabilities in throughput

caused by misaligned incentives.

Specifically, the following contributions have been made as part of this thesis:

PoolSim : A Mining Pool Simulation Framework. We first present an open-source,

extensible, discrete event-based simulation framework called PoolSim, which can be used to

simulate miner behaviour under different mining pool reward distribution schemes. We extend

existing research on the manipulation of queue-based mining pool reward distribution schemes

[ZWW+17], by evaluating the profitability of different queue-based manipulation strategies.

Furthermore, we present the first simulation of pool-hopping strategies between two queue-

based mining pools and evaluate the profitability of this approach.

Uncle Traps: Exploiting Queue-based Mining Pools. After simulating different mining

strategies in queue-based mining pools, we found that an adversarial miner in the pool is able

to increase their share of earnings at the cost of other miners in the queue-based pool. We term

this specific attack “uncle traps”. This attack was previously not formally studied and only

applies to Ethereum queue-based mining pools. We provide empirical evidence of how miners

have employed uncle traps to increase their own profits at the cost of other miners’ earnings in

the pool, and consequently caused lower block throughput in the network. We simulate how

uncle traps can be utilised in a profitable manner and how profits can be further increased

should the adversary additionally employ a share-withholding strategy. Lastly, we propose a

novel fix to the uncle block reward distribution mechanism used by queue-based mining pools,

which would make the uncle traps attack no longer feasible.
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Unstable Block Solve Times and Broken Difficulty Algorithms. In order to understand

how not only broken external incentive mechanisms can cause a reduction in block throughput,

we subsequently examine how the design of internal blockchain stability mechanisms can have

a similar, more severe effect. Specifically, we examine how difficulty adjustment algorithms can

impact block throughput in Proof-of-Work blockchains. First, we provide empirical evidence

showing that the design of difficulty algorithms can lead to unstable block solve times, as

evidenced by the cyclicality observed in Bitcoin Cash. Second, we show how miners’ behaviour

can contribute to this phenomenon over time through coin-hopping strategies. To address

this issue, we derive a new difficulty algorithm based on a negative exponential filter that

prevents positive feedback loops and offers additional benefits such as history agnosticism. We

demonstrate through a simulated mining environment that this new algorithm can eliminate

oscillations in block solve times as observed in Bitcoin Cash. Finally, we suggest that other

Proof-of-Work blockchains could apply this new difficulty algorithm and ensure stable block

throughput.

A Better Gas Price Recommendation Mechanism for Ethereum. Lastly, after having

shown how block throughput can become unstable due to broken external and internal incentive

mechanisms, we focus on how transaction throughput can be improved. We present a novel

gas price prediction model to increase the likelihood of a transaction being included in a block

in Ethereum. The mechanism addresses the trade-off between timely inclusion and transaction

cost by using a deep-learning-based price forecasting model combined with an algorithm that

employs a user-specific urgency value to recommend gas prices. We present an empirical analysis

of historical block data, followed by a predictive model used for the recommendation of gas

prices. We then evaluate the proposed mechanism on real-world data and demonstrate that it

results in significant cost savings of over 50% while only incurring a delay of 1.3 blocks compared

to the gas price recommendation mechanism of the most widely used Ethereum client.
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1.4 Statement of Originality

I declare that this thesis was composed by myself, and that the work that it presents is my

own, as well as joint work with co-authors of the included publications (see Section 1.5). All

work presented in this thesis has been solely submitted as part of this thesis and not as part of

any other degree or qualification, neither by myself nor any of the co-authors.

1.5 Publications

The research presented in this thesis relies on the following peer-reviewed publications1:

• Chapter 3. Sam M Werner and Daniel Perez. PoolSim: A Discrete-Event Mining

Pool Simulation Framework. In Mathematical Research for Blockchain Economy: 1st

International Conference MARBLE 2019, Santorini, Greece, pages 167–182. Springer,

2020

• Chapter 4. Sam M Werner, Paul J Pritz, Alexei Zamyatin, and William J Knottenbelt.

Uncle Traps: Harvesting Rewards in a Queue-based EthereumMining Pool. In Proceedings

of the 12th EAI International Conference on Performance Evaluation Methodologies and

Tools, pages 127–134, 2019

• Chapter 5. Dragos I Ilie, Sam M Werner, Iain D Stewart, and William J Knottenbelt.

Unstable Throughput: When the Difficulty Algorithm Breaks. In 2021 IEEE International

Conference on Blockchain and Cryptocurrency (ICBC), pages 1–5. IEEE, 2021

• Chapter 6. Sam M Werner, Paul J Pritz, and Daniel Perez. Step on the Gas? A Better

Approach for Recommending the Ethereum Gas Price. In Mathematical Research for

Blockchain Economy: 2nd International Conference MARBLE 2020, Vilamoura, Portu-

gal, pages 161–177. Springer, 2020

1Content taken from these publications also includes parts from pre-prints of these publications.



1.6. Dissertation Outline 7

Please note that parts of the background section have also been taken from the aforementioned

publications.

The following publications are not included in this thesis, yet are a result of research conducted

throughout the course of the PhD:

• Sam M Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz, and

William J Knottenbelt. SoK: Decentralized Finance (DeFi). In AFT ’22: Proceedings

of the 4th ACM Conference on Advances in Financial Technologies, pages 30–46. ACM,

2022

• Daniel Perez, Sam M Werner, Jiahua Xu, and Benjamin Livshits. Liquidations: DeFi on a

Knife-edge. In Financial Cryptography and Data Security: 25th International Conference,

FC 2021, Virtual Event, March 1–5, 2021, Revised Selected Papers, Part II 25, pages 457–

476. Springer, 2021

• Lewis Gudgeon, Sam Werner, Daniel Perez, and William J Knottenbelt. DeFi Protocols

for Loanable Funds: Interest rates, Liquidity and Market Efficiency. In Proceedings of the

2nd ACM Conference on Advances in Financial Technologies, pages 92–112, 2020

1.6 Dissertation Outline

This section outlines the remainder of this thesis.

Chapter 1: Introduction.

The introductory chapter provides a comprehensive overview of the research problem, ob-

jectives, and contributions of the thesis. It sets the context for the subsequent chapters by

establishing the importance of investigating misaligned incentive mechanisms in Proof-of-Work

blockchains.
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Chapter 2: Background and Related Work.

This chapter delves into the foundational understanding of Proof-of-Work (PoW) blockchains,

offering a thorough background on their underlying mechanisms and relevant concepts. It

covers essential topics such as blockchain components, PoW consensus, forks, and incentives,

providing the necessary groundwork for the subsequent chapters’ discussions.

Chapter 3: PoolSim: Simulating Miner Behaviour in Mining Pools.

In this chapter, the thesis introduces PoolSim, an open-source and extensible simulation frame-

work designed for modeling miner behavior in various mining pool reward distribution schemes.

It explains the discrete event-based simulation approach used in PoolSim and evaluates the prof-

itability of different queue-based manipulation strategies. Additionally, the chapter explores

the simulation of pool-hopping strategies, contributing to a deeper understanding of mining

pool dynamics.

Chapter 4: Misaligned Mining Incentives in Queue-based Mining Pools.

The focus of this chapter is the proposal and investigation of the “uncle trap” attack within

Ethereum queue-based mining pools. Through empirical analysis, the chapter reveals how min-

ers exploit uncle traps to increase their profits while adversely affecting other miners’ earnings

and block throughput in queue-based mining pools. The chapter further explores the simula-

tion of profitable utilisation of uncle traps and proposes a novel fix to the uncle block reward

distribution mechanism, mitigating the vulnerability of the attack.

Chapter 5: (Un)Stable Block Throughput: Feedback Loops and Difficulty Adjust-

ment Algorithms.

Examining the impact of difficulty adjustment algorithms on block throughput in Proof-of-Work

blockchains, this chapter presents empirical evidence of unstable block solve times, specifically

the cyclicality observed in Bitcoin Cash. It analyses the contribution of miners’ behavior,

particularly coin-hopping strategies, to this phenomenon. To address the issue, we derive a

difficulty algorithm based on a negative exponential filter, ensuring stable block solve times
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and providing benefits such as history agnosticism.

Chapter 6: (Un)Stable Transaction Throughput: Leveraging the Cyclicality of

Transaction Fees.

The objective of this chapter is to enhance transaction throughput in Ethereum by proposing

a better gas price prediction model. It presents a deep-learning-based price forecasting model

combined with an algorithm that incorporates user-specific urgency to recommend gas prices.

The chapter includes an empirical analysis of historical block data, the development of a pre-

dictive model, and an evaluation of cost savings and transaction inclusion rates, demonstrating

the efficacy of the proposed mechanism.

Chapter 7: Conclusion.

The concluding chapter summarises the achievements of the thesis and highlights the main

contributions made. It discusses the implications of the findings and presents potential avenues

for future research.



Chapter 2

Background and Related Work

In this chapter, we outline the core mechanisms of Proof-of-Work blockchains and explain how

the Bitcoin decentralised consensus mechanism works.

2.1 The Rise of Blockchains

The Emergence of Bitcoin in Response to the 2008 Financial Crisis.

Bitcoin, the world’s first decentralised digital currency, emerged in the wake of the 2008 global

financial crisis. This crisis, characterized by bank failures, government bailouts, and a loss

of trust in traditional financial systems, provided fertile ground for the development of an

alternative financial system.

The original whitepaper titled “Bitcoin: A Peer-to-Peer Electronic Cash System” [Nak08] was

published in October 2008 by an individual or group operating under the pseudonym Satoshi

Nakamoto. It outlined a vision for a peer-to-peer electronic cash system that would operate

without the need for intermediaries such as banks or government institutions. The whitepa-

per introduced the concept of a decentralized ledger, called the blockchain, to enable secure

and transparent transactions by relying on a novel consensus mechanism that would allow

distrusting participants to reach agreement over the true state of transactions.

10
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Benefits of Distributed Ledgers in Comparison to Traditional Financial Systems.

The advent of Bitcoin brought attention to the benefits of distributed ledger technology (DLT)

or blockchain technology. Distributed ledgers offer several advantages over traditional financial

systems:

Decentralisation: Distributed ledgers are not controlled by a central authority, eliminating the

need for intermediaries and reducing the risk of manipulation or censorship. This decentralised

nature ensures transparency and trust in the system.

Security: Blockchain technology employs cryptographic techniques to secure transactions, mak-

ing them tamper-resistant. The decentralised nature of the network, where multiple participants

validate and verify transactions, enhances security and reduces the risk of fraud.

Efficiency: Traditional financial systems often involve complex processes and intermediaries,

leading to delays and high transaction costs. Distributed ledgers can streamline and automate

these processes, potentially resulting in faster and more cost-effective transactions.

Accessibility: Distributed ledgers enable financial inclusion by providing access to financial

services for individuals who are unbanked or underbanked. With a smartphone and an internet

connection, anyone can participate in the blockchain network and conduct transactions.

Satoshi Nakamoto and the Rise of Bitcoin and Distributed Ledger Technology.

The true identity of Satoshi Nakamoto remains unknown to this day. It is believed that

Nakamoto’s motivation was to create a decentralised currency that would eliminate the need

for intermediaries and provide individuals with financial sovereignty.

The release of the Bitcoin whitepaper and the subsequent launch of the Bitcoin network in 2009

sparked a revolution in the world of finance. Bitcoin served as the catalyst for the rise of DLT

and the development of numerous other blockchain platforms.

Following Bitcoin’s success, various alternative cryptocurrencies emerged, each with its unique

features and use cases. These cryptocurrencies, often referred to as altcoins, expanded the

scope of DLT and facilitated the development of decentralised applications (DApps).
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Today’s Landscape of Bitcoin and Distributed Ledger Technology.

Bitcoin has come a long way since its inception. It has gained recognition as a legitimate asset

class, with institutional investors and companies integrating it into their financial strategies.

Additionally, the underlying blockchain technology has attracted interest from various indus-

tries beyond finance, including supply chain management, healthcare, and voting systems.

Furthermore, the concept of distributed ledgers has expanded beyond public blockchains like

Bitcoin. Private and permissioned blockchains have emerged, allowing enterprises to leverage

the benefits of DLT within closed ecosystems while maintaining control over access and gov-

ernance. However, challenges remain. Scalability, energy consumption, and regulatory frame-

works are areas that continue to evolve as DLT matures. Efforts are being made to address

these challenges through advancements in consensus algorithms, layer-two scaling solutions,

and regulatory frameworks that balance innovation and consumer protection.

2.2 Blockchain Fundamentals

In this section, we outline the fundamental components of Proof-of-Work blockchains.

2.2.1 Peer-to-Peer Network

Proof-of-work blockchains rely on peer-to-peer (P2P) networks to ensure the integrity and

security of the network. In a P2P network, each participant or node maintains a copy of the

entire blockchain state, ensuring that there is no central point of failure or control. When

a new transaction is initiated, it is broadcasted to all nodes in the network, and each node

validates it by verifying its consistency with the network’s rules and checking that the sender

has sufficient funds to carry out the transaction. Nodes also broadcast newly created blocks

containing previously unconfirmed transactions to the network, and all nodes in the network

validate and add the block to their copy of the ledger. This distributed approach to blockchain

verification ensures that no single entity has control over the network, making it secure, resilient,
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and decentralised.

2.2.2 Transactions and Blocks

Blocks are data structures that make up the building blocks of a blockchain and contain a

set of validated transactions. In addition to transactions, blocks also contain a header field,

which contains information such as the block’s height or the timestamp at which the block was

produced. Each block is distinguished by a cryptographic hash that also references the previous

block’s hash, creating a secure and tamper-proof ledger that is distributed across a network of

nodes. Each node in the network maintains a copy of the blockchain. While any participant in

the network may propose a new block, the decision of which miner is granted the privilege to

append a new block to the blockchain is determined by the underlying consensus algorithm.

2.2.3 Proof-of-Work

The underlying consensus mechanism of Bitcoin, termed Nakamoto consensus, builds on a

random leader election process where participating nodes are required to invest computational

power in solving cryptographically hard, memoryless and non-invertible puzzles. The latter is

referred to as Proof-of-Work (PoW). The process of searching for solution candidates is termed

mining, with participating nodes being referred to as miners. Miners create blocks by solving

the PoW puzzle: trying different values for the nonce field of the block header, such that its

SHA-256 [PvW08] hash lies below a specified target value. The number of solution candidates,

or hashes, a miner can compute per second denotes a miner’s hash rate, typically expressed

in megahashes1 (MH/s) or gigahashes2 per second (GH/s). Each miner that generates a valid

solution to the PoW puzzle becomes the leader and is allowed to append the next block, and

thus a set of previously unconfirmed transactions, to the blockchain.

In Bitcoin, the PoW is a partial pre-image attack on the SHA256 cryptographic hash function,

where generating a valid solution via brute-forcing is hard, while verifying a hash against a

11 MH/s = 106 hashes per second
21 GH/s = 109 hashes per second
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pre-image is easy.

SHA256(SHA256(<block_header>)) <= T (2.1)

where T is a number between 0 and 2256−1 referred to as the target. The block header generally

contains a nonce, namely a field that can be modified by miners to hold some arbitrary number

such that equation 2.1 holds. By referencing the hash of the previous block header, the

blocks get cryptographically chained together. Note that while the PoW function and the

implementation of it may differ between PoW blockchains, the core design of referencing the

hash of the previous block’s header remains.

To incentivise honest participation and compensate miners for the computational effort in-

vested, the miner of a block is rewarded a predefined amount of newly minted units of the

underlying cryptocurrency, the block reward. For example, the block reward in Bitcoin started

at 50 BTC per block but halves every four years. In addition to the block reward, the miner

of a block receives all the fees of the transactions that are included in the block.

2.2.4 Difficulty

In PoW blockchains, the difficulty refers to the expected amount of hashes that a miner must

perform, or the amount of “work” that needs to be done, in order to generate a valid solu-

tion to the PoW puzzle and thereby mine a block. The network difficulty is adjusted via a

difficulty algorithm (DA) that controls transaction throughput by regulating the difficulty of

generating PoW solutions based on the total computational power in the network, or the hash

rate. Such algorithms are designed to ensure stable block times even during periods of hash

rate oscillations, i.e., when miners join or leave the network. If the difficulty is not appropriate,

it can cause varying response times for blockchain transactions, with either many blocks being

processed in short periods of time or very few blocks being found in long periods. For instance,

in Bitcoin, the difficulty is adjusted every 2,016 blocks (approx. every 2 weeks) based on the

block solve times of the previous 2,016 blocks such that it is in line with the target average

solve time of 10 minutes. A more detailed overview of DA design will be provided in Chapter 5.
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2.2.5 Consensus and the Longest Chain Rule

The “longest chain rule” in PoW blockchains states that the valid chain with the most accumu-

lated computational work (difficulty) or the longest chain, is the one that should be accepted

by the network as the canonical blockchain. This is because the miner that finds the solution

to the PoW puzzle and therefore gets to append a new block to the chain must have invested

a significant amount of computational effort. Hence, their block should be considered the most

valid and trustworthy, and the other miners in the network should add it to their copy of the

blockchain. By following the longest chain rule, consensus is reached within the network, as all

participants agree on the same version of the blockchain, ensuring its security and integrity.

2.3 Mining and Mining Pools

Mining remains a fundamental structural component for the effective workings of the decen-

tralised consensus mechanism in Proof-of-Work cryptocurrencies, such as Bitcoin and Ethereum

[But14]. Although some blockchains, such as Ethereum, have switched from a Proof-of-Work

algorithm to a Proof-of-Stake mechanism, PoW remains as one of the most common consensus

algorithms for cryptocurrencies. For instance, Bitcoin, the largest cryptocurrency by market

capitalisation, still uses the PoW consensus algorithm, highlighting the continued relevance

and importance of PoW in the cryptocurrency industry. However, rising difficulty levels of

the cryptographic puzzles underpinning the mining process have posed severe constraints on

the frequency of rewards paid to individuals trying to find PoW solutions. In this section, we

provide a more detailed overview of cryptocurrency mining and mining pools, specifically with

respect to the earnings of a miner. Furthermore, we present some of the most popular mining

pool reward schemes used, as presented in [Ros11, ZWW+17].



16 Chapter 2. Background and Related Work

2.3.1 Solo Mining

The simplest form of mining is called solo-mining and refers to a single miner mining indepen-

dently by generating candidate solutions to the PoW puzzle. The discovery of a block with a

constant hash rate, represented by h, conforms to a Poisson distribution, whose rate parameter

is defined by λ = h
D
. In this context, D refers to the difficulty level of the network3. Therefore,

a miner who mines alone and has a hash rate of h and mines for a period of time t can anticipate

a revenue, as represented by the equation: E[R] = htB
D

, where B denotes the block reward and

D is the network difficulty. The highest risk faced by solo miners is the financial risk caused

by the high payout variance that they experience.

2.3.2 Mining Pools

A mining pool consists of a group of miners that pool their computational resources together

to reduce payout variance. Mining pools are managed by a centralised operator who issues

shares or PoW problems with a lower difficulty level than the network difficulty in order to

track the amount of work performed by miners in a pool. Each share has a probability d
D

of

being a valid solution to the network PoW, with d being the share difficulty. Consequently,

miners in the pool submit valid shares to the operator, where each share is a valid candidate

PoW solution. The pool operator’s role is to verify whether a submitted share is a solution to

the PoW puzzle. When a block gets mined by the pool (i.e., a share is a solution), the block

reward (minus some operator fee) gets distributed among the pool participants according to

some reward distribution scheme set by the pool operator.

In the following subsections, we outline the most common reward distribution schemes used by

mining pools. We compare these schemes, by expressing the expected reward for a miner on a

per-round basis, i.e., for the time period between two blocks mined by the pool.

3Note that the range of D is more of an implementation detail and is further discussed in Section 5.1.1.
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Proportional Payout Scheme

The simplest and perhaps most intuitive mining pool reward scheme is the proportional reward

allocation. In this scheme, block rewards are distributed proportionally between miners accord-

ing to the number of shares each miner submitted for the current round. A round refers to the

time period between two blocks being mined by a pool. Hence, if a miner submitted n shares

during a round in which N shares have been submitted in total, the miner’s payout would be

equal to n
N
(1− f)B, where f is the fee charged by the pool operator.

Pay-Per-Share (PPS)

In a pay-per-share scheme, the pool operator pays a miner (1−f)pB, where p is the probability

that the share is a PoW solution, i.e. d
D
. By doing so, the operator fully absorbs the miner’s

payout variance. Hence, an operator of a PPS pool could make profits on short rounds, while

being exposed to high losses on long rounds. Typically, in order to compensate for this risk, PPS

operators charge higher fees compared to other reward schemes. For understanding optimal

reserve balances in a PPS pool we point the reader to Rosenfeld [Ros11], who formally examines

this.

Pay-Per-Last-N-Shares (PPLNS)

Unlike many other traditional schemes, PPLNS abandons the concept of splitting rewards based

on rounds, but rather distributes the block reward evenly among the last N shares submitted

by miners, where N typically is a multiple of the network difficulty. This automatically takes

away the incentive to only submit shares during the early period of a round. In a PPLNS pool,

the expected reward normalised to a per round basis is found to be

E[Ri] = (1− f)B
si
N
· N
D

(2.2)

where si is the number of shares submitted by miner i during the last N shares [Ros11].
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Queue-based Payout Scheme (QB)

The queue-based4 reward scheme was introduced by Ethpool, a small Ethereum mining pool.

In a queue-based mining pool, miners receive a number of credits equal to the difficulty of a

share for each submitted share. When a block is mined by the pool, the full block reward5 is

allocated to the miner in the pool with the highest accumulated credit balance, namely the top

miner in a priority queue. Subsequently, the top miner’s credit balance is reset to the difference

between his and the second highest credit balance in the pool. The reason for not resetting

the credits of a top miner to zero is to provide an incentive for a miner to continue to perform

work for the pool once he reaches the top position in the queue, opposed to switching to some

other pool.

Position Miner Credits

1 Bob 140
2 Alice 130
3 Carol 70

(a) Before Block i

Position Miner Credits

1 Alice 130
2 Carol 70
3 Bob 10

(b) After Block i

Position Miner Credits

1 Alice 140
2 Carol 75
3 Bob 20

(c) Before Block i+1

Position Miner Credits

1 Carol 75
2 Alice 65
3 Bob 20

(d) After Block i+1

Table 2.1: The priority queue with miners of different sizes over a series of blocks.

As first shown by [ZWW+17], a similar queue-based mining pool example is given in Table 2.1,

showcasing that the credit resetting mechanism is non-uniform in the sense that the credits of

top miners may be reset to differing balances. After a block has been mined by the pool (Table

2.1b), the top miner Bob has his credits reset to 10, the difference to Alice’s credits. After each

miner submits shares and receives credits, right before the next block is being mined (Table

2.1c), Alice is top of the queue. However, once the block has been mined (Table 2.1d), Alice

is reset to a starting balance of 65 credits, a notably higher amount than Bob received. This

4Ethpool referred to this as a predictable solo mining pool, however, we shall employ the term “queue-based
pool” as introduced in [ZWW+17]

5minus the pool operator fee
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suggests that Bob would indeed have been better off had he allowed Alice to bypass him in the

queue in order to receive a higher starting balance.

2.4 Incentive Structures in Blockchains

This section explores the concept of incentives in blockchain systems, both internal and external,

and their role in shaping participant behavior, network security, and overall efficiency. It

discusses the importance of aligned incentive structures for the stability and functionality of

Proof-of-Work blockchains.

2.4.1 Internal Incentives in Proof-of-Work Blockchains

Internal incentives in Proof-of-Work (PoW) blockchains are the rewards and incentives that

are inherent within the blockchain system itself. These incentives include block rewards and

transaction fees that are embedded in the blockchain’s design, serving as motivations for miners

to participate in the mining process and validate transactions.

Examples of internal incentives include:

Block Rewards:. Miners are rewarded with a certain number of newly created cryptocurrency

tokens for successfully mining and adding a new block to the blockchain.

Transaction Fees:. Miners also receive transaction fees paid by users for including their

transactions in a block. These fees serve as an additional incentive for miners to prioritize and

include transactions with higher fees.

2.4.2 External Incentives in Proof-of-Work Blockchains

External incentives in PoW blockchains arise from outside the network and are influenced

by market forces and competition. These incentives can include the potential for financial
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gain through the value appreciation of the cryptocurrency associated with the blockchain.

Additionally, competition among miners and mining pools creates external pressures that drive

participants to invest in more powerful hardware and improve mining strategies.

Examples of external incentives include:

Market Forces:. The value of the cryptocurrency associated with the blockchain can serve

as an external incentive. As the value of the cryptocurrency increases, miners have a greater

incentive to participate in mining to earn more rewards.

Competition:. The presence of other miners and mining pools competing for block rewards

and transaction fees creates external pressure and incentives to invest in more powerful hard-

ware, increase mining efficiency, and improve mining strategies.

Reputation and Network Effects:. Miners may also be driven by the desire to establish

a positive reputation within the blockchain community. A good reputation can attract more

users and investors to the blockchain network, increasing the value of the cryptocurrency and

potentially leading to greater rewards.

Both internal and external incentives play crucial roles in shaping the behavior of participants

in PoW blockchains. Internal incentives ensure the security and stability of the network by

motivating miners to dedicate computational power to the mining process. External incentives

provide economic and competitive motivations for miners to participate in the network and

contribute to its functionality and security.

2.5 Network Forks

In Proof-of-Work blockchains, the main chain refers to the chain with the most accumulated

performed work, i.e., the sum of difficulties of the mined blocks. A fork happens when at least

two blocks reference the same past block. This may occur due to slow network propagation of

blocks when two miners find a solution to the PoW at nearly the same time. As miners build
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upon the block that reaches them first, the temporary fork is likely resolved after one branch

exceeds the other in terms of work and becomes the new main chain. However, upgrades to

the protocol rules can be performed either via hard or soft forks.

2.5.1 Hard Forks

A hard fork in a PoW blockchain refers to a permanent divergence from the current longest

chain, resulting in two separate chains with different protocol rules. The majority of the nodes in

the network will upgrade their software, such that the protocol rules are no longer compatible

with the previous ones. Hence, newly created blocks will no longer be valid under the old

protocol rules (the original chain), but will be valid on the new forked chain. An example of

a hard fork would be a software upgrade that increases the maximum size of a block, as new

blocks would no longer be backward compatible and thus valid under the old rules. Prominent

hard forks of Bitcoin include Bitcoin Cash[Bit23] (Aug. 2017), Bitcoin SV[SV23] (November

2018), or Bitcoin Gold[Gol23] (Oct. 2017).

2.5.2 Soft Forks

A soft fork refers to a temporary divergence from the existing blockchain where only previously

valid transactions and blocks become invalid. It occurs when a new rule or feature is added

that is backward-compatible with the existing set of protocol rules. Unlike with a hard fork,

nodes do not have to upgrade their software in order to be able to validate blocks. Nodes that

keep the old software (rules) are still able to validate blocks, even under the newly introduced

rules. An example of a soft fork would be a reduced block size, as new blocks would still be

valid under the original set of protocol rules, thereby being backward compatible. A concept

that expands on that of a soft fork is a so-called velvet fork, first introduced by [KMZ20] and

further expanded on by [ZSJ+19]. A velvet fork offers a unique approach that doesn’t rely on

the majority support of participants and has the potential to prevent rule disagreement forks

entirely. Unlike traditional forks, a velvet fork allows for the introduction of new protocol rules
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without requiring consensus participants to upgrade. Under the velvet fork, blocks adhering

to the new rules are considered valid under both the new and old rule sets. In essence, velvet

forks ensure the success of updates because the changes made are not known to legacy nodes,

yet they still consider the updated blocks as valid.

2.6 Ethereum

In this section, we briefly present Ethereum [But14], the cryptocurrency with the second highest

market capitalisation6. Note that this thesis examines Ethereum in the context of when it

was still relying on PoW as its underlying consensus mechanism, (i.e., the time period before

Ethereum transitioned to a Proof-of-Stake model in September 2022), as well as prior to the

EIP-1559 update.

Compared to Bitcoin, Ethereum’s block arrival time is not only notably faster (approximately

13 seconds [Eth]), but Ethereum also allows for the creation of so-called smart contracts. These

are programs which define a set of rules using a Turing-complete programming language, typ-

ically Solidity [Dan17], that can be invoked by network participants. An Ethereum account

balance is expressed in the underlying currency Ether (ETH) and directly altered via state

transitions caused by transactions. Ethereum has two types of accounts, namely Externally

Owned Accounts (EOAs), which consist of a public and private key pair, and contract accounts,

which do not hold a private key and are therefore unable to sign transactions. The permission-

less and composable nature of Ethereum allows anyone to deploy a smart contract that can

then be interacted with using transactions. Transactions in the Ethereum Virtual Machine are

atomic, meaning that either a transaction succeeds and modifies the global state or it fails and

the state remains unchanged.

6https://www.coingecko.com/. Accessed: 05-18-2023



2.6. Ethereum 23

2.6.1 Ethereum Virtual Machine (EVM)

The consensus rules governing transaction validity are implemented by the Ethereum Virtual

Machine (EVM), a low-level stack machine which executes the compiled EVM bytecode of

the smart contract. In the EVM, so-called opcodes are the fundamental building blocks of

smart contract execution. They are predefined operations that the EVM can perform, such

as arithmetic calculations, data manipulation, and control flow operations, allowing the EVM

to execute instructions and carry out the logic defined within smart contracts. Operations

performed by the EVM consume an amount of gas, a virtual unit of account used to measure

the computational cost of executing a transaction.

By design, each EVM instruction has a hard-coded7 gas cost [Woo14]. The total execution cost

has to be paid for by the sender of a transaction. Hence, gas fees prioritize and compensate

miners. The gas limit sets the maximum gas allowed per block, preventing network overload,

while the gas price represents the user’s chosen payment per gas unit, incentivising miners to

prioritize transactions with higher gas prices.

2.6.2 Gas Mechanism

In Ethereum, the total execution cost for a smart contract consists of two components, namely

the gas cost in units and gas price per unit. The gas cost is split into a fixed base cost of 21 000

gas and an execution cost dependent on the instructions executed while running the contract.

Gas Limit. Due to the Turing-completeness of the EVM, the exact computational cost of a

transaction cannot be predetermined. Hence, the sender is required to specify a gas limit, or the

maximum amount of gas that may be consumed. As the computational steps of a transaction

are executed, the required gas is subtracted from the paid gas. Once a transaction is completed,

any unused gas will be refunded to the sender. Should a transaction try to consume gas in

excess of the gas limit, an Out-of-Gas exception is thrown by the EVM. Even though such a

7Note that via a hard-fork, the Ethereum Improvement Proposal 150 [But] re-aligned gas costs for instructions
involving I/O-heavy operations.
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transaction would fail, it would be recorded on-chain and any used gas will not be refunded

to the sender. Note that in addition to the per transaction gas limit there is also a block gas

limit8, which specifies the total amount of gas that may be consumed by all transactions in a

block.

Gas Price. Apart from setting a gas limit, a sender will also have to specify the gas price,

which refers to the amount of Ether the sender is willing to pay per unit of gas, generally

expressed in wei (1 wei = 10−18ETH) or Gwei (1 Gwei = 10−9ETH). Miners set a cut-off gas

price to choose which transactions to include in their memory pool. When constructing a new

block, they then choose the transactions with the most lucrative gas prices from their memory

pool. A higher gas price will increase the fee which miners receive from a transaction, thereby

motivating a miner to include a transaction in a block. The total amount of wei to be paid by

a sender is referred to as the transaction fee and amounts to the product of the gas price and

gas cost.

Gas Price Oracles. The sender of an Ethereum transaction is exposed to the non-trivial task

of having to decide on a gas price. Since a higher gas price will increase the likelihood of having

a transaction included quickly, there is a clear trade-off between waiting and paying. We define

the optimal gas price as the minimum gas price such that the transaction is included in a block

within the period of time that the sender of the transaction is prepared to wait for.

In order to avoid risks of overpaying, gas price oracles exist [eth20a, Git20b, Git20c, Git20a].

These oracles aim to recommend the gas price a transaction requires in order to be included in

a block within a specified time period. Commonly, the recommendation mechanism uses some

rule-based approach analyzing the gas prices of previous blocks. We provide a more detailed

summary on existing approaches in Section 6.4.

8At the time of writing the average block gas limit was around 10,000,000 units of gas.
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2.6.3 Uncle Blocks in Ethereum

Unlike Bitcoin, Ethereum has substantially faster block generation intervals. This results in

the more frequent occurrence of so-called forks, where multiple blocks are generated around

the same time and compete for becoming the head of the chain. To incentivise miners whose

blocks did not become part of the main chain to extend the head of the main chain instead of

working on their fork, Ethereum introduced the notion of uncle blocks. Instead of restricting the

ancestors of a block to one, Ethereum follows an inclusive approach [LSZ15] where main chain

miners can reference uncle blocks. For each such referenced uncle block, additional rewards

are distributed to both the main chain miner and the creator of the uncle block. We present a

more detailed overview of uncle blocks in Ethereum in Chapter 4.

2.6.4 Applications on Ethereum

By enabling users to build applications that consist of one or more smart contracts, Ethereum

essentially allows users to develop DApps, a feature that is not possible in Bitcoin. In Ethereum,

the largest type of applications is decentralised finance (DeFi) [WPG+22, ZXE+22] applications,

ranging from protocols for loanable funds (e.g., [AAV20, Com19]) to stablecoins (e.g., [Cir20,

Mak19]) and decentralised exchanges (e.g., [Uni20, Ego19]). However, the complex logic of

these applications tends to rely on rather expensive opcodes in the EVM and therefore tend to

consume high amounts of gas, which may become a limiting factor when it comes to adoption

of such applications and the frequency to which users interact with them.

2.7 Challenges and Limitations of PoW Blockchains

Proof-of-Work (PoW) blockchains, while being one of the most widely adopted consensus mech-

anisms, are not without their challenges and limitations. This section explores some of the key

obstacles faced by PoW blockchains, including scalability issues, energy consumption concerns,

and the potential for centralization. Additionally, it provides an overview of the current research
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and developments aimed at addressing these challenges.

Scalability Issues: One of the prominent challenges faced by PoW blockchains is scalabil-

ity. As the number of transactions and participants on the blockchain network increases, the

limited block size and block generation time of PoW can lead to congestion and longer con-

firmation times. This can hinder the ability of the blockchain to handle a high volume of

transactions efficiently. Several solutions have been proposed to mitigate scalability issues,

such as layer-two scaling solutions (e.g., Lightning Network [PD16, PZS+16, HJNARP+19]

and other layer-two scaling methods [GMSR+19]) and alternative consensus mechanisms (e.g.,

Proof-of-Stake [GKZ19, KRDO17, BG17] and sharding [LNZ+16, YWY+20, WSNH19]).

Energy Consumption Concerns: Another significant limitation of PoW blockchains is the

substantial energy consumption associated with the consensus algorithm. The mining process

in PoW blockchains requires significant computational power, which translates into a substan-

tial amount of electricity consumption. For example, in 2023, the Rocky Mountain Institute

estimates that Bitcoin consumes approx. 127 terawatt-hours (TWh) a year, suggesting that

Bitcoin consumes more electricity annually than all of Norway [Hue23]. This has raised envi-

ronmental concerns and sustainability issues. Researchers are actively exploring energy-efficient

alternatives, such as Proof-of-Stake (PoS), which requires validators to hold and ”stake” a cer-

tain amount of cryptocurrency to participate in the consensus process, thereby reducing energy

consumption.

Potential for Centralization: PoW blockchains are also susceptible to the potential for

centralization. In PoW, miners with more computational power have a higher probability of

mining new blocks and receiving block rewards. This has led to the emergence of large mining

pools and specialized mining hardware [Tay17], creating a concentration of power in the hands

of a few entities (e.g., AntPool [Ant23])9 Centralization in mining can pose security risks and

undermine the decentralized nature of the blockchain. Various approaches, including mining

pool regulations and consensus protocol modifications, are being explored to mitigate the risks

associated with centralization.

9For a more detailed breakdown of hashrate distribution for Bitcoin, please refer to https://www.blockcha

in.com/explorer/charts/pools.

https://www.blockchain.com/explorer/charts/pools
https://www.blockchain.com/explorer/charts/pools
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Governance and Decision-Making: PoW blockchains often face challenges in making gov-

ernance decisions and implementing protocol upgrades. Achieving consensus among network

participants can be time-consuming and contentious. Disagreements over proposed changes or

upgrades can lead to forks and fragmentation within the blockchain community, potentially

impacting the network’s stability and effectiveness.

User Experience and Adoption: PoW blockchains may present a steep learning curve and

technical barriers for average users, limiting their widespread adoption. The complexity of

managing wallets, private keys, and the risk of irreversible transactions can hinder user expe-

rience and confidence in the system. Enhancements to user-friendly interfaces and education

efforts are necessary to facilitate broader adoption.

Research and Developments: To address these challenges and limitations, the research

community has been actively working on innovative solutions. One area of research focuses on

the development of layer-two scaling solutions, such as the Lightning Network, which allows for

off-chain transactions to alleviate congestion on the main blockchain. These solutions aim to

improve transaction throughput and reduce fees without compromising decentralization.

Furthermore, alternative consensus mechanisms like Proof-of-Stake (PoS) have gained attention

as they offer potential advantages over PoW. PoS relies on validators who hold and “stake”

their cryptocurrency as collateral, reducing energy consumption and increasing participation

by eliminating the need for resource-intensive mining. Additionally, sharding techniques are

being explored to partition the blockchain into smaller, more manageable subsets to improve

scalability.

Other innovative approaches include hybrid consensus mechanisms that combine PoW with

other consensus algorithms to leverage their respective strengths. For example, projects like

Ethereum transitioned from PoW to PoS to address scalability and energy efficiency concerns.

In conclusion, PoW blockchains face challenges and limitations related to scalability, energy

consumption, and centralization. However, ongoing research and developments offer promising

solutions to overcome these obstacles. Layer-two scaling solutions, alternative consensus mech-
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anisms, and hybrid models are among the approaches being explored to enhance the scalability,

sustainability, and decentralization of PoW blockchains. By addressing these challenges, the

blockchain ecosystem can continue to evolve and meet the demands of a rapidly growing digital

economy while ensuring security, efficiency, and inclusivity.



Chapter 3

PoolSim: Simulating Miner Behaviour

in Mining Pools

In this chapter, we introduce an open source and discrete event-based mining pool simulation

framework called PoolSim. The aim is to present a framework which we can subsequently use

to better simulate the behaviour of miners under different incentive mechanisms introduced

by mining pool reward schemes. The framework can be configured to model the behaviour of

miners in one or more mining pools under different network parameters. Furthermore, mining

pools can be configured to use different reward distribution schemes, as introduced in Section

2.3.2, allowing for the simulation of different mining strategies that could exist in such scenarios.

The motivation for building PoolSim comes from a lack of existing simulation tools with a focus

on miner behaviour and different reward schemes. Specifically, we want to be able to simulate

more niche reward distribution schemes and reconstruct real-world miner behaviour by defining

custom strategies that determine how single or multiple miners behave in a mining pool. In

Chapter 4, we demonstrate how PoolSim can be used to reconstruct real-world observations of

miner behaviour that is detrimental to other miners in a queue-based mining pool. It should

be noted that we are not envisioning PoolSim to be used beyond simulating mining pools and

miner behaviour (e.g., it should not be compared to broader blockchain simulation frameworks

that are focused on other aspects, such as consensus and forks).

29
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We first present the design of PoolSim and subsequently simulate mining strategies as discussed

in existing reseach [ZWW+17]. We then focus on different queue-based mining strategies and ex-

tend existing research by simulating scenarios in which multiple miners apply reward-increasing

strategies. Furthermore, we provide some insights as to how profitable mining strategies could

be in which a miner hops between two queue-based pools.

Contributions

• With the introduction of PoolSim, an open-source1 discrete event simulation framework,

researchers on mining pools and reward distribution schemes are no longer required to

develop their own simulation software for modeling the behaviour of a miner under a

particular mining pool reward scheme.

• In the context of this thesis, we utilise PoolSim to simulate different mining strategies in

mining pool reward schemes that have not been proven to be fair. Specifically, we will

use PoolSim with respect to Chapter 4.

3.1 PoolSim: Design and Implementation

Our system is implemented in C++ and is designed to be highly configurable and extensible.

The proposed system is primarily composed of a shared library libpoolsim which provides

the core functionality of the simulator and an executable poolsim which takes a configuration

file as input, allowing for easily running simulations. In this section, we describe the overall

design of the system and provide some of the most relevant implementation details. We give a

high-level overview of the design of the library in Figure 3.1.

PoolSim is a discrete-event simulator using a priority queue to store and execute scheduled

share events. Share events represent shares generated by a miner, where the time intervals by

which shares are submitted are constructed as a randomly generated exponentially distributed

1https://github.com/samwerner/PoolSim. Accessed: 2019-03-02

https://github.com/samwerner/PoolSim
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Figure 3.1: Design overview of libpoolsim

number with a rate parameter equal to λ = h
d
, where h is the hash rate of a miner and d the

share difficulty.

When a share is found, the miner is able to handle the share by using the provided share

handler which can be configured or extended. The handler will usually submit the share to the

pool it belongs to, but can choose any other behaviour. Upon receiving a share, the mining

pool delegates the share to the configurable reward scheme, which implements the logic for

distributing rewards to miners. Once all this is done, the next scheduled miner processes the

share it found, and this continues until the number of blocks in the simulation is reached. Each

reward scheme and miner behaviour can define its own metrics which are serialised with the
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Listing 1: PoolSim configuration

{

"blocks": 10000 ,

"seed": 120,

"network_difficulty": 1000,

"pools": [{

"uncle_block_prob": 0.01,

"difficulty": 10,

"reward_scheme": {"type": "qb",

"params": {"pool_fee": 0.05}} ,

"miners": {

"generator": "random",

"params": {

"behaviour": {"name": "default"},

"hashrate": {"distribution": "normal",

"params": {"mean": 20, "variance": 5}},

"stop_condition": {"type": "total_hashrate",

"params": {"value": 100}}

}

}

}]

}

final results.

Configuration. Many different settings of PoolSim can be configured using a simple JSON

configuration file. Rather than describing all the different parameters, we show a minimal

sample configuration file in Listing 1.

This configuration runs a simulation for 10 000 blocks with a network difficulty of 1 000. The

simulation contains a single queue-based mining pool with a share difficulty of 10 and a prob-

ability of its shares becoming uncle blocks of 1%. All the miners in the mining pool have the

default behaviour, which is to submit a share to the pool when found. In this example, the

miners’ hash rates are taken from a configurable normal distribution of mean 20 and variance

5, truncated at 0, as the hash rate cannot be negative. New miners are added to the pool until

the total hash rate of the pool reaches 100.

Extending PoolSim. One of the most important features of PoolSim is its extensibility.

There are two main parts which are designed to be very easily extended: the mining pool

reward scheme and a miner’s share handler. In both cases, a base class is provided and custom

behaviour can be implemented by subclassing it. In Figure 2, we demonstrate the simplicity
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Listing 2: Custom handler which withholds the share with a given probability

// maybe_withhold_handler.h

#include <nlohmann/json.hpp >

#include <poolsim/share_handler.h>

class MaybeWithhold : public BaseShareHandler <MaybeWithhold > {

public:

explicit MaybeWithhold(const nlohmann ::json& args);

void handle_share(const Share& share) override;

private:

float withhold_prob;

};

// maybe_withhold_handler.cpp

#include "maybe_withhold_handler.h"

MaybeWithhold :: MaybeWithhold(const nlohmann ::json& args)

: withhold_prob(args["withhold_prob"]) {}

void MaybeWithhold :: handle_share(const Share& share) {

if (std::rand() >= withhold_prob) {

get_pool()->submit_share(get_address (), share);

}

}

REGISTER(ShareHandler , MaybeWithhold , "maybe_withold")

of creating new behaviours by presenting a share handler which withholds the share with the

probability given in the configuration file.

Once the desired behaviours are created, a new poolsim executable including these can be

created by linking against libpoolsim. This also allows to integrate PoolSim to an existing

C++ code base.

3.2 Simulations

In this section, we first use PoolSim to reproduce existing research that has used discrete-

event simulations to examine profitability of different mining pool strategies. Additionally, we

illustrate innovative use-cases of PoolSim, which to the best of our knowledge have not been
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examined before.

Simulation Setup. For the performed simulations, we assumed static network and share

difficulties of 1 000 000 and 10 000, respectively. It should be noted that PoolSim allows users

to define the logic for having dynamically self-adjusting network and/or share difficulties. The

duration of each simulation was set to 100 000 blocks, and a pool size of 1 000 miners has been

assumed, unless stated otherwise. An uncle rate of 0% and a pool operator fee of 0%2 have

been assumed. For the attack scenarios in a queue-based pool we have set the condition that

if the miner in the position after the attacker in the queue, has a total credit balance equal to

90% or more of the attacker’s credits, the attacker executes some deterministic strategy. We

define the attacker to be a miner with a total hashrate of 15 GH/s. All simulations are run on

an Intel i7-8550U CPU clocked at 1.80GHz, with 16GB of RAM clocked at 1066 MHz. In the

current state of our implementation, the simulator is single threaded and we therefore only use

one of the 8 threads available on the CPU.

3.2.1 Existing Research

We use PoolSim in an attempt to reproduce some of the key contributions of Zamyatin et

al. [ZWW+17]. To compare a miner’s payouts of mining in a PPLNS scheme to mining in a

queue-based scheme, [ZWW+17] construct and evaluate the performance of a two-miner case, in

which a small 1 GH/s miner and a large 10 GH/s miner mine under each scheme. Furthermore,

the authors identify attack strategies specific to a queue-based pool, which may be employed by

a large miner to potentially increase his payout in a two-miner scenario. The following attack

strategies are presented by [ZWW+17]:

• Share withholding: The attacker withholds any shares if he is at the top of the queue

and another miner is within some threshold of his credits. Once the second miner is

no longer within the threshold of the attacker then the attacker will continue to submit

shares.

2As the performed simulations did not involve a PPS reward scheme under which an operator fee would
indeed be relevant, we decided to omit this variable.
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• Tactical donation of mining power: If the attacker is top of the queue and the second

miner is within some threshold of his credits, the attacker donates his shares to that miner.

• Using a second wallet: If the attacker is top of the queue and the second miner is

within some threshold of his credits, the attacker sends his shares to a second wallet that

he controls.

We first reconstruct and simulate the normal two-miner case, in which both miners mine hon-

estly absent any attack strategies.

Two-miner Case: Normal. Zamyatin et al. [ZWW+17] find that when comparing the

performance between miners in the two-miner case under different reward schemes that the

small miner is in fact performing less work per block than the large miner in a queue-based

pool. The authors also show that the large miner would have been better off mining in a PPLNS

pool (best option).

Miner Block Ratio Avg. performed work per block
Solo PPLNS QB Solo PPLNS QB

Large 1.0 1.000 0.993 1 000 974 1 000 827 1 008 227
Small 1.0 0.999 1.072 1 000 087 1 001 555 932 991

Table 3.1: Blocks mined and rewarded under solo mining compared to mining in a PPLNS and QB
two-miner scenario.

In Table 3.1, we show our results of the reconstructed two-miner case. These align with the

findings of [ZWW+17], as it can be seen that the large miner performs a notable amount more

work than the small miner in the queue-based pool. This is reflected by the ratio of blocks

received to blocks mined for the large miner in the queue-based pool, which is worse than had

he mined in a PPLNS pool or solo. The relatively high block ratio of the small miner for the

queue-based pool is also in line with the findings by [ZWW+17], indicating how the small miner

benefits from the large miner absorbing the variance during lucky and unlucky streaks of the

pool.

Two-miner Case: Attack. When looking at the attack strategies of share withholding,
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Attack strategy
Prop. of avg.
credits lost

Miner Avg. performed Blocks

work per block Rewarded Mined Ratio

Share
withholding

0.188
Attacker 970 208 73 133 71 164 1.028
Victim 1 295 488 7 005 8 974 0.781

Tactical donation
of mining power

0.188
Attacker 972 887 91 192 88 610 1.029
Victim 1 290 845 8 808 11 390 0.773

Using a
second wallet

0.246
Attacker 1 105 026 82 538 82 181 1.004
Victim 926 686 9 833 9 121 1.078

Table 3.2: Attack simulation results in a two-miner scenario.

tactical donation of mining power, and use of second wallets, the findings by Zamyatin et al.

show that the optimal strategy for a large miner is the tactical donation of mining power in a

two miner scenario.

We present the results for the two-miner attack scenarios in Table 3.2. As first discovered

by [ZWW+17], we also find that the tactical donation of mining power is the most successful

strategy. By pursuing this strategy, the attacker can increase his block ratio to 1.029, compared

to 0.993 in the normal scenario presented in Table 3.1, and thereby compensate for his initial

loss.

Our simulation configuration deviates from the work done by [ZWW+17] when looking at the

share withholding strategy. As a miner does not submit the share he withholds, the share is

essentially lost, even if this share is a valid solution to the PoW. Therefore, the attacker will

find fewer blocks during the same time period as for the other scenarios, in which no work is

lost. In [ZWW+17], the length of the share withholding is extended to equal the same duration

as all the other scenarios. However, not submitting shares and thus mining fewer blocks poses

the risk of being worse off compared to submitting all shares.

Our findings for the effectiveness of the second wallet strategy deviate slightly from the results

presented in the original work, as the victim in our simulation performed better than the

attacker. However, this difference may be explained by possibly differing implementations of

the simulators used. Overall, we were able to reproduce the key findings of [ZWW+17], where
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Simulation Runtime (ms)

PPLNS 5 310

Queue based 4 468

Share witholding 6 528

Tactical donation

of mining power
6 805

Using second wallet 7 721

Table 3.3: Execution time of the different simulated two-miner scenarios.

the most effective strategy is the tactical donation of mining power, followed by the withholding

of shares and the use of a second wallet, respectively. Given the limited amount of simulations

on queue-based mining pool attacks, being able to replicate existing research validates the

correct workings of PoolSim.

Simulation Performance

In Table 3.3, we present the execution time of the different simulations performed for the

two-miner scenario. It is worth noting that using our implementation, the ratio between the

network difficulty and the pool difficulty greatly influences the speed of execution, as it changes

the number of shares which must be generated before finding a block. However, as this ratio

does not affect the behaviour of the attacks we are checking for, we decide to keep it low to

speed-up the simulations. In our simulations, this ratio is 100, compared to about 20 000 for

most real-world pools.

3.2.2 Normal Multi-miner and Attack Scenarios

In the previous subsection, we have examined how PoolSim can be used to reconstruct and

review the effectiveness of different queue-based attack scenarios. To receive further insights

into the dynamics of queue-based mining pools, we compare the performance of an attacker

between mining in different pools containing 1 000 miners each. Table 3.4 shows the PoolSim

execution time per simulated scenario.
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Scenario Avg. credit lost Avg. performed Blocks

work per block Rewarded Mined Ratio

PPLNS NA 1,004,706 488.31 488 1.001

QB 0.0020 993,137 494.00 488 1.012

QB with share donation 0.0020 999,205 491.00 485 1.012

Table 3.4: Multi-miner simulation scenarios.

Simulation Runtime (ms)

PPLNS 331 957

Queue based 158 292

Share donation 166 464

Table 3.5: Execution time of the different simulated multi-miner scenarios.

When comparing the payouts of a miner under a PPLNS scheme to a QB scheme, we find that

the attacker did in fact receive a slightly higher number of blocks in the QB pool (494) than in

the PPLNS pool (488.31). We note that the attacker received in both pools more blocks than he

actually mined. These types of analyses have indeed also already been conducted by [ZWW+17].

However, we additionally simulate a scenario in which the attacker pursues the tactical donation

of mining power strategy in a multi-miner pool. We selected the aforementioned strategy as

this was the most effective one in the two-miner case. We find that the attacker received fewer

blocks (491) than had he mined honestly in the QB pool. The reason why the share donation

strategy did not have any noticeable effect in this multi-miner pool is rooted in the existing

credit differences between miners. The tactical donation of shares strategy requires certain

credit differences to exist, as otherwise giving away shares does not pay off over time. In order

to measure the extent of such differences in a given pool, we turn to the average proportion of

credits lost per round. For a given round, this measure is expressed as the number of credits

of the second miner as a proportion of the total sum of credits of the pool. Looking at this

proportion, we find that in the scenario of share donation in the two-miner case, the average

proportion of credits lost amounts to 0.188. Interestingly, for the scenario of share donation in

a multi-miner case, we find that this figure amounts to 0.002, and is thus significantly lower.

In fact, we suggest that the average credit loss is one of the main variables which can be taken
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advantage of by an attacker. For example, in a simulation with no attacker, the average credit

lost is 0.245. Table 3.2 shows that successful attacks manage to reduce this average.

3.2.3 Queue-based Pool-hopping

This simulation demonstrates PoolSim’s capability to simulate condition-based pool-hopping

scenarios. As briefly discussed in Section 3.2.1, several analyses on the effects of pool-hopping,

as well as on which reward schemes are vulnerable to it, exist. However, we note that there have

been no studies on the feasibility of pool-hopping between queue-based mining pools. Hence,

we construct and examine a proof-of-concept pool-hopping scenario, where a miner submits

shares to a pool on the basis of the luck of the pool. Pool luck for a given round r can be

defined as

lr =
SE

SA

· 100 (3.1)

where SE is the number of expected shares per round and SA is the number of actual shares

submitted per round.

We construct two mining pools and add a conditional hopping, stating that the attacker will

leave the current pool he is in if the number of shares submitted by the pool for the current

round is twice the amount as expected, or l = 50%.

We find that the attacker received 251 blocks in total from hopping between both pools, while

receiving 249 blocks when mining only in one pool. However, this is based on a rather simple set

up, as both pools have log normal hash rate distributions, no attackers and are rather identical.

Nonetheless, we have successfully shown that PoolSim can be used for simulating simple, as

well as more complex conditions.



40 Chapter 3. PoolSim: Simulating Miner Behaviour in Mining Pools

3.3 Conclusion

Examining the exploitability of potential vulnerabilities embedded within different reward

schemes employed by mining pools has evolved into an exciting area of research within PoW

cryptocurrencies. In this chapter, we introduced PoolSim, a simulation framework targeted for

academics or anyone with interest in studying and examining incentive and security mechanisms

of mining pool reward schemes. There is ample opportunity for exploration and experimenta-

tion using PoolSim, especially when it comes to mining pools that utilise less studied reward

payout schemes, such as the queue-based approach. Due to the rather limited existing aca-

demic research in this area, PoolSim provides a valuable tool for simulating and testing new

strategies, allowing researchers to delve into uncharted territory and uncover novel insights.

PoolSim allows for a high degree of customisation, where new reward schemes could easily be

implemented and tested, or the effectiveness of new attack strategies can be assessed accurately.

Additionally, PoolSim alleviates the burden of time-consuming and complex implementation

tasks for researchers, enabling more efficient exploration of mining pool reward schemes in

future research endeavors. We have provided an overview of the design and implementation

of PoolSim, while also demonstrating the framework’s functionality through the reconstruc-

tion of relevant academic research. Through these contributions, we hope to foster a deeper

understanding of mining pool reward schemes and drive further advancements in this field of

study.



Chapter 4

Misaligned Mining Incentives in

Queue-based Mining Pools

In this chapter, we focus on queue-based mining pools and show how, due to misaligned incentive

structures introduced by the reward payout mechanism, not only individual miners can be made

economically worse off, but also that block throughput in the overall network can be negatively

affected. We first outline the workings of the uncle block reward distribution mechanism.

Next, we then show how an adversary may leverage the uncle reward distribution mechanism

of a queue-based mining pool to increase her expected payouts at the cost of other miners in

the pool. We then discuss an observed reward-increasing strategy employed by a miner in a

queue-based mining pool and reconstruct the observed attack via a discrete-event simulation

using PoolSim to examine the effect on the mining pool. Lastly, we propose a modification to

the studied uncle reward distribution policy, which would obviate reward-increasing strategies

rooted in the former.

Contributions

• We show how for an Ethereum queue-based mining pool reward scheme, the uncle block

distribution mechanism can be exploited by an adversarial miner to increase their earnings

by employing an attack we call “uncle traps”.

41
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• We demonstrate how uncle traps can be employed by an adversarial miner to harm the

overall network by increasing the uncle rate, i.e., lowering the block throughput. We use

PoolSim to construct discrete event simulations of the proposed attack.

• In order to better understand the feasibility of the proposed attack, we analyse empirical

mining pool data to show that this form of attack has indeed been successfully executed

in the past in a queue-based mining pool on Ethereum.

• We propose a modification to the uncle block distribution mechanism, which would remove

the attack vector for uncle traps.

4.1 Background

In this section, we first explain the uncle block mechanism that was a core component of

Ethereum’s PoW mechanism until Ethereum switched from PoW to Proof-of-Stake in Septem-

ber 2022. Note that at the time when this research was first conducted, Ethereum was still

using PoW. We then examine existing research on manipulation of mining pool reward schemes.

4.1.1 Block Rewards in Ethereum

In Ethereum, at the time this research was conducted, each full block was rewarded with a

static reward of approx. 2.2 ETH1, and any fees paid by users for transactions included in the

block. Block arrival times follow a Poisson distribution with the rate parameter λ = H
D
, where

H is the network’s total hash rate and D the network difficulty of the PoW. In Bitcoin, the

PoW difficulty is adjusted every two weeks to maintain a target block generation interval of 10

minutes. In Ethereum the difficulty is adjusted dynamically after every block while the target

block interval amounts to approximately only 15 seconds [But14].

Multiple PoW solutions found roughly around the same time can create two (or more) parallel

competing branches in the underlying blockchain due to network latency [DW13, CDE+16].

1ETH is the underlying unit of exchange in Ethereum
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Eventually, the branch supported by the majority of the computational power in the network

becomes the main chain, i.e. the sequence of blocks accumulating the most PoW effort since

the genesis block. All other branches are discarded and receive no rewards. To achieve a

faster convergence to a single chain, Ethereum leverages a reward scheme for forked blocks,

similar to the notion of inclusive blockchain protocols [LSZ15]. Miners of main chain blocks can

reference forked blocks, which are then referred to as uncle blocks. Each referenced uncle block

results in an additional reward being distributed to both the main chain miner and its creator.

Participants mining on conflicting branches are hence incentivised to rejoin the main chain, as

they are guaranteed reimbursement for otherwise wasted computational effort.

Each block included in the main chain can reference up to two uncle blocks and receive a small

reward of 1
32

of a full block reward per referenced uncle. However, the reward paid to the miner

of each referenced uncle block varies. The reward diminishes depending on how distant of an

ancestor the uncle block is relative to the main chain block it was referenced by. An uncle block

is rewarded for being up to six generations away from the included block. Hence, the reward is

computed as

U = (Un + 8−Bn) ·
B

8
, (4.1)

where U is the uncle block reward, Un the uncle block number, Bn the number of the block

included in the main chain, and B the reward for a full block [com18].

4.1.2 Mining Pool Attacks

While mining pools are intended to benefit pool participants through a more steady payout

stream, they are subject to different types of attacks. Previous research [LSP+15, CB14] has

shown that block withholding attacks, whereby a malicious miner withholds blocks from the

pool, yet still receives a reward from the pool operator for her overall performed work, can

cause mining pools to suffer tremendous financial losses. Vasek, Thornton and Moore [VTM14]

have shown how mining pools are negatively affected by Distributed Denial of Service (DDoS)

attacks. Laszka, Johnson and Grossklags [LJG15] have examined game-theoretic aspects of
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attacks between mining pools.

Primarily, adversaries will try to increase their own expected payouts at the cost of other miners

by exploiting vulnerabilities of the underlying reward scheme. With regards to the queue-

based payout scheme, different attack strategies aimed at exploiting the non-uniform credit

reset mechanism have been identified. Zamyatin et al. [ZWW+17] propose attack scenarios

following real-world observations in Ethpool, whereby an adversary may strategically donate her

computational power to other miners in the pool in order to manipulate the queue constellation

with the aim of receiving larger credit differences. These attacks were further studied by Holland

et al. [HCD+18]. However, the aforementioned attacks, both explicitly focus on the non-uniform

credit reset mechanism and ignore any potential vulnerabilities stemming from the uncle reward

distribution policy of the pool.

4.2 Attack Description, Observation and Reconstruction

We propose a Sybil attack that leverages the reward-increasing opportunities under a scheme

of random distribution of uncle block rewards. According to this scheme, uncle block rewards

are distributed randomly among miners in the pool without accounting for differences in the

work performed. The selected miner receives the full uncle block reward. For instance, a miner

with 2 GH/s has the same chance of receiving a found uncle block as a miner with 10 MH/s.

The attack entails the division of hashing power between a set of smaller miners and the

deliberate increase of the pool uncle rate. We introduce the notion of uncle traps. These

describe miners with conspicuously small hash rates that serve the sole purpose of increasing

the likelihood of receiving uncle block rewards in the aforementioned scheme.

We define a fair pool, where fairness refers to the expected reward of an individual miner being

proportional to the shares submitted to the pool by that miner in relation to the total shares

submitted to the pool. We use the notion of a round as the time interval between two blocks

found by the pool – these may be uncle blocks or full blocks.
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4.2.1 Attack Modelling

Definitions

Define D as the network difficulty and B and U as the block and uncle block rewards, respec-

tively. The fairness assumption means that a miner i with hash rate h, mining in a pool of N

miners, where the total hash rate of the participating miners is

H =
N∑
i=1

hi , i = 1, . . . , N ,

and the expected duration of a round tR is equal to

E[tR] =
D

H
,

should have an expected reward per round of

E[R] =
h · E[tR]

D
· E[RP ] =

h

H
· E[RP ] , (4.2)

where E[RP ] is the expected reward of the pool.

Attack Model

The total number of miners in the pool is defined as N , consisting of the miner i and all other

miners, denoted NO. Each miner can earn a reward by either being at the top of the queue

when a block is found, i.e. having the highest number of accumulated credits, or by receiving

an uncle reward. Define p as the network probability of finding an uncle block in each round

and (1− p) as the probability of finding a regular block. From the pool fairness (4.2), we know

that the individual miner i will receive an expected reward from full blocks of

E[RB ] =
hi

H
· (1− p) ·B . (4.3)
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Figure 4.1: The attacker’s expected reward per round as a function of the number of uncle traps
employed.

Additionally, uncle blocks are distributed randomly between the miners, adding an expected

reward from uncle blocks of

E[RU ] =
1

NO + 1
· p · U . (4.4)

We now consider a scenario where a miner in the pool, defined as the attacker has a hash rate

of hA. The attacker controls a number of miners, denoted NA, where NA refers to all miners

controlled by the attacker, including uncle traps. The expected reward function from full blocks

remains unaltered for the attacker. However, the expected uncle block reward changes due to

the introduction of uncle traps. The expected reward from uncle blocks is now

E[RU ] =
NA

NO +NA

· p · U , (4.5)

per round. Numerical examples of Equation 4.5 can be found in Figure 4.1.

Combining the two possible sources of reward from (4.3) and (4.5), we find the attacker’s total
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expected reward as

E[RA] =
hA

H
· (1− p) ·B +

NA

NO +NA

· p · U . (4.6)

Hence, an attacker could substantially increase her expected reward, by dividing her mining

power between a large number of smaller miners, thereby creating uncle traps. In Ethereum,

additional addresses can be created at no financial cost, making this strategy feasible in practice.

However, in order to be recognised by the pool operator, a minimum hashing power has to be

maintained, imposing a lower limit on the divisibility of computational power.

In addition to splitting hashing power, an attacker can increase her reward by intentionally

increasing the pool’s uncle rate. This can be achieved by withholding a full block from the pool

operator until some other miner has found a block and only then submitting it. The probability

of event F that the attacker finds a block in any given round is

P (F ) =
hA

H
. (4.7)

For a proportion of some long period of time, the attacker will be at the top of the queue. This

proportion P TOP is found to be

P TOP =
E[RB ]

B
. (4.8)

Conversely, the proportion of time the attacker is not at the top of the queue is P TOP =

(1 − P TOP). To pursue the outlined strategy, the attacker will withhold blocks, unless she is

at the top of the queue. Hence, she will only force an uncle block, if she finds a block and is

not top of the queue. The number of blocks I the attacker finds over time period T , consisting

of T/t rounds of duration t, for which she is not top of the queue is equal to the expected

maximum number of intentional uncle blocks. We find the expected value of I to be

E[I] = (1− P TOP) · P (F ) · T
t
.
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From Equations (4.7) and (4.8) we find the expected number of intentional uncle blocks as

E[I] =
hA

H
− hA

2

H2
· (1− p) · T

t
.

Therefore an adversary has two levers to exploit the random uncle block reward distribution

scheme. Firstly, she may split her hashing power between multiple miners to increase the

likelihood of receiving an uncle block. Secondly, she can intentionally increase the pool uncle

rate, increasing the total number of uncle blocks she can attempt to gather.

4.2.2 Attack Execution

We now proceed to reconstruct the observed attack step by step.

1. An attacker generates NA Ethereum addresses, where NA−1 will be the number of uncle

traps

2. The attacker iterates over the generated uncle trap addresses and computes s shares per

address. We assume s = 1 for simplicity, although the actual number may be higher in

reality.

3. Each time a generated share is the valid solution to the network’s PoW puzzle:

• If one of the attacker’s miners is at the top of the queue, publish block to pool

instantly.

• Else, withhold the block until another block is found in the network, then publish

to the pool, generating an uncle.

Additionally, the attacker maintains one larger miner in the pool. For that miner, she follows

the behaviour outlined in (3) above. Hence, she will force uncle blocks if none of her miners

are at the top of the queue and immediately publish the block otherwise.
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4.2.3 Real World Observations

Historic observations about the state of Ethpool suggest that there has been at least one

occasion where a large miner did pursue the aforementioned reward-increasing behaviour over

a longer period of time [Bit18]. It was observed that a swarm of 7 500 miners with conspicuously

small hash rates, reportedly ranging from 2 MH2 per second to 6 MH/s, were mining in the pool,

all of which were orchestrated by the same adversary3. We shall refer to this pseudonymous

beneficiary account as the attacker. Even though it is not possible to retrieve historic hash

rate information for Ethpool participants, it was possible to verify that the aforementioned

adversary was a major beneficiary of the rewards collected by the observed family of smaller

miners during the period of mid-May to mid-July 2018 by tracing payments on the Ethereum

blockchain. We extracted the addresses of all recipients of uncle and full block rewards from

Ethpool for the two month period and checked if any of these addresses made a transaction to

the attacker. Over the course of this period, we found that the attacker managed to receive

19.14% of the total uncle blocks found by Ethpool spread across a set of 148 unique miners

participating in the pool. Figure 4.2 displays the total number of uncle blocks found per day

by Ethpool over the stated time period and compares it to the share of uncle blocks received

by the attacker. The attacker’s share of the total received uncle block rewards is substantially

higher compared to her 5.55% share of the total full blocks mined by the pool throughout the

same time period.

For the examined time period, the average total hash rate of the Ethereum network was

276.16 TH/s4. During that time, Ethpool found 1.54% of the total number of blocks found by

the network and thus Ethpool’s overall hash rate at that time was approximately 4.24 TH/s.

Hence, from the attacker’s share of the total number of full blocks mined by Ethpool, we know

that the attacker also accounted for approximately 5.55% of the pool’s total hash rate, or

185.74 GH/s5. A total of 7 500 miners with an average hash rate of approximately 4 MH/s per

miner, operated by the attacker, would require 30 additional GH/s, invested in uncle traps.

21 Megahash = 106 hashes
3miner address: 0x7dE44b1F1527486a16FF586eF301B6b62dA6aC11
41 Terahash = 1012 hashes
51 Gigahash = 109 hashes
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Figure 4.2: The uncle blocks the attacker received between mid May and mid July 2018 in Ethpool
compared to all uncle blocks found by the pool during that period.

These derivations are in line with the observations concerning uncle blocks shown in Figure

4.2, which presumably reflect the performance of the uncle traps harvesting the uncle block

rewards. An overview of the total reward distribution of the attacker is shown in Figure 4.3.

A further interesting observation lies in the uncle rate of Ethpool compared to the network’s

uncle rate for the examined time period, as shown in Figure 4.4. With an average uncle rate of

22.92%, the pool lies slightly above the network’s rate of 19.52%. Ethpool’s uncle rate standard

deviation of 0.1090 notably exceeds the network’s uncle rate standard deviation of 0.0245. This

is explained by the deliberate increase of the uncle rate by the attacker, as described above.

4.3 Proposed Mitigation

Apart from the general challenge of random number generation in a publicly verifiable manner,

the main problem of the studied uncle reward policy lies in not accounting for hash rate differ-

ences between miners in a pool. Distributing uncle blocks following the same single queue-based
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Figure 4.3: The number of uncle blocks the attacker received per day relative to the total number
of blocks she received per day in Ethpool between mid May to mid July 2018.

scheme as for full blocks would lower the expected reward of mining in the pool below that of

solo mining and does thus not serve as a mitigation. Our proposed solution to the problem

entails a hash rate-weighted random allocation of uncle blocks to participating miners. Let the

probability of receiving an uncle block reward be hi

H
for each miner i, where hi is the hash rate

of that miner and H is the total hash rate of the pool. As in a PPLNS scheme, miner hash

rates hi are computed as hi =
si
S
, where S is a large number – e.g. a multiple of the network

difficulty – and si are the shares submitted by a miner i over the period of S shares. Further,

we define hA as the total hash rate of the attacker. The attacker’s expected reward per round

from receiving uncle blocks, when dividing her hashing power between NA miners will then be

E[RU ] =

NA∑
i=1

hi

H
· p · U . (4.9)
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Figure 4.4: The uncle rate of the Ethereum network compared to the uncle rate of Ethpool between
mid May and mid July 2018.

From Equations (4.9) and (4.3), we find the attacker’s total expected reward as

E[RA] =
hA

H
· (1− p) ·B +

hA

H
· p · U

=
hA

H
((1− p) ·B + p · U)

By introducing a hash rate-weighted allocation of uncle block rewards, we eliminate the number

of miners NA – operated by the attacker – from the expected reward function. Hence, an

attacker is no longer able to increase her profit function from dividing hashing power between

many miners and fair uncle block distribution is assured. It should be noted that this mitigation

does not preclude the deliberate increase of a pool’s uncle rate.
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4.4 Discrete-event Simulation of Uncle Traps

In this section we use a discrete-event simulation6 to examine the effectiveness of the recon-

structed attack strategy. We compare the performance of an attacker between different simu-

lated mining pool scenarios.

4.4.1 Simulation Setup

We simulate a queue-based mining pool for a duration of 200 000 blocks using a discrete-

event simulator developed in C++. All simulations were executed on an Ubuntu server with

an AMD EPYC 7401P processor. For the constant uncle rate, the average uncle rate of the

network during the observed attack in Ethpool, namely 0.195235, is taken. Additionally, we

assume static network and share difficulties of 200 trillion and 3.6 billion, respectively. The total

computational power of Ethpool during the observed attack was equal to approx. 4.24 TH/s, yet

the exact hash rate distribution remains unknown. However, Zamyatin et al. [ZWW+17] show

that the hash rates in Ethpool resemble a log-normal distribution. Hence, we construct a mining

pool by sampling from a log normal distribution for the hash rates of the pool participants until

the overall pool size is equal to approx. 4.24 TH/s, including the prespecified hash rate of the

attacker. The distribution of sampled miners can be seen in Figure 4.5.

We examine three specific scenarios. The first scenario is a reference scenario referred to

as Honest, which represents regular mining under a queue-based payout scheme, absent any

attack strategy. In this reference scenario, the attacker employs her full computational power

of 215.73 GH/s for a single account. For the second scenario, called Attack, we simulate the

reconstructed attack. In this scenario, the attacker deploys 185.73 GH/s from one account

and intentionally increases the uncle rate as outlined in Section 4.2. Additionally, the attacker

spreads a total of 30 GH/s equally across 7 500 uncle traps she controls. Lastly, we simulate

the same attack behaviour under the hash rate-weighted uncle block reward distribution policy

we proposed in the previous section. We refer to the third simulated mining scenario as the

6This is an early version of PoolSim, which was then later revised and published in [WP20].
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Figure 4.5: The miner distribution in a mining pool with no uncle traps (top) opposed to with uncle
traps (bottom).
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Mitigation case.

4.4.2 Simulation Results

To evaluate the performance of the attacker in the three distinct mining pool scenarios, we

focus on the number of full and uncle blocks mined and rewarded. Additionally we assess the

success of the attacker by examining the reward per invested MH in ETH. We can compute

the former as

Reward per invested MH =
(B · br) + (U · ur)

(TS · d)/1 000 000
, (4.10)

where for a given miner mi , TS is the total number of shares submitted, br the total number

of full blocks received by a miner, and ur the total number of uncle blocks received by a miner.

Honest Scenario

For the Honest scenario, Table 4.1 shows that the attacker (behaving honestly) was rewarded

for a substantially lower number of uncle blocks relative to the number of uncles she mined.

Assuming the average uncle block reward was 1.6875 ETH7, this would amount to a total

loss of 3 199.5 ETH, or 684 213.01 USD8 for the attacker compared to mining solo. Based on

the uncle rate of 19.52%, the block duration of 200 000 blocks, as well as on the constructed

pool consisting of 498 miners, the expected number of uncles rewarded per miner regardless

of hash rate is 76.31. This shows how large miners with above average hash rates in the pool

are inherently at a disadvantage, compared to mining solo, due to the uncle block reward

distribution.

Attack Scenario

In the Attack scenario, the attacker mined a significantly lower number of full blocks, a logical

consequence of the uncle rate spiking. The uncle traps have resulted in 43 865 uncle blocks

7the average of the possible uncle block rewards
8with an ETH price of 213.85 USD. www.coinmarketcap.com. Accessed: 10-03-2018
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Scenarios
Honest Attack Mitigation

Full
Blocks

Mined 8 126 329 329
Rewarded 8 065 6 651 6 651
Ratio 0.9925 20.2158 20.2158

Uncle
Blocks

Mined 1 968 9 785 9 785
Rewarded 72 43 865 2 353
Ratio 0.0366 4.4829 0.2405

Reward per
invested MH
(ETH×10−8)

1.2075 4.6812 1.1921

Table 4.1: Simulation results for a honest mining pool scenario and an attack scenario with uncle
traps.

being rewarded to the attacker, an increase by a factor of 609.24 relative to the number of

received uncle blocks in the Honest scenario. The attacker was rewarded 34 080 uncle blocks

more than she actually mined. When assessing the overall performance of the attacker, it can

be seen that the attacker was able to increase her reward per invested MH by a factor of 3.88

from 1.2075× 10−8 ETH to 4.6812× 10−8 ETH overall.

Mitigation Scenario

For theMitigation case, the attacker received only 5.36% of the uncle block rewards she received

in the Attack scenario. This is in line with our formal evaluation of the reward scheme in Section

4.3. The number of uncles received is still substantially higher than for the Honest scenario.

However, the attacker was rewarded 17.53% fewer full blocks, due to the continued use of the

uncle rate spiking strategy. Overall, the reward per invested MH is the lowest for the Mitigation

case, being slightly lower than for the Honest scenario.
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4.4.3 Other Interesting Observations

Given that the attack strategy under the current uncle block reward distribution policy proved

to be very profitable, we investigate its effect on other pool participants. The top plot of Figure

4.6 displays the reward distribution for full and uncle blocks among miners of different hash

rates over the course of 200 000 blocks, absent any attack strategy. The bottom plot shows the

block distribution for the uncle trap attack scenario. When comparing these two plots, one can

see in the attack scenario (bottom) that the majority of uncle block rewards are being absorbed

by miners of very small size (red line), the uncle traps. The high drop in uncle reward density

for medium and large sized miners can be explained by the altered hash rate distribution for

the pool under the presence of uncle traps (see Figure 4.5), which absorbed 43 860 uncle block

rewards.

Figure 4.6: Small miners (red line in bottom plot) absorbing the uncle block rewards in the Attack
scenario, compared to the Honest case (top).
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The effect of uncle traps on the performance of all pool participants can also be seen by com-

paring the performance of miners based on their computational efforts, as shown in Figure 4.7.

As the current uncle reward distribution mechanism does not account for differences in hash

rates, miners of different hash rates are affected equally negatively. This is different from the

previously studied attacks described in Section 4.1.2. Hence, an adversary orchestrating an

uncle trap attack can not only increase her own reward, but also harms the pool participants

as a collective.

Figure 4.7: Number of full and uncle blocks awarded to miners based on hashrate (MH/s) on a
logarithmic scale in a pool with no uncle traps (top) and with uncle traps (bottom) for 200 000 blocks.
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4.5 Follow-up work

Since the original research of this chapter was published, there has been some follow-up work

that we would like to highlight.

The authors of [DZ21] investigate the impact of selfish mining (valid blocks are withheld from

the network in order to gain some sort of competitive advantage over the network), on blockchain

systems, specifically focusing on the risks posed by hiding and strategically broadcasting mined

blocks. In the context of Ethereum, the authors examine the effects of selfish mining on uncle

blocks. They note that the existing uncle incentive mechanism in Ethereum exacerbates the

problem by reducing the cost of selfish mining failure and lowering the profitability threshold

for selfish mining pools. In response, the authors propose feasible modifications to the uncle

incentive mechanism to counteract selfish mining in Ethereum. They analyse the behaviours

of miners in relation to uncle blocks when selfish mining occurs by constructing models. Addi-

tionally, they introduce a practical uncle incentive mechanism that does not require a strictly

ordered strategy for handling generations of uncle blocks.

On the 18th of October 2021, the Ethpool solo-mining pool that was analysed as part of the

research presented in this chapter has ceased its operations and completely closed down. To

the best of our knowledge, the queue-based reward payout scheme is no longer being utilised

by any mining pool. However, the scheme itself is still very interesting due to its simplicity and

could easily be reintroduced in the context of PoW chains, such as Bitcoin. A reintroduction

of the scheme should first require a formal approach to modelling the fairness of the scheme

and potentially making changes to ensure fairness to all participants.

4.6 Conclusion

Building on the anomalies observed in Ethpool data, our evaluation focused on a Sybil attack

strategy specifically designed to exploit the random uncle block reward distribution system

within a queue-based mining pool. Through a meticulous formal reconstruction of the observed
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attack, we successfully identified two key levers that an attacker can manipulate to increase

their reward. To validate the effectiveness of this attack strategy, we conducted a comprehensive

discrete-event simulation, which further substantiated our findings.

Our research also sheds light on the significant negative impact that an uncle trap attack can

have on mining pool participants. However, we propose a potential solution to mitigate these

effects by considering the hash rate differences among miners in the uncle block reward policy.

By implementing an altered distribution mechanism, where the likelihood of a miner receiving

the full uncle reward is directly proportional to their hash rate, we can foster a more equitable

and fair pool environment. Such a scheme would not only ensure pool fairness but also render

the outlined Sybil attack strategy ineffective.

Through our work, we highlight the importance of addressing vulnerabilities in mining pool

reward systems and propose practical measures to enhance security and fairness. By considering

the hash rate of miners in the distribution of rewards, we can promote a more balanced and

robust mining ecosystem. These recommendations aim to fortify the integrity of mining pool

operations and protect participants from potential exploitative attacks.



Chapter 5

(Un)Stable Block Throughput:

Feedback Loops and Difficulty

Adjustment Algorithms

To ensure stable transaction throughput in PoW blockchains, the difficulty of the PoW problem

is adjusted in response to changes in the miners’ computational power by a difficulty algorithm

(DA). However, without careful design the DA can expose vulnerabilities, which when exploited

by miners, lead to inappropriate difficulty levels and thus patterns of instability in the trans-

action throughput. In general, this issue arises in blockchains that lack a consistent amount of

computational power due to some miners directing their resources towards other blockchains

especially as profitability varies. For instance, such patterns have been observed even in Bitcoin

Cash [Res19, Bit17] (BCH), the cryptocurrency with the 4th highest market capitalisation at

one point1.

In this chapter, we formally model a DA designed to stabilise transaction throughput even in

chains without consistent computational power. To this end, we propose adjusting the diffi-

culty after every block using exponential smoothing, a popular approach for time series data.

To justify the specifics of the proposed algorithm we provide a case study on the DA used by

1Data obtained from: https://coinmarketcap.com. Accessed: 26-03-2020.
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BCH up until November 15, 2020, (namely cw-144) and investigate inherent vulnerabilities

which caused misaligned incentives for network participants. We discover that even econom-

ically rational (i.e. profit-seeking) miner behaviour leads to severe instabilities in transaction

throughput due to a positive feedback loop in block solve times resulting from the design of

cw-144. We present desirable properties of a proposed DA called NEFDA (Negative Expo-

nential Filter Difficulty Algorithm) and show how they remove the cyclical positive feedback

mechanism. Furthermore, we demonstrate through simulations how NEFDA performs under

different scenarios and compare it to BCH’s cw-144. We find that the proposed DA would be

an improvement over BCH’s cw-144 DA and suggest that it could be applicable to any PoW

blockchain when configured appropriately.

Contributions

This chapter makes the following contributions:

• We conduct an empirical analysis of the cw-144 BCH DA and examine how the DA’s

design encourages coin-hopping behaviour, which then leads to the formation of a positive

feedback loop in block solve times.

• We quantify the impact this positive feedback loop has on the transaction throughput by

measuring the distribution of blocks in one-hour periods.

• We examine the extent to which miners adopt coin-hopping strategies in response to

changes in BCH’s profitability and derive a DA (NEFDA) which discourages coin-hopping

strategies and present its additional properties that limit high variations in block solve

times.

• Through simulations, we verify our claims and study the impact of various configurable

parameters, arguing that the proposed DA can be customised to meet the requirements

of other blockchains.
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• We define desirable properties exhibited by NEFDA and prove their benefits by comparing

the performance of NEFDA with cw-144 in a simulated mining scenario.

• Two proposals [fTCL20, Sec20] have been put forward to replace BCH’s DA known as

cw-144. The DA we present is similar to these proposals and is explicitly referenced2 by

one of them [fTCL20], which was implemented as the new BCH DA on November 15,

2020.

5.1 Bitcoin and Bitcoin Cash

In this section, we introduce readers to the core workings of Bitcoin (BTC) [Nak08] and Bitcoin

Cash with particular focus on timestamps and difficulty algorithms. As BCH is a hard fork of

BTC, the theoretical foundation and even practical implementation of both is mostly similar.

Note that when we refer to BCH, we are referring to the Bitcoin ABC [Bit20] full node imple-

mentation. Unless otherwise stated, the reader can assume any mention of Bitcoin applies to

both BTC and BCH.

5.1.1 Bitcoin and Mining

In Bitcoin, the target is a 256-bit number encoded in the nBits field of the block header and

it has a maximum value of 0x1d00ffff (≈ 2224). The notion of difficulty expresses the ratio

of the maximum target to the current target, D ≈ 2224

target
. As SHA-256 computations produce

random yet deterministic outputs, each attempt can be modeled as a Bernoulli trial with

success probability target
2256

. Therefore, the expected number of hashes that need to be computed

to mine a block at a specific difficulty D is approx. D · 232. As attempts are independent of one

another, the time it takes to mine a block, namely the block solve time, follows an exponential

distribution with a rate parameter λ = H
D·232 , where H is the total hash rate of the network. The

expected solve time is then, 1
λ
= D·232

H
. In Bitcoin, the desired block solve time is 10 minutes,

2The reference has been made to an earlier pre-printed version of [IWSK21]
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which is maintained by adjusting the target depending on the current hash rate estimate; the

lower the target, the more difficult it becomes to find a PoW solution.

The block reward started at 50 Bitcoins and halves every 210 000 blocks, or approx. every 4

years (e.g. currently it is set at 6.25 Bitcoins).

5.1.2 Block Timestamps

Each block header contains a UNIX timestamp indicating when the block was mined. As clock

synchronisation is a well-known problem in distributed networks, block timestamps may not

necessarily be in monotonically increasing order. To ensure the blockchain time advances, the

Bitcoin protocol requires blocks to have a timestamp greater than the median timestamp of

the previous 11 blocks, also known as the Median Time Past (MTP). Additionally, nodes also

enact a convention by which they accept new blocks only if their timestamp does not exceed

the network adjusted time3 by more than 2 hours. For a more in-depth analysis of timestamps,

potential attacks and improvements we direct the reader to [Sza18, Bov11, zaw18].

5.1.3 Miner Incentives

Blockchains which use the same PoW puzzle can be seen as being PoW compatible from a

miner’s perspective, i.e. miners can switch between them with no additional hardware over-

head. A common way for comparing the profitability of PoW compatible blockchains is via the

Difficulty Adjusted Reward Index (DARI) [for], which is computed as:

Ri

Di

· E, (5.1)

where Ri is the (expected) reward for block i, Di the difficulty of block i and E the exchange

rate for the coin in some base currency (e.g. USD, BTC). Recall that Ri consists of transac-

tion fees and the block reward which is constant for long periods of time. Therefore, it can

3The network adjusted time is the median timestamp of all the current times received by a node from its
peers.
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be seen that profitability is mostly impacted by changes in difficulty or the exchange rate.

An economically rational miner aiming for short term profits, can thus engage in a strategy

called coin-hopping [MCJ17, KL18, KKSK19], whereby the miner continuously redirects his

computational power towards the most profitable cryptocurrency. On the other hand, long

term profit-seeking miners allocate most of their computational power to the blockchain which

they believe will have the highest valuation in the long run.

Depending on the distribution of hash rate across PoW compatible blockchains, hash rate

fluctuations induced by coin-hopping behaviour impact the blockchains to different extents.

For instance, on average 97% of the total SHA-256 hash rate is concentrated in BTC, while the

remaining 3% is distributed between BCH, BSV, and others.4 As a result, fluctuations in the

distribution of the total hash rate impact BCH and BSV significantly more than BTC.

5.2 Empirical Analysis of BCH’s DA

In this section, we provide an empirical analysis on issues stemming from the DA that was

employed in BCH in 2020 (at the time of this research). Note that this research was conducted

at a time when cw-144 was still the DA of BCH.

5.2.1 BCH’s Difficulty Algorithms

Until November 2020, BCH had used two different difficulty adjustment mechanisms – previ-

ously a modified version of BTC’s DA and shortly after a more responsive one called cw-144

until it was abandoned in November 2020. To examine to what extent cw-144 has been an

improvement, we will also outline the workings of the initial DA.

4Data collected from https://www.fork.lol. Accessed: 2020-04-10

https://www.fork.lol
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Emergency Difficulty Algorithm

When the BTC–BCH fork occurred on 1st August 2017, BCH kept BTC’s PoW puzzle, while

slightly adapting its DA. In BTC, the new difficulty D′ is updated every 2 016 blocks based on

the previous difficulty D, using the following formula:

D′ = D ·max

(
min

(
2 016 · T

TA

, 4

)
,
1

4

)
(5.2)

where T is the ideal inter-block time and TA is the time it actually took to mine the last 2 016

blocks.

Figure 5.1: Number of blocks mined per hour (top) and block difficulties (bottom) for the period
during which the Emergency Difficulty Algorithm was active.

As miners could engage in coin-hopping strategies and the loyal hash rate was expected to be

much lower than BTC’s, BCH developers foresaw that a scenario such as the one described in

the last paragraph of Section 5.1.3 would arise. To ensure stable block throughput during large

effluxes of hash rate, BCH resorted to the Emergency Difficulty Algorithm (EDA), whereby the

difficulty would drop by 20% if the difference between 6 successive block timestamps exceeded

12 hours [AT19]. Therefore, BCH’s first DA was a combination of BTC’s DA and the EDA.

However, it soon became apparent that this difficulty adjustment mechanism did not fulfill



5.2. Empirical Analysis of BCH’s DA 67

its objective. Miners would stop mining BCH in order to cause consecutive 20% drops in

the difficulty, which only adjusted back upwards every 2 016 blocks. Once the difficulty was

sufficiently low, miners would switch back to mining BCH and produce many blocks at very

low difficulty until the end of the 2 016 blocks window. As a result of this miner behaviour,

from 1st August 2017 to 13th November 2017 a total of 9 947 more blocks were mined in BCH

than in BTC, as shown in Figure 5.1.

BCH’s Difficulty Algorithm cw-144

The combination of the 2 016 blocks window and the EDA was replaced on 13th November 2017

with a new DA proposed by BCH developer Amaury Sechet. BCH’s DA, referred to as cw-144,

attempted to increase responsiveness to both effluxes and influxes of hash rate by performing

difficulty adjustments on a per-block basis.

The difficulty D of a new block is derived from the estimated hash rate, Ĥ, and the ideal inter-

block time, T (i.e. 10 minutes). To this end, Ĥ is computed using a simple moving average

with a sample size of approx. 144 blocks. To mitigate situations when the block timestamps

are out-of-order, the bounds of the sliding window over which the average is computed are

derived using the median timestamp of 3 blocks. Thus, the block at which the window starts,

Bstart , is the block with the median timestamp out of blocks 144, 145, and 146 in the past.

Similarly, the window ends at block, Bend, with the median timestamp of the 3 most recent

blocks. From these two blocks the DA computes W , the amount of work that was performed

between these two blocks, as the sum of difficulties of all blocks in the interval [Bstart , Bend ].

The estimated hash rate is: Ĥ = W/TA, where TA is the actual time elapsed between Bstart

and Bend , capped in the interval from half a day to 2 days to prevent difficulty changing too

abruptly. For completeness we give the full equation for the new difficulty:

D = Ĥ · T =

end∑
i=start

diff(Bi)

TA

· T (5.3)
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Figure 5.2: Number of blocks mined per hour in BTC and BCH since Amaury’s DA deployment.

5.2.2 Oscillations in Number of Blocks Mined per Hour

As intended, cw-144 achieves a daily average solve time of 10 minutes. This gives the superficial

impression of performing well in terms of stable throughput, however certain patterns in the

distribution of blocks within a day emerge.

From Figure 5.2 it can be seen that the oscillations in number of blocks mined per hour are

notably more severe in BCH than in BTC. Especially during the later months, it is evident that

BCH exhibited more 1 hour periods with either many blocks mined or none. As the number of

blocks mined in an hour, K, should ideally follow a Poisson distribution with rate parameter

λ = 6 blocks, we can compute the expected probability of mining exactly k blocks in one hour

as:

P (K = k) =
6k

e6k!
(5.4)

We compare these ideal values with empirical results from BCH and BTC in Figure 5.3. For

reference, it can be seen that in BTC the probabilities closely resemble those of a Poisson

process. In contrast, BCH shows significant deviations from the ideal distribution during the

period in which the EDA was active. After abandoning the EDA, BCH has indeed shifted

towards the Poisson distribution, but a skew on the left and right tails remains. This is in line

with the aforementioned observations of a more unstable transaction throughput in BCH, as
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shown in Figure 5.2.
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Figure 5.3: The probabilities of mining exactly k blocks in a one-hour period in BTC and BCH (pre
and post EDA).

5.2.3 Positive Feedback Loop in Simple Moving Averages

The observed instability in transaction throughput can be explained by a positive feedback

loop that stems from a combination of two factors: the use of a simple moving average and the

miners’ economically rational behaviour.

From formula (5.3) it is apparent that cw-144 relies (in part) on the relationship of inverse

proportionality between the time duration of the sliding window TA and the estimated hash

rate, Ĥ. The same relationship exists between the hash rate fluctuations and the solve times

of newly mined blocks; i.e. solve times decrease when there is an increase of hash rate and they

increase when there is a decrease. As new solve times are added to TA, the result of these two

relations is that Ĥ is adjusted directly proportional to the actual hash rate change. However,

the oversight of this DA is that using a simple moving average implies solve times falling off the

window (subtracted from TA) have an equal weight in the computation of Ĥ. Short solve times

144 blocks in the past cause a relative increase in TA which yields a lower than expected Ĥ.

Similarly, long solve times falling off the window imply a relative decrease in TA and therefore

produce a higher Ĥ. This influence constitutes positive feedback that results in correlation
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between solve times 144 blocks apart. This is inherently problematic since mining is supposed

to be a Poisson process where block arrivals are independent events.

The second factor that contributes towards the positive feedback loop is the miners’ behaviour as

they try to maximise profit by engaging in coin-hopping. For instance, assume BCH experiences

an increase in profitability which incentivises a group of coin-hopping miners MCH to switch

their computational power towards BCH. This causes an increase in hash rate and consequently

a series of blocks with short solve times. As the difficulty adjusts upwards, BCH’s profitability

drops causing MCH to direct their hash rate towards more profitable chains. While the hash

rate drops to its original value, the difficulty is now too high for the network, so a series of

blocks with long solve times is produced.

This phenomenon of short solve times followed by long solve times is not intrinsically prob-

lematic, however, due to the positive feedback found in cw-144 this pattern repeats con-

tinuously resulting in a positive feedback loop. This phenomenon has also been examined

by [zaw19b, zaw19a, Too20].
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Figure 5.4: The autocorrelation in number of blocks mined per hour in BCH and BTC since Amaury’s
DA was deployed.

To investigate the extent of this cyclical phenomenon in BCH, Figure 5.4 compares the auto-

correlation in the number of blocks mined per hour in BTC and BCH. As mining is supposed
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to be a memoryless process there should not exist any significant autocorrelation which is what

we see in BTC’s graph. On the other hand, BCH has a significant positive autocorrelation

immediately after 24 lags. Furthermore, in BCH weak positive correlation also persists after

multiples of 24 lags. As a lag in this case represents a one hour interval, 24 lags represent the

same expected duration as the sliding window of 144 blocks. Therefore, these empirical findings

are in line with the positive feedback loop described.

5.2.4 Coin-hopping Incentives

Given the aforementioned issues related to difficulty adjustments, we attempt to assess the

extent to which miners are incentivised to engage in coin-hopping and therefore contribute

towards the formation of the positive feedback loop.

Deserts and Spikes

For the purposes of this analysis we define a desert, as a one hour interval during which at

most 1 block is mined and a spike as a one hour interval during which 12 or more blocks are

mined. Note, we have chosen these thresholds s.t. their probabilities are small and relatively

comparable. Building on Equation (5.4), we compute the probabilities of mining at most k

blocks per hour:

P (K ≤ k) =
k∑

i=0

P (K = i) (5.5)

Hence, we expect deserts and spikes to occur with a probability of P (K ≤ 1) = 1.74% and

1−P (K ≤ 11) = 2.01%, respectively. We refer to a period which is neither a spike nor a desert

as a normal period with P (1 < K ≤ 11) = 96.25%.

From Figure 5.5 it becomes apparent that not only are the expected likelihoods of deserts and

spikes not achieved, but that the situation appears to be aggravating over time. For instance,

over the last 6 months of the examined period, deserts and spikes occurred 13.5% and 12.7%

of the time, respectively. By contrast, in BTC the respective percentages are 1.6% and 2.2%,

which are significantly closer to the expected values.
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Figure 5.5: The number of one hour intervals classified as spikes, deserts, and normal periods in
BCH.

Mining Profitability Comparison

We examine differences in the mining profitability of BCH and BTC by comparing the ratio of

their DARIs (i.e. BCH DARI over BTC DARI) in Figure 5.6. In the long term, mining either

coin is equally profitable as the average DARI ratio has a value of 1.0266. However, as the

ratio frequently oscillates this incentivises miners to adopt a coin-hopping strategy. Notably, in

the latter months, the oscillations become significantly more frequent and consistently reaching

deviations of 10% and even 15% either in favor of BCH or BTC. These fluctuations are reflected

in an increased number of spikes and deserts during the same period as can be seen in Figure 5.5.
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Figure 5.6: The minute average DARI ratio of BCH to BTC. Equal profitability is shown by the
black line.

Miner Analysis

In order to examine the extent to which miners benefit from mining BCH, we analyse the block

distribution for a set of high hash rate miners between 11th September 2019 and 11th March

2020. We deem this period relevant as the number of spikes and deserts is considerably higher

than before.

In Table 5.1, we give data for the five largest BCH mining pools5 (BTC.TOP, Antpool,

BTC.com, ViaBTC, Huobi Pool) and three large miners without known identities, sorted by

their respective shares of total blocks mined during the examined period.

5A mining pool allows multiple miners to combine their computational efforts and share the rewards. A pool
can be seen as a single miner entity.



74 Chapter 5. (Un)Stable Block Throughput

% of Total Blocks Mined in:

Miner Normal Spikes Deserts Total

BTC.TOP 8.95 (51.59%) 8.28 (47.72%) 0.12 (0.69%) 17.35
Antpool 8.40 (79.78%) 1.84 (17.47%) 0.29 (2.75)% 10.53
qp4ajq... 2.36 (25.88%) 6.76 (74.12%) 0.00 (0.00%) 9.12
BTC.com 6.80 (82.03%) 1.18 (14.23%) 0.31 (3.74%) 8.29
qqq9v3... 2.21 (29.19%) 5.36 (70.81%) 0.00 (0.00%) 7.57
ViaBTC 5.91 (80.08%) 1.18 (15.99%) 0.29 (3.93%) 7.38
qzkuv6... 2.77 (53.68%) 2.39 (46.32%) 0.00 (0.00%) 5.16
Huobi Pool 2.47 (75.77%) 0.73 (22.39%) 0.06 (1.84%) 3.26

Table 5.1: Proportion of blocks mined by large miners during normal, spike and desert periods
between block numbers 599 798 and 625 989.

Interestingly, out of the five largest mining pools, only BTC.TOP mined a similar amount

of blocks during spikes and normal periods, while the remaining four pools mined on average

4.66% less blocks during spikes. This indicates that BTC.TOP is the only pool that successfully

engages in coin-hopping by mining with higher hash rate during periods of lower difficulty. The

other pools lose part of their block share to the coin-hopping miners. For instance, miners

qp4ajq and qqq9v3 obtained the third and fifth highest shares of blocks, while mining more

than 70% of their blocks during spikes6 and, perhaps rather impressively, none during deserts.

The extent of such coin-hopping behaviour can also be measured by analyzing the fluctuation

in BCH’s hash rate. The logarithmic scale chart from Figure 5.7 shows the hash rates of BTC

and BCH over the last 6 months, estimated using a moving average of 6 blocks. While BTC’s

hash rate consistently oscillates from approx. 90 to 180 Exahashes per second, BCH’s hash

rate fluctuates from approx. 2 to 18 Exahashes per second. This means that BCH experiences

periods when the hash rate increases even 9 times relatively to the baseline hash rate, which is

inline with the results of Table 5.1.

6Full address of miners from Table 5.1 are given in Table A.1 from Appendix A.
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Figure 5.7: Estimated hash rates of BTC and BCH using a 6 block average.

5.3 Negative Exponential Filter Difficulty Algorithm

In this section, we mathematically derive a DA based on a negative exponential, low-pass filter.

Although the initial formula may seem rather complicated, we can reduce it to a surprisingly

elegant form which reveals several desirable properties, such as the lack of positive feedback.

To simplify mathematical computations and explanations we abstract the implementation de-

tails of the PoW target and mining difficulty. We model the target as a real number between

0 and 1 and ignore the maximum target requirement which is merely an implementation op-

timisation7. We refer to the inverse of the target as difficulty and note that it represents the

expected number of hashes that need to be computed to obtain a valid PoW solution.

5.3.1 Difficulty Algorithm Requirements

DAs need to be reactive to hash rate fluctuations, especially in the case of coins where there

might be regular influxes causing, e.g. a doubling or tripling of the overall hash rate. To ensure

the difficulty adapts swiftly, the adjustment can be performed on a per-block basis, which is

7The maximum target was also the target of the genesis block and it was set to match the hash rate
capabilities of the first miners.



76 Chapter 5. (Un)Stable Block Throughput

indeed the design of cw-144. The DA we derive will maintain this property s.t. sudden hash rate

fluctuations can be accounted for. Most DAs employ some kind of sliding window, considering

only the most recent blocks. Intuitively, this approach is justified as the difficulty of older

blocks is mostly a measure of the less evolved technology available at that time. However, for

the reasons discussed in Section 5.2.3, we are interested in avoiding the use of a sliding window

while still implementing its intention.

5.3.2 Mathematical Derivation

To satisfy the aforementioned requirements, we apply a negative exponential filter over all the

block difficulties, weighing them based on time and a decay factor. For example, Figure 5.8

shows the effect of such a filter applied to 10 000 blocks from BCH. Notice how the more recent

block difficulties are barely affected by the filter while the blocks far in the past will bring little

contribution to the overall result. To obtain the estimated hash rate, we compute the weighted

mean of difficulties over the full time span of the blockchain.
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Figure 5.8: Difficulties of 10 000 blocks are filtered with a negative exponential to obtain the weighted
difficulties.

The derived DA uses real time targeting, i.e. the difficulty of the block that is being mined

dynamically adjusts based on the current time. Once a block is found, its timestamp allows
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other miners to derive the block’s difficulty and verify the PoW solution. To this end, we assume

the algorithm operates in an idealised setting where miners never lie about block timestamps.

We argue at length for the validity of this assumption in Section 5.3.5 and also give an alternative

approach.

Throughout the remaining explanations, we make use of the following notation:

Di ← difficulty of block i

ti ← time of block i

sti ← solve time of block i : sti = ti − ti−1

T ← ideal block solve time (e.g. 10 minutes)

S ← decay/smoothing factor (see Section 5.3.4)

Ĥi ← estimated hash rate at block i

For simplicity, index 0 refers to the block at which the new DA is deployed, while index n refers

to the next block to be appended. Thus, tn and Ĥn represent the current time and network

hash rate, respectively. NEFDA uses real time targeting (RTT), i.e. the difficulty Dn of the

block that is being mined dynamically adjusts as time passes.

Dn = D0e
t0+nT−tn

S

Considering RTT is not a popular technique, we argue at length for its safety in Section 5.3.5.

In the remainder of this section, we show how this formula is derived from first principles.

Estimating Current Hash Rate

Difficulty algorithms are in the business of estimating the current network hash rate, Ĥn. As

the actual function of hash rate cannot be known at any given time we rely on sampling when

information is available, i.e. when blocks are mined. On average, the difficulty Di represents the

number of hashes computed throughout the interval (ti−1, ti]. Approximating that Di hashes
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are computed at time ti we can estimate the current hash rate Ĥn using exponential smoothing

over the series of block difficulties, i.e. by taking their exponentially weighted average.

Ĥn =

n−1∑
i=0

Die
ti−tn
S

0∫
−∞

e
x
S dx

=
1

S

n−1∑
i=0

Die
ti−tn
S (5.6)

Difficulty Computation

Therefore, the difficulty Dn of the next block is:

Dn = T · Ĥn =
T

S

n−1∑
i=0

Die
ti−tn
S (5.7)

=
T

S

n−1∑
i=0

Die
ti−tn−1

S e
tn−1−tn

S (5.8)

= e
−stn
S

(
T

S

n−2∑
i=0

Die
ti−tn−1

S +
T

S
Dn−1

)
(5.9)

= e
−stn
S

(
Dn−1 +

T

S
Dn−1

)
(5.10)

= Dn−1

(
1 + T

S

)
e
−stn
S (5.11)

When unwinding the recurrence relation (5.11) all the way to D0 we obtain:

Dn = D0

(
1 + T

S

)n n∏
i=1

e
−sti
S = D0

(
1 + T

S

)n
e
t0−tn

S (5.12)

Correction

Notice that when T ≪ S we can approximate 1 + T/S ≈ eT/S. In fact, this is actually a

correction needed to mitigate the bias introduced when considering a discrete series of difficulties

instead of the continuous function of hash rate. To prove this, we replace the constant term:

1+T/S with c and compute its value when the DA operates under a simple theoretical scenario.

Specifically, we assume the hash rate remains constant for many blocks betweenm and n. Thus,
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we expect the average rate of change in difficulty R = 1, indicating that on average the difficulty

does not change. We take the geometric mean of ratios of consecutive difficulties from block m

to n and use Equation (5.12) with the c replacement:

R = n−m

√√√√ n∏
i=m+1

Di

Di−1

= n−m

√
Dn

Dm

(5.13)

=
n−m

√
D0c

ne(t0−tn)/S

D0cme(t0−tm)/S
= c · e

tm−tn
(n−m)S (5.14)

Assuming the DA is working correctly, the average solve time of blocks from m to n is (tn −

tm)/(n−m) = T . Replacing in Equation (5.14) we obtain: R = 1 = c · e
−T
S = 1 which implies

c = eT/S.

Therefore, the correction is indeed justified and applying it in Equations (5.11) and (5.12),

gives the following relative and absolute forms:

Dn = Dn−1e
T−stn

S (5.15) Dn = D0e
t0+nT−tn

S (5.16)

Interpretation: Clockwork Toy Time

Formula (5.16) can be interpreted by introducing the concept of “clockwork toy time” (CTT).

We define the clockwork toy time as CTT = nT + t0, where n is the height of the block currently

being mined and t0 is the timestamp of the block at which the DA was deployed. Therefore

the proposed DA simply computes the difficulty of a new block by comparing the CTT with

the current time. On average, if the CTT is ahead of the actual time it signifies that miners

found more blocks than expected, so difficulty should be increased, which is what the formula

accomplishes.

If we assume a scenario in which the hash rate increases and then remains constant it might

not be immediately apparent why the difficulty stabilises. This is the case as the current time

never catches up with the CTT because tn is a summation of solve times tending on average

towards T , while the CTT is a summation of T , so there will always be a lag between them. The
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only reason the difficulty would drop is a decrease in hash rate, which on average would lead

to longer solve times, therefore allowing the blockchain time to catch up with (and possibly

exceed) the CTT.

5.3.3 Properties

History Agnosticism

The distribution of blocks in a given time period does not influence the difficulty of the block

currently being mined. This property is desirable as block arrivals should be independent of each

other so the difficulty of a block should not depend on the history of the chain. Equation (5.16)

shows how the difficulty at time tα depends only on the blockchain height, regardless of whether

blocks were mined a long time in the past, in the last hour, or equally distributed in time.

Lack of Autocorrelation

Not only does this algorithm avoid the use of a sliding window, but the lack of autocorrelation

is an emergent property entailed by history agnosticism. Sudden influxes or effluxes of hash

rate may still produce temporary spikes or deserts, yet their duration will be much shorter.

However, these will not create a positive feedback loop as the distribution of blocks in time has

no influence on the future. Therefore, the inherent negative feedback present in NEFDA is the

only force acting on solve times.

5.3.4 Smoothing Factor Considerations

The smoothing factor S has the function of configuring the reactiveness of NEFDA by setting

the maximum rate of upward adjustments for the difficulty. More specifically, the difficulty

can increase by at most a factor of e in S/T blocks. Depending on the requirements of the

application, S should be chosen carefully: blockchains that are expected to experience large

hash rate fluctuations on a regular basis (e.g. BCH), should aim for smaller values of S to
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obtain a more reactive DA, while blockchains with a relatively stable hash rate (e.g. BTC) can

choose larger values for S to reduce the difficulty’s volatility. There is no direct relationship

between the smoothing factor of an exponential moving average and the sample size of the

simple moving average used in cw-144, as their operation is considerably different, but our

simulations as well as other empirical studies [zaw19c] suggest that in order to obtain similarly

stable difficulties the smoothing factor should be chosen to represent (N + 1)/2 blocks where

N is the length of the sliding window used in simple moving averages. Applying this heuristic

to BCH which has a sliding window of 144 blocks, suggests S should be set at approx. 12

hours. Note that selecting an appropriate value for S depends on the blockchain that utilises

the underlying DA and should therefore be chosen with caution. Optimal selection of S may

therefore be an avenue of future research.

5.3.5 Real Time Targeting Considerations

Real time targeting DAs assume miners have no incentive to report incorrect timestamps.

To prove this assumption we compare NEFDA’s RTT formulation with BCH’s cw-144 and

argue that NEFDA reduces the incentives for timestamp manipulation. In cw-144 reporting

a dishonest timestamp, with a value in the future, would lower the difficulty for the next 144

blocks. This creates short term incentives for other miners to accept the dishonest block as

they also benefit from the reduced difficulty even if they are not planning to be dishonest

themselves. In contrast, NEFDA’s history agnosticism implies that only the difficulty of the

block with dishonest timestamp is affected, so there are no incentives for other miners to accept

it. In fact, building on a dishonest block (Bi) implies mining towards a difficulty that is eT/S

times higher than that of the previous block (Bi−1). Thus, a miner would only accept this block

if it is willing to report an even higher timestamp to mitigate the increase in difficulty. This

behaviour leads to an unstable chain as it could be replaced by a potentially shorter chain with

more accumulated work (higher difficulty blocks), so honest miners would not risk accepting

blocks with dishonest timestamps. Only an attack supported by a majority of the hash rate

would be successful, which is no different than 51% attacks [Sza18, Bov11, zaw18] that are
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currently possible in BCH or even BTC.

As an alternative solution, to completely remove possible issues arising from using RTT, we can

replace any occurrence of a time ti, with the median time of the 11 blocks preceding block i. As

the MTP of 11 consecutive blocks is guaranteed to be ordered by consensus rules, this satisfies

our requirement for monotonic time while not changing any of the assumptions existing DAs

rely on. This does incur a delay of approx. 1 hour in estimating the current hash rate, but the

proposed DA should still produce significantly better results than BCH’s current DA. We note

that a greater smoothing factor mitigates the drawbacks produced by the delay in hash rate

estimation. Therefore, although we believe formulating the proposed DA using RTT is a valid

alternative, the community can replace this using the MTP and configuring an appropriate

smoothing factor.

5.4 Simulation

In this section, we empirically analyse the robustness of the Negative Exponential Filter DA

by comparing it with BCH’s current DA (described in Section 5.2.1). We perform this analysis

by simulating the evolution of a blockchain under different scenarios of hash rate fluctuations.

In particular, we focus on mimicking the behaviour of coin-hopping miners by adjusting the

total hash rate in response to changes in profitability. Throughout this analysis we are mainly

interested in the metrics we have already presented in the empirical analysis performed on BCH

(see Section 5.2). For brevity, we abbreviate the Negative Exponential Filter DA derived in

Section 5.3 with the acronym NEFDA and refer to BCH’s current DA simply as BCH.

5.4.1 Setup

To simulate mining8, we adjust the total hash rate to create various relevant scenarios that a

DA could be exposed to.

8Note that these simulations do not use PoolSim, but rather a custom simulation setup focused on block
generation times, difficulty and DAs.



5.4. Simulation 83

For simulating cw-144 and the MTP variation of NEFDA it suffices to simulate the blockchain

evolution on a per-block basis. As we have knowledge of the actual hash rate we model the block

solve times by using a random number generator that produces values distributed according to

an exponential distribution with rate parameter λ = H · T/2256, where T/2256 represents the

success probability of one hash computation.

On the other hand, simulating NEFDA with RTT requires a more expensive computation as

we have to update the target more frequently than at every block; we are satisfied with a

per-second precision.

Through experimentation, we found that running the simulation for 100 000 blocks, corre-

sponding to approx. two years of simulated time, is enough to clearly reveal any features of

the metrics we are considering. We start simulations with a hash rate of 1 Exahashes per

second, i.e. H = 1018hashes/s, to maintain the scale of BCH’s hash rate. Aiming for an

ideal inter block time of 10 minutes, we initialise the blockchain with an appropriate target of

T = 2256/(H · 10 mins) ≈ 1.9256.

5.4.2 Modeling Miner behaviour

If all miners would focus on short term profit, then all the hash rate would be directed solely

towards the chain with the highest profitability. However, in practice this scenario does not

occur as miners have socio-political beliefs and might incur switching costs due to their mining

configuration. As we are only interested in simulating miners’ behaviour and not the relation

between specific chains, we simplify profitability computations by only comparing the estimated

DARI with its initial value and assuming a constant exchange rate as most SHA-256 coins are

highly correlated. Thus, we assume miners compute DARIs as the ratio between the average

target of the last NDARI blocks and the initial target of the blockchain. Although hash rate

fluctuations appear in response to DARI oscillations, it remains unclear what exact switching

logic miners employ. To this end, we believe the following 3 model of miners are general enough

to capture the behaviour of any real miner.
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Figure 5.9: The probabilities of mining exactly k blocks in a one-hour period using NEFDA–RTT
and cw-144.

Idealistic miners allocate all their hash rate to BCH regardless of how much profitability drops;

they represent the baseline hash rate HB.

Greedy coin-hopping miners allocate all their hash rate HG towards BCH only when the DARI

increases by at least 5%.

Variable coin-hopping miners allocate part of their total hash rate HV in relation to the current

profitability. Although this relation is not clear in reality, we consider a model based on the

logistic curve. The intention is to emulate both the initial stage when the hash rate increases

exponentially as miners realise the advantage in profitability, and the later stage when the hash

rate influx gradually slows down. The model directs all the hash rate away from or towards

BCH, if drops or increases in profitability larger than 15%9 occur. Otherwise, a variation x

between −15% and 15% leads to a contribution of H = Hv/(1 + e−6/0.15·x) towards the total

hash rate.

5.4.3 NEFDA–RTT vs. cw-144

We start by comparing RTT-based NEFDA with cw-144 when HV = HG = 4 × HB and

NDARI = 6 blocks. A very brief analysis of the average solve times: 599.97 s for NEFDA–

9We have chosen this value based on data presented in Section 5.2.4.
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RTT and 604.34 s for cw-144, already reveals how NEFDA–RTT achieves a more appropriate

value. Furthermore, the probability distribution of the number of blocks per hour produced

using NEFDA–RTT and cw-144 are compared to the (ideal) expected values in Figure 5.9.

The distribution obtained with NEFDA–RTT shows very minor deviation from the ideal plot,

probably as a result of the extreme scenario simulated. At the same time, cw-144 shows

significant skew on both tails of the distribution, suggesting that both deserts and spikes are

produced. Analyzing the per-hour block count reveals a much larger standard deviation in

cw-144 than in NEFDA–RTT (see Figure 5.13). Indeed, deserts and spikes occurr 22.4% and

17.5% of the time when using cw-144 while only 3.6% and 2.7% when using NEFDA–RTT.
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Figure 5.10: The autocorrelation in number of blocks mined per hour in NEFDA–RTT (top) and
BCH/cw-144 (bottom).



86 Chapter 5. (Un)Stable Block Throughput

Figure 5.11: The targets per hour for NEFDA–RTT and BCH/cw-144 in a coin-hopping simulation
of 100 000 blocks.

Figure 5.12: The hash rates per hour for NEFDA–RTT and BCH/cw-144 in a coin-hopping simu-
lation of 100 000 blocks.
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Figure 5.13: The blocks mined per hour for NEFDA–RTT and BCH/cw-144 in a coin-hopping
simulation of 100 000 blocks.

As expected, the reason for this massive discrepancy is the positive feedback loop present in

cw-144. Figure 5.10 shows the significant amount of positive correlation that appears at mul-

tiples of W (the size of BCH’s sliding window). Interestingly, cw-144 also shows negative

correlation between blocks that are W/2 apart, indicating that there is a delay of 12 hours in

hash rate estimation. On the other hand, NEFDA–RTT shows negative correlation between

neighboring hour-buckets indicating that the DA rapidly responds to sudden hash rate fluc-

tuations. By adjusting the target more quickly the DARIs oscillations are limited and miners

are less incentivised to abandon mining (see Figures 5.11, 5.12, 5.13 for target, hash rate and

DARI results, respectively).

5.4.4 Smoothing Factor Trade-offs

To examine the influence of the smoothing factor over the performance of NEFDA, we model

a slightly more extreme environment by increasing the total hash rate of variable miners:

HV = 6 × HB. Simulations are run using NEFDA–RTT with 3 smoothing factors that are

multiples of the ideal inter block time, in order to represent 36, 72 and 144 blocks. An initial

analysis of the average solve times: 600.0015 s for NEFDA–36, 599.9835 s for NEFDA–72 and
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599.9895 s for NEFDA–144 shows how NEFDA in general copes much better than cw-144 even

in more extreme environments. However, we do observe slight improvements in the targeting

of the ideal average of 600s as the smoothing factor is increased.

Figure 5.14: The probabilities of mining exactly k blocks in a one-hour period using various smooth-
ing factors for NEFDA–RTT.

Figure 5.14 reveals that all distributions have an appropriate center of mass, but lower smooth-

ing factors slightly flatten the curve skewing the distribution from the ideal values. These

small discrepancies affect the proportion of deserts: 6.77%, 4.14%, 2.81% and spikes: 4.84%,

3.06%, 2.14% (values are given in order for each of the smoothing factors considered: 36, 72

and 144 block). As shorter smoothing factors attribute greater relevance to recent blocks the

algorithm risks being too reactive, and therefore over or underestimating the current network

hash rate. As shown in Figure 5.15, this effect translates in more volatile targets, especially

when underestimating the hash rate due to long block solve times. In turn, this leads to more

volatile profitability which encourages coin-hopping behaviour.
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Figure 5.15: Comparison of the targets produced using different smoothing factors in NEFDA.

On the other hand, greater smoothing factors are not always desirable. Figure 5.16 shows the

evolution of targets for each of the three variants of NEFDA when simulating a scenario in

which the hash rate increases exponentially without any coin-hopping behaviour. Although

the lower smoothing factors still imply a more volatile target, the average solve times are now:

599.5518s for NEFDA–36, 599.1267s for NEFDA–72 and 598.2724s for NEFDA–144, which

imply that the more reactive nature of NEFDA–36 and NEFDA–72 is desirable under these

conditions.
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Figure 5.16: Comparison of the targets produced using different smoothing factors in NEFDA under
exponentially increasing hash rate.

5.4.5 Median Time Past Considerations

Lastly, we analyse the effects of using the MTP variant of NEFDA, by simulating it under the

first scenario (HV = HG = 4 × HB and NDARI = 6 blocks.) As mentioned in Section 5.3.5,

the MTP of the last 11 blocks introduces a lag of approx. 1 hour in hash rate estimations.

A small smoothing factor implies NEFDA’s current hash rate estimate is mainly based on

the most recent blocks. Due to the lag introduced by the MTP these recent blocks may not

have their difficulties updated accordingly and a positive feedback might be introduced in the

computation. However, unlike with cw-144, where the positive feedback leads to a perpetuating

loop due to the use of equal weights and a sliding window, NEFDA’s positive feedback quickly

diminishes as the weights of the problematic blocks fade in time (see Figure 5.21).
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Figure 5.17: The autocorrelation in number of blocks mined per hour for NEFDA–MTP with
smoothing factors 288 in a coin hopping simulation of 100 000 blocks.
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Figure 5.18: The autocorrelation in number of blocks mined per hour for NEFDA–MTP with
smoothing factors 144 in a coin hopping simulation of 100 000 blocks.
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Figure 5.19: The autocorrelation in number of blocks mined per hour for NEFDA–MTP with
smoothing factors 72 in a coin hopping simulation of 100 000 blocks.
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Figure 5.20: The autocorrelation in number of blocks mined per hour for NEFDA–MTP with
smoothing factors 36 in a coin hopping simulation of 100 000 blocks.
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Figure 5.21: The autocorrelation in number of blocks mined per hour for cw-144 in a coin hopping
simulation of 100 000 blocks.

Figure 5.22: The probability distribution of exactly k blocks being mined during a one hour period
using various smoothing factors for NEFDA-MTP, compared to the ideal values.

This effect is reflected in skewed block distributions (see Figure 5.22). Notice how higher

smoothing factors mitigate the use of MTP. Therefore, if a community decides in favor of

MTP, we suggest assuming the costs of a less reactive DA and selecting a smoothing factor

much larger (e.g. 20 times) than the MTP’s window size.

5.5 Related and Follow-up Work

In this section, we will discuss related work at the time of this research, as well as discuss follow-

up work that is relevant to this chapter’s contributions, yet was released after this chapter’s

contributions had been published.
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5.5.1 Related Work

The most extensive body of difficulty algorithm research has been done by the pseudonym

zawy12, who provides a comprehensive overview of various difficulty algorithms in [zaw19c].

He also examines the difficulty instabilities in BCH in [zaw19a]. Regarding our proposed

DA, zawy12 simulates the performance of two algorithms also based on exponential filters:

ASERT [Lun19] and EMA [zaw19d], which is an approximation of ASERT that avoids the

computation of exponentials. We have become aware of ASERT which is essentially equivalent

to NEFDA, only after receiving the unpublished work of Mark B. Lundeberg from zawy1210.

Our additional contribution consists of the mathematical derivation of this algorithm, an outline

of desirable properties, and motivation for the correction. In parallel work, an explanation of

how a DA based on an exponentially weighted moving average could mitigate the difficulty

instabilities in BCH was provided by [Too20].

The following are related pieces of work in the broader contexts of difficulty adjustment algo-

rithms as well as coin hopping. In [Kra16] the author shows how Bitcoin’s difficulty algorithm

causes shorter block solve-times in the case of an exponentially hash rate growth and defines

an alternative model which achieves desired average block times in the long-run, yet is subject

to increased solve time fluctuations. A stochastic model is presented in [FM18], where the

difficulty target is modeled as a random variable that is a function of previous block times.

The difficulty adjustment problem is addressed from a feedback control engineering perspective

in [HK17], where the difficulty is adjusted on a per-block basis using a non-linear feedback

controller based on a moving average filter of recent block timestamps for ensuring stable block

solve times. Bobtail is an alternative difficulty algorithm presented in [BL17], which reduces

block solve-time variance, yet comes at the cost of requiring significantly larger block headers.

In [BTL19] a new difficulty algorithm is presented based on “bonded mining”, whereby a miner

has to put up collateral and commit to mine at an offered hash rate over a period of blocks.

An investigation into the decision-making process driving miner behaviour during times of

BCH’s EDA is presented in [AT19]. A game theoretic framework of miners switching between

10At the time of this research, an unpublished version of what later became [Lun20] was sent to us.
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PoW-compatible blockchains based on difficulty is proposed in [KKSK19]. The authors further

show that BCH experienced a lack of loyal miners prior to the introduction of cw-144, which

temporarily undermined the security of the system. The consequences of miners switching

under cw-144 remained unexamined.

5.5.2 Follow-up Work

This subsection discusses some work that was published after our contributions were published.

We deem this relevant in the context of the contributions presented in this chapter.

Two proposals [fTCL20, Sec20] were put forward to replace cw-144. The proposal that es-

sentially was the one that replaced cw-144 was ASERT[fTCL20], which was implemented on

November 15, 2020, and cited NEFDA (the citation was made to an earlier pre-printed version

of the published paper).

While most existing DAs primarily focus on ensuring stability in block creation within specific

timeframes, the authors of [DYQ+22] introduce a new DA with the objective of stabilising or-

phan rates among recently generated blocks. They argue that the orphan rate serves as a more

informative metric, as a high orphan rate indicates weak blockchain security and wasted honest

hash power, while a low orphan rate signifies inadequate blockchain efficiency and unneces-

sary delays in waiting for other blocks. The authors identify a security flaw in an orphan-rate

DA presented by [ZZW+20], whereby attackers can continuously generate orphan blocks, mis-

leading miners into incorrectly increasing the difficulty level. To rectify this vulnerability, the

authors propose an enhanced DA that considers the variation in orphan rates during historical

slots. They incorporate a smooth exponential decay effect into the current difficulty adjustment

mechanism.
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5.6 Conclusion

In this chapter, we first provide a case study on BCH’s DA and show how the behaviour of

economically rational miners can lead to severe instabilities in throughput as a consequence of a

positive feedback loop stemming from cw-144. The cyclical pattern in block solve times skews

the distribution of the number of blocks per one-hour intervals therefore having a negative

impact over the transaction throughput. In order to mitigate periods of undesired (either too

low or too high) throughput, we model NEFDA, a DA which does not lead to the formation

of a positive feedback loop and can cope effectively with sudden hash rate fluctuations. We

explain how NEFDA exhibits desirable properties in the form of history agnosticism and lack of

any significant autocorrelation. Additionally, we show how NEFDA is configurable in the level

of responsiveness. Through simulations, we demonstrate how NEFDA outperforms cw-144 in

terms of reducing target volatility and in turn high variations in block solve times. Furthermore,

we show how to mitigate drawbacks introduced by the MTP variation of the NEFDA, by

configuring the smoothing factor. Therefore, NEFDA constitutes a viable alternative for both

large and small blockchains (in terms of baseline hash rate) when configured appropriately.

In the broader context of this thesis, this chapter has successfully shown how implementing

some arbitrary mechanisms to control critical system features, such as the difficulty levels in

the Proof-of-Work, can give rise to undesirable incentives and thereby undermine the desired

workings of the system. The long and rather troublesome journey of developing and selecting

an appropriate difficulty algorithm in Bitcoin Cash has shown that designing, maintaining and

transitioning blockchain systems requires a sophisticated set of tools that allow researchers

and engineers to formally study and simulate novel mechanisms in different environments (e.g.,

with different network hash rates, coin-hopping, etc.) to avoid any potential negative effects

to the stability of the network. We have demonstrated in this chapter how such tools may be

used by identifying and carefully constructing the desired properties of a favorable difficulty

algorithm, which we then mathematically derived and subsequently simulated under different

network assumptions.



Chapter 6

(Un)Stable Transaction Throughput:

Leveraging the Cyclicality of

Transaction Fees

Since the introduction of Ethereum and its virtual machine, participants have been able to

create so-called smart contracts, i.e. programs that encapsulate the logic for governing funds.

As these contracts have to be executed by all participating nodes in the Ethereum network,

the sender of a transaction has to pay for the computational cost of execution in units of gas.

The amount of gas to be paid by the sender of a transaction depends on the complexity of

executing a smart contract’s logic. Additionally, the sender is required to specify the gas price,

which he will have to pay per unit of consumed gas. The product of the gas cost and price

determines the transaction fee, which is received by the miner who includes the transaction in a

block. Hence, setting an appropriate gas price is critical for having a transaction included in a

timely manner. While Ethereum employs a hard-coded and transparent gas cost model, there

does not exist any embedded mechanism for computing how much a sender of a transaction

should pay per unit of gas. The gas price is instead determined by the supply and demand

for computational resources. Therefore, choosing an optimal gas price can be challenging, as

underpaying likely results in a transaction not being included by miners, whereas overpaying
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leads to avoidable costs.

The most widely used gas price prediction mechanism is implemented by the popular Ethereum

client Geth [Git20b]. This and comparable mechanisms only use recent gas prices and merely

aggregate past data to heuristically recommend the gas price for a transaction.

In this chapter, we present a novel approach for gas price prediction, motivated by the empirical

analysis of a period of 522, 213 blocks. We find significant seasonality in the gas price data,

suggesting that this can be predicted using a machine learning model. We propose the use of

Gated Recurrent Units [CvMG+14] as these have been shown to be suitable for capturing such

patterns. Consequently, we design an algorithm for choosing the gas price for a transaction,

which leverages the predictions of our model while allowing to specify the transaction’s urgency.

Our evaluation on real-world data shows that the proposed approach significantly outperforms

the most widely-used Ethereum client Geth [eth20c].

Note that this research was done when Ethereum still used Proof-of-Work as its consensus

mechanism and prior to the EIP-1559 update.

Contributions

• We present a comprehensive empirical analysis of the Ethereum gas price over a period

of three months and identify seasonal patterns in the data,

• We propose a deep-learning based model to predict the gas price and combine this with

a novel algorithm for recommending the gas price for a transaction,

• We evaluate our model on real-world data and show that it outperforms the most widely

used gas price recommendation approach, resulting on average in costs savings of more

than 50% while only incurring an inclusion delay of 1.3 blocks compared to Geth.
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6.1 Empirical Analysis

In this section, we empirically analyse Ethereum block data to develop a better understanding

of the gas price behaviour. We use data from the period of 1 October, 2019 to 31 December,

2019, which amounts to a total of 522, 213 blocks. When comparing mean, minimum and

maximum gas prices averaged over 3 hour intervals during this period, we can see in Figure 6.1

that substantial spreads exists in the gas price. More specifically, the maximum gas price

exceeds the minimum gas price by an order of magnitude for the entire period. The gas
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Figure 6.1: The mean, maximum and minimum gas price averaged over 3 hour intervals from block
8, 653, 173 (1 October, 2019) to 9, 193, 265 (31 December, 2019).

price volatility throughout the examined 522, 213 blocks is further indicated by the standard

deviation of the average gas price, which is 46.4645 Gwei at an average gas price of 13.9598

Gwei, as shown in Table 6.1. The same can be said about the average gas utilisation per

block. Figure 6.2 shows the cross-correlations between the average gas price, maximum gas

price, minimum gas price, number of transactions and gas utilisation per block. Surprisingly,
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Number of blocks: 522,213
Mean gas price: 13.9598 Gwei
Median of average gas price: 10.3260 Gwei
Standard deviation of average gas price: 46.4645 Gwei
Mean gas utilisation: 79.36%
Standard deviation gas utilisation: 32.00%

Table 6.1: Mean, median and standard deviation of average gas price per block, as well as mean and
standard deviation of gas utilisation per block from block 8,653, 173 (1 October, 2019) to 9, 193, 265
(31 December, 2019).
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Figure 6.3: Autocorrelation function (ACF) plot of mean (left hand side) and minimum (right hand
side) gas prices averaged over one hour periods for 144 lags (hours).

the average gas price and utilisation are not correlated. In fact, the average gas price is only

significantly correlated with the maximum gas price. The gas utilisation is only correlated with

the transaction count. However, apart from these two correlated pairs, the remainder of the

variables are not significantly correlated.

To investigate the presence of seasonality in the data, we examine the autocorrelation of each

variable on a per block and hourly basis. Most interestingly, we find that even though the

gas price does not exhibit any significant seasonality on a per block basis, there does exist

seasonality when looking at the gas price averaged over one hour intervals, as indicated by the

autocorrelation in the left plot of Figure 6.3.

It can be seen that especially for a lag of 24 hours significant seasonality can be found in the

data, which could be linked to different time zones of the countries where most transactions

are conducted. This seasonality can be found to an even greater extent in the autocorrelation

of the minimum gas price averaged over one hour intervals. The presence of seasonal patterns

in the data alludes to the viability of machine learning models for predicting future gas prices.
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6.2 Methodology

The gas price recommendation methodology we propose consists of two key components. First,

we present a deep-learning based model to predict the gas price for a pre-defined period of

time. Second, we introduce an algorithm that uses these predictions to recommend a gas price

for a transaction, parameterised by the sender’s willingness to delay the transaction. Both

components, as well as the employed data pre-processing steps are presented in this section.

6.2.1 Gas Price Prediction

The methodology we propose requires a forecasting model to predict the gas price trajectory

over a pre-defined number of time steps s. In particular, we are interested in predicting the

minimum gas price under rational miner behaviour, since this can be seen as a lower bound

for setting the gas price for a given transaction. From the preliminary data exploration in

Section 6.1, it is apparent that the per-block data is extremely noisy, which can be attenuated

by averaging over a longer period of time. We therefore average the minimum gas price of

all blocks in consecutive 5 minute intervals and forecast on this level of granularity, instead of

using per-block data directly. A time step is then defined as a 5 minute interval. We denote

the complete time series of average minimum gas prices by y. Furthermore, we define the

aggregated time series of all features used as model input as D, where dt ∈ D denotes the

feature vector for a single time step t. For both model training and inference, we use a sliding

window model that uses a fixed-size window of historical data with l time steps for prediction.

The problem of forecasting a window of s time steps using a window of size l can then be

defined as

ŷt+1, . . . , ŷt+s = argmax
yt+1,...,yt+s

p(yt+1, . . . , yt+s|dt−l, ..., dt) . (6.1)

In the remainder of this section we present our pre-processing methodology and proposed

forecasting model.
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Feature Name Lagged by 24h

Average gas price per block Yes
Transaction count per block No
Max. gas price per block No
Min. gas price per block No
ETH price at block timestamp No

Table 6.2: Features used as input data for the predictive model to forecast the minimum gas price.
Lagged variables are included both with and without lag.

Pre-processing

We introduce a number of pre-processing steps to the data, which specifically aim to reduce

the impact of noise while still capturing seasonal components and trends. Table 6.2 lists the

features used as input for the predictive model. Due to the daily seasonality in the data, some

variables are also included with a lag of 24 hours. To reduce the impact of noise in the data,

we first remove outliers using a heuristic criterion, where we delete all data points that are

more than 1.5 standard deviations higher or lower than the mean. Subsequently, all data is

normalised to values between 0 and 1. Since the main goal of the predictive model is to capture

the seasonality and predict the gas price on a fairly coarse level, we employ a further pre-

processing step presented in [PPL20]. This additional step applies a discrete Fourier transform

to each window in the input data and truncates the frequency domain representation of the

time series using an adaptive energy-based criterion. We then convert it back to the time-

domain using an inverse Fourier transform. This methodology allows us to adaptively reduce

the impact of short-term fluctuations in each window of input data, while still capturing the

seasonal components and overall trend.

Model

As a forecasting model, we propose the use of a Gated Recurrent Unit (GRU) [CvMG+14].

GRUs are a specialisation of recurrent neural networks, where a computationally efficient gating

mechanism is used. Gating has been shown to improve the network’s ability to learn longer

term dependencies [HS97], making this kind of model well-suited to the problem at hand. The
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GRU architecture is given by

zt = σ(Wzdt + Vzht−1 + bz) , (6.2)

rt = σ(Wrdt + Vrht−1 + br) , (6.3)

ht = zt ◦ ht−1 + (1− zt) ◦ ϕ(Whdt + Vh(rt ◦ ht−1) + bh) , (6.4)

ŷ = ŷt+1, . . . , ŷt+s = f(ht) , (6.5)

where ◦ denotes the Hadamard product, W , V and b are parameter matrices and biases, σ(·)

and ϕ(·) denote the sigmoid and hyperbolic tangent functions, respectively, zt, rt and ht are

the update and reset gates and the hidden state and f(·) denotes the final linear layer of the

network. The network is trained using gradient descent and backpropagation with an Adam

optimiser [KB14].

6.2.2 Recommendation Algorithm

We now describe our recommendation algorithm which leverages the gas prices predicted by our

model. We use the 20th percentile of the predicted prices as the initial gas price, which we note

ĝ. One of the main objectives of our algorithm is to scale ĝ such that the faster the predicted

gas prices are decreasing, the lower the gas price recommended by the algorithm. On the other

hand, if the prices are increasing, the predicted prices should not be significantly lower than

the current gas price. We incorporate this objective by finding a coefficient 0 < c ≤ 1 that

is multiplied with the predicted gas price ĝ. Furthermore, we want c to increase or decrease

exponentially with respect to the trend to achieve aggressive gas pricing if the predicted prices

decrease quickly.

First, we compute the trend of the predictions ŷ returned by our forecasting model. We fit

a linear function such that ŷ = aX + b, with X = 1, 2, · · · , s, and store the slope a, which

captures the trend in the predicted gas prices. We then normalise a to ã to lie in the range

between 0 to 1. This is achieved by computing the maximum Amax and minimum Amin values
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of the slopes we obtain for our training data and computing ã according to Equation (6.6).

ã =
a− Amin

Amax − Amin

(6.6)

Then, to obtain the described exponential behaviour, we exploit the fact that the exponential

function in the interval [−2, 0] has the desired properties and hence, compute c using Equa-

tion (6.7).

c = e2ã−2 (6.7)

Finally, to allow the user to configure the urgency of a transaction, we define an urgency

parameter U , which we use to scale the obtained coefficient c to arrive at a recommended gas

price G given by

G = ĝ · c · U . (6.8)

Algorithm 1 Evaluation procedure of the gas recommendation efficiency

function EvaluateRecommender(StartBlock, EndBlock, Recommend)
Pending ← ∅
Results ← ∅
Block ← StartBlock

while Block ≤ EndBlock ∨ (Pending ̸= ∅ ∧ Block ≤ LastBlock) do
Price ← GetMinimumPrice(Block)
while Pending ̸= ∅ ∧ min

t∈Pending
(t1) ≥ Price do ▷ t1 is the transaction price

Transaction ← argmin
t∈Pending

(t1)

Pending ← Pending \ {Transaction}
Results ← Results ∪ {(Transaction, Block, Price)}

end while
if Block ≤ EndBlock then

Recommended ← Recommend(Block)
Pending ← Pending ∪ {(Block, Recommended)}

end if
Block ← Block+ 1

end while
return Results

end function
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6.2.3 Measuring Gas Recommendation Efficiency

Up to here, we have described how we recommend a price at a given block number. However,

to understand how optimal a gas price is, we need to measure the difference between the

recommended and the optimal gas price.

To evaluate the efficiency of our approach, we iterate over a range of blocks, where we do the

following. For each block, a new transaction using the recommended gas price is added to a set

of pending transactions. Each transaction in the pending set is processed upon encountering a

block with a minimum gas price lower than that specified in the transaction. We keep track of

the recommended price, the inclusion price, i.e. the minimum gas price of the block where the

transaction is included, and the number of blocks elapsed until inclusion. We show the detailed

steps in Algorithm 1. The EvaluateRecommender function takes a start block, an end block

and a recommendation function to evaluate. LastBlock is the number of the last block which

we evaluate and GetMinimumPrice returns the minimum gas price for a given block.

To be able to evaluate the efficiency of our algorithm, we use the Geth gas price recommendation

algorithm as the main baseline, as it is by far the most widely used Ethereum client [eth20c].

6.3 Results

In this section, we present the results we obtain when using the methodology presented in the

previous section and compare them with our baselines.

6.3.1 Model Training

All models are implemented in Python, using the PyTorch library [PyT]. We train all models

on a personal computer with 32GB of RAM, an 8th generation Intel Core i7-8700 with 3.20GHz

and 6 cores and a 256GB SATA hard drive. Model training and hyper parameter tuning is

performed on the data between 10 November, 2019 to 20 November, 2019, where we use the
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Figure 6.4: Exemplary gas price predictions obtained with our forecasting model for the period
between the 23 November, 2019 and 25 November, 2019.

Model Parameter Description

Geth Scaling (S) Ratio by which to scale the price
(0.8 means use 80% of the recommended price)

proposed approach Urgency (U) Urgency tuning parameter to trade-off price for time
Look-ahead Blocks (B) Number of blocks to look ahead

Table 6.3: Parameters used in the different strategies

first 70% of the data for training and the remaining 30% for validation. We show exemplary

predictions of our model in Figure 6.4.

6.3.2 Evaluation

We use a sample of around five days of data — from 20 November, 2019 (block 8,965,759)

to November 24, 2019 (block 8,995,344) — and evaluate the different price recommendation

strategies using the procedure presented in Algorithm 1. We first describe the parameters

of each strategy in Table 6.3. For Geth we use a scaling ratio parameter S with which the
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Strategy Parameter Gas price Blocks waited

Geth S = 1.0 4,414,902,746 1.97
Geth S = 0.9 4,080,968,868 15.49
Geth S = 0.8 3,531,922,197 25.52

Look-ahead B = 15 1,166,965,099 4.80
Look-ahead B = 30 969,559,938 8.52
Look-ahead B = 60 782,105,012 18.84

Proposed approach U = 1.0 2,120,108,703 3.28
Proposed approach U = 0.9 1,908,097,833 3.79
Proposed approach U = 0.8 1,696,086,963 5.13
Proposed approach U = 0.7 1,484,076,092 10.06

Table 6.4: Results of the different recommendation strategies presented. Gas price and wait time
are averaged over the number of blocks processed. Parameters are described in Table 6.3.

recommended gas price is multiplied. The main purpose of this parameter is to ensure that

giving a lower gas price does have a direct impact on the number of blocks waited. Our proposed

recommendation strategy accepts a single parameter U representing the urgency. The urgency

parameter is used to trade off gas price for waiting time: the lower the urgency, the lower

the gas price and hence, the longer the waiting time. Empirically, reasonable values for these

parameters are roughly between 0.7 and 1.3, where 0.7 will result in cheap but long to be

accepted transactions and 1.3 will result in more expensive but faster transactions. Finally,

our look-ahead model, which we use to estimate the lowest possible price takes a parameter

B representing the maximum look-ahead as a number of blocks. We note that the look-ahead

strategy is for validation purposes only as it uses information about future blocks, which would

obviously not be available in practice.

We present a summary of the results for the different recommendation strategies in Table 6.4.

We use several values for the parameters of each strategy and order its results so that the gas

price decreases and the number of blocks to wait increases. We can see that using the price

recommended by Geth, the waiting time is very short — on average less than 2 blocks — with

an average gas price of around 4.4 Gwei. However, by just using 90% of the recommended

price, the waiting time increases to an average of 15.5 blocks. Comparing these results to

the minimum possible gas price, obtained from the look-ahead model, we can see that by only

waiting for an average of 4.8 blocks a saving of 75% could be obtained. Although these numbers
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Figure 6.5: Effect of the urgency parameter on the average gas price paid and number of blocks
waited.

are hypothetical, they suggest the potential for significant improvement.

We now show how our model performs in comparison to the price recommended by Geth and the

hypothetical minimum price. With the urgency parameter set to 1.0, our model recommends a

gas price on average twice as low as the Geth price, while waiting for an average of approximately

3.3 blocks. When decreasing the urgency parameter, we can see that the number of blocks

elapsed increases fairly slowly at first but doubles between 0.8 and 0.7, showing that at this

point the gas price becomes too low for the transaction to be included in a timely manner. In

Figure 6.5, we show the effect of our urgency parameter on the average gas price paid and the

average number of blocks elapsed until the transaction is included.

6.4 Related Work

For Ethereum in particular, there has been extensive research on smart contract correctness,

upper-bound gas consumption and imperfections in the current EVM gas cost model. Nonethe-

less, very little work has been done with the goal of determining optimal gas prices. In this

section, we first present existing work on the gas mechanism, before examining the most widely
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used gas price recommendation methods.

6.4.1 Gas Mechanism

The overconsumption of gas can be harmful for the contract user for two main reasons: higher

monetary costs and potential vulnerabilities. Gas overconsumption is examined by Chen et

al. [CLLZ17], who focus on gas usage optimisation by introducing Gasper, a tool leveraging

symbolic execution for detecting costly patterns in the bytecode of smart contracts which are not

optimised by the Solidity compiler. Potential issues in the form of gas-related vulnerabilities

are carefully examined by Grech et al. [GKJ+18], who propose a static analysis tool, called

MadMax, predominantly suitable for detecting out-of-gas exceptions which may cause contract

funds being locked. Elvira et al. [AGRS18] present Gastap, a static analysis tool for inferring

gas upper bounds for smart contracts and are thereby able to detect whether any out-of-gas

vulnerabilities could exist. A further approach for computing gas consumption upper bounds

was introduced by Marescotti et al. [MBH+18], however, the authors are yet to implement

and test their algorithms in an EVM setting. For a more general summary of existing smart

contract verification tools we point the reader to [HK18].

There have been several pieces of work focusing on imperfections in the current gas cost mech-

anism. Both Yang et al. [YMRP19] and Perez and Livshits [PL19] identify inconsistencies in

the pricing of EVM instructions in the current gas cost model. The latter propose a new type

of attack aimed at exploiting EVM design flaws by generating resource exhaustive contracts,

which are on average significantly slower in terms of throughput than typical contracts. As a

means of preventing Denial-of-Service attacks stemming from under-priced EVM instructions

a modification of the current gas cost mechanism has been proposed by [CLW+17].

While several pieces of existing work examine the current gas cost mechanism, limited work

exists on gas price recommendation. Pierro et al. [PR19] investigate potential factors that

influence transaction fees in Ethereum from a technical and economic perspective, yet leave a

gas price prediction model for future research.
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6.4.2 Gas Price Oracles

In the following, we examine existing approaches for gas price recommendation that are used

in practice.

Geth. The Ethereum client implementation in go, namely Geth [Git20b], accounts for over

79% of all Ethereum clients [eth20c]. To recommend a gas price, Geth uses the minimum gas

price of the previous blocks. It looks back at the 100 blocks preceding the current one and then

uses the value of the 60th percentile of the minimum gas prices as the price recommendation.

EthGasStation. A further gas price oracle has been introduced by EthGasStation [eth20a], a

third-party tool, which estimates the expected number of blocks required to confirm a transac-

tion at a given gas price using a Poisson regression model based on data of the previous 10,000

blocks. This approach has also been implemented by the popular Ethereum block explorer

Etherchain [eth20b]. Unfortunately, no historical data was available for comparison.

GasStation – Express. EthGasStation also released a more simple gas price oracle called

“GasStation – Express” [Git20a]. This approach predicts the likelihood of a transaction being

included in the next block at a given gas price by examining the percentage of the last 200

blocks that included a transaction with the same or lower gas price [Sta17]. The percentage

thresholds of recent block inclusions are fixed for the categories Fast (90%), Standard (60%)

and SafeLow (35%). Additionally a Fastest option is given, whereby the suggested gas price was

included by all of the previous 200 mined blocks, which likely results in the sender overpaying

considerably. Just like the threshold percentages, the associated expected confirmation times

are also hard-coded, which limits the speed at which the system can react to changes.

6.4.3 Follow-up Work

In this section we discuss work that was released after our research presented in this chapter

had been published. We believe that it is worth discussing some of these papers briefly, as we

deem these relevant for the area of gas price prediction and stable transaction throughput.
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Pierro and colleagues [PRTD20, PRD+22] conducted an investigation into the reliability of the

ETH Gas Station and Ether Chain oracle. The ETH Gas Station asserts a 2% margin of error,

yet their study reveals that the actual margin ranges from 4% to 28%, depending on the desired

speed of the users.

Carl and Ewerhart [CE20] conducted a study on the seasonality of gas prices in Ethereum.

They put forward a seasonal auto-regressive integrated moving average (SARIMA) model to

forecast the hourly median of the gas price threshold.

In [LS21], the authors propose the QoS-driven Customizable Forecasting Framework (QCFF)

as a link between decentralised applications and transaction fee (TF) prediction models. QCFF

offers cost reduction for timely transaction confirmation in decentralised applications and pro-

vides a convenient framework for prediction model providers to integrate customised models.

Future work involves designing personalised prediction models using machine learning or deep

learning techniques tailored to specific decentralised applications’ transaction data.

The authors of [MACK21] introduce a novel approach to predict Ethereum gas prices using ma-

chine learning models, specifically the Prophet algorithm, LSTM, and GRU. The performance

of these models is evaluated and compared to the widely used gas price oracle, Geth. The re-

sults indicate that LSTM and GRU outperform both the Prophet model and Geth, exhibiting

a lower mean squared error (MSE) of 0.008 compared to Geth’s MSE of 0.016 and Prophet’s

MSE of 0.014. Overall, this study provides insights into the effectiveness of different prediction

algorithms for Ethereum gas prices.

The goal of [LBF22] to minimise user expenses while ensuring a high probability of transaction

processing. The authors introduce a novel method based on a Monte Carlo approach taking

gaslimit and the pending list stateinto account to predict the probability of a transaction being

mined within a specified time limit.
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6.5 Conclusion

Motivated by an empirical analysis of 3 months of data, we have proposed a novel approach

for recommending the Ethereum gas price that outperforms the method of the most widely

used Ethereum client (at the time of research). Our approach uses a deep-learning based price

forecasting model as well as an algorithm parameterised by an urgency value that can be set

by the user. In a comprehensive evaluation, we show that our approach is able to reduce the

average gas price paid by the sender of a transaction by more than 50% while only introducing

an average additional waiting time of 1.3 blocks compared to Geth.

Our evaluation of the proposed approach aimed to focus on common-sized transactions. For

more computationally intensive transactions, the gas price would likely need to be increased to

ensure timely inclusion in a block. However, this could be easily accomplished by adjusting the

urgency parameter.
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Conclusion

7.1 Summary of Thesis Achievements

This thesis explores the impact of misaligned incentive mechanisms on the stability of Proof-of-

Work (PoW) blockchains, specifically focusing on block and transaction throughput. Unstable

block throughput can lead to delays in transaction confirmations, resulting in higher fees,

longer wait times, and decreased user satisfaction. It can also make the network vulnerable to

attacks and compromise consensus. Therefore, stable block throughput is critical for the overall

functionality and security of PoW blockchains. Internal and external incentive mechanisms in

blockchain networks play a crucial role in shaping participant behaviour and affecting network

security and efficiency. By understanding and aligning these incentives, more robust and stable

networks can be created.

The extent to which these misalignments may result in attack vectors is evaluated, along with

an assessment of past exploits. Furthermore, the thesis proposes more robust mechanisms that

align incentives to ensure overall throughput stability and network security.

To support research on mining pools and reward payout schemes, an open-source simulation

framework called PoolSim is presented. It enables the simulation of miner behaviour under

various mining pool reward distribution schemes. The thesis extends existing research on queue-

113
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based mining pool reward distribution manipulation strategies and evaluates their profitability.

It also introduces the concept of “uncle traps”, an attack specific to Ethereum queue-based

mining pools, and provides empirical evidence of its impact on block throughput. We present

strategies for increasing profits by employing uncle traps and subsequently propose a fix to the

uncle block reward distribution mechanism that protects against the identified strategies.

The thesis further explores the design of internal stability mechanisms in PoW blockchains by

focusing on the impact of difficulty adjustment algorithms on block throughput. Empirical

evidence demonstrates that certain difficulty algorithms can lead to unstable block solve times,

and miners’ behaviour can contribute to this phenomenon through coin-hopping strategies. We

present NEFDA, a difficulty algorithm based on a negative exponential filter to address this

issue and ensure stable block solve times. The work on NEFDA was also cited by the official

proposal to implement ASERT as the new BCH difficulty algorithm, which was activated on

November 15, 2020.

Lastly, the thesis addresses transaction throughput improvement by presenting a novel gas price

prediction model for Ethereum. The model combines a deep-learning-based price forecasting

approach with a user-specific urgency value to recommend gas prices that balance timely inclu-

sion and transaction cost. Empirical analysis, predictive modeling, and evaluation on real-world

data demonstrate significant cost savings while incurring minimal delays compared to existing

gas price recommendation mechanisms. The proposed model outperforms the most widely used

gas price recommendation approach at the time of writing, resulting on average in costs savings

of more than 50% while only incurring an inclusion delay of 1.3 blocks compared to Geth.

7.2 Future Work

7.2.1 Queue-based Mining Pool Reward Schemes

A further investigation into the overall fairness of queue-based mining pools including a game-

theoretic evaluation of mining pool equilibria under different attack scenarios could be a fruitful
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avenue for further research. However, this research would be less applicable in practice for

Ethereum ever since Ethereum shifted to Proof-of-Stake and therefore queue-based mining

pools are no longer being used. Nevertheless, a queue-based model could still be applied to

mining pools that mine on PoW chains. Depending on the underlying PoW chain, a formal

exploration of schemes to mitigate the deliberate increase in a mining pool’s uncle/orphan rate

could further help devise fair reward distribution policies. Lastly, formal verification of mining

pool reward schemes would help to increase transparency and guarantee fairness with respect

to reward allocation.

7.2.2 Extending PoolSim

We believe that PoolSim can facilitate research on areas of mining pool reward schemes, such as

fairness, vulnerabilities and attacks. As there has been the least amount of academic research

on the queue-based reward scheme, we shift our focus to this scheme when pointing towards

areas of future research in the context of PoolSim. From the few simulations examined in this

thesis, we were able to make some interesting observations. We showed that despite working

in a two miner scenario, queue-based attack strategies are not necessarily nearly as effective in

a multi-miner pool. This is presumably caused by the pool size and the hash rate distribution

of the pool, as these variables directly affect the credit differences between miners in the pool.

Even though pool-hopping on a luck basis between two queue-based pools did not provide

any novel insights, we were able to successfully demonstrate the powerful conditional pool-

hopping functionality of PoolSim. A feature, which, to the best of our knowledge, has not

been implemented and utilised elsewhere. Hence, with regards to employing PoolSim for future

research, one could with very little effort construct a conditional pool-hopping scenario between

multiple queue-based mining pools and add a more complex condition for submitting shares.

An example of such a condition would be to find the optimal pool out of a set of queue-based

mining pools in terms of highest average proportion of credits lost per round. Furthermore, this

conditional logic could be extended to also employ a strategy such as the tactical donation of

shares in order to actually exploit large credit differences when they occur. Such an exploratory
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approach could provide further insights into hash rate distributions of queue-based mining pools

and their implications for the effectiveness of different attacks targeting the reset mechanism.

A additional area of future interest could lie in the game-theoretic aspects and analysis of multi-

attacker scenarios in different pool constellations. Even though we only used the framework

to look into single-attacker scenarios in two and multi-miner settings, PoolSim can be used to

simulate multi-attacker scenarios. This could provide stimulating insights into examining the

effects of mining scenarios in large pools, where multiple (or perhaps only) attackers exist, all

pursuing the same or different attack strategies.

7.2.3 Extensions to gas price prediction model

Future work can examine the usefulness of additional data, such as memory pool data, as model

inputs. Additionally, the evaluation and comparison of our approach and previous approaches

in a larger simulation may be a fruitful avenue for further research.

It should be noted that after this research was published, Ethereum switched the fee market

design of the original Ethereum chain in a proposal called EIP-1559 [BCD+19], which is briefly

explained in the next sentences. The update has a fixed charge for gas usage, which can

fluctuate in each block based on a formula that considers the gas used in the previous block

and the target gas limit of that block divided by an elasticity multiplier. The formula causes

the fixed charge per unit of gas to increase when blocks exceed the gas target and decrease

when blocks fall below the gas target. This fixed charge per gas is eliminated from circulation.

When making transactions, users specify the highest fee per gas they are willing to offer to min-

ers as an incentive for including their transaction (referred to as the priority fee). Transactions

also indicate the maximum fee per gas they are willing to pay overall (known as the maximum

fee), which covers both the priority fee and the base fee per gas for the block. The transaction

will always pay the base fee per gas of the block in which it is included and will pay the priority

fee per gas specified in the transaction, as long as the combined amount of these two fees does

not exceed the transaction’s maximum fee per gas. Therefore, the presented research on gas
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price prediction only applies to the Ethereum gas model pre-EIP-1559. Nonetheless, it would

be interesting to examine the existing empirical gas price data under EIP-1559 and see whether

any forms of cyclicality exist and how user behaviour has changed pre- and post-EIP-1559 with

respect to setting gas prices.
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Address Miner

qpk4hk3wuxe2uqtqc97n8atzrrr6r5mleczf9sur4h BTC.TOP
qqfc3lxxylme0w87c5j2wdmsqln6e844xcmsdssvzy Antpool
qrcuqadqrzp2uztjl9wn5sthepkg22majyxw4gmv6p ViaBTC
qrd9khmeg4nqag3h5gzu8vjt537pm7le85lcauzezc BTC.com
qrjc9yecwkldlhzys3euqz68f78s2wjxw5h6j9rqpq Huobi Pool
qp4ajqctqvx5m5fhpswdkgm9whwsapgst5twl9zd5h unknown
qqq9v3hhl0vga8w5cts6dx5aa8xep2v2ssvppp5xcn unknown
qzkuv6ftvt28v6hauv44r58tjupsgn3nqsnslfxzqf unknown

Table A.1: The Bitcoin Cash addresses for selected miners.
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