

This is a postprint version of the following published document:

García-Martínez, Alberto; Angieri, Stefano; Liu,
Bingyang; Yang, Fei; Bagnulo, Marcelo. (2021). Design
and Implementation of InBlock, A Distributed IP
Address Registration System. IEEE Systems Journal,
15(3), pp.: 3528 - 3539.

DOI: https://doi.org/10.1109/JSYST.2020.3003526

©2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.
See https://www.ieee.org/publications/rights/index.html for more
information.

https://doi.org/10.1109/JSYST.2020.3003526
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.ieee.org/publications/rights/index.html

1

Design and Implementation of InBlock, A
Distributed IP Address Registration System

Alberto Garcı́a-Martı́nez , Stefano Angieri , Bingyang Liu, Fei Yang, Marcelo Bagnulo

Abstract—The current mechanism to secure BGP relies on the Resource Public Key Infrastructure (RPKI) for route origin
authorization. The RPKI implements a hierarchical model that intrinsically makes lower layers in the hierarchy susceptible to errors and
abuses from entities placed in higher layers. In this paper we present InBlock, a Distributed Autonomous Organization that provides
de-centralized management of IP addresses based on blockchain, embedding an alternative trust model to the hierarchical one
currently implemented by the RPKI. By leveraging on blockchain technology, InBlock requires consensus among the involved parties to
change existent prefix allocation information. InBlock also fulfills the same objectives as the current IP address allocation system, i.e.,
uniqueness, fairness, conservation, aggregation, registration and minimized overhead. InBlock is implemented as a set of blockchain
smart contracts in Ethereum, performing all the functions needed for the management of a global pool of addresses without human
intervention. Any entity may request an allocation of addresses to the InBlock registry by solely performing a (crypto)currency transfer
to the InBlock. We describe our InBlock implementation and we perform several experiments to show that it enables fast address
registering and incurs in very low management costs.

Index Terms—IP address allocation, Blockchain, Distributed Autonomous Organization, Smart Contract, Ethereum.

F

1 INTRODUCTION

The Border Gateway Protocol (BGP) is the protocol of
choice for exchanging routing information between different
administrative domains in the Internet. As such, BGP has
become part of the critical infrastructure required for the
Internet and by extension of the modern society as whole.
For the same reason, BGP has also become a preferred target
of attacks directed to derange the normal operation of the
Internet. By subverting BGP, attackers can hijack and/or
eavesdrop communications as well as execute denial of
service attacks. To prevent these attacks the Internet commu-
nity has developed the Resource Public Key Infrastructure
(RPKI [1]) and BGPsec [2]. These tools provide several cryp-
tographic guarantees such as ensuring that the Autonomous
System (AS) announcing a route towards an IP prefix is
indeed the legitimate holder of the resource according to
the allocation rules, preventing prefix hijacking and other
vulnerabilities.

The RPKI is a public key infrastructure with a trust
hierarchy tree that is aligned with the IP allocation hier-
archy. Through the RPKI, the elements in the IP address
delegation chain, i.e., IANA, Regional Internet Registries
(RIRs), Local Internet Registries (LIRs) and end-sites, can
obtain certificates that bind prefixes and public keys. The
holder of an RPKI certificate can then sign a Route Origin

Manuscript received XXXX; revised XXXX; accepted XXXX; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor K. Argyraki.
Date of publication XXXX; date of current version XXXX. The work of
A. Garcı́a-Martı́nez was supported by 5GROWTH project, H2020, Grant
agreement ID: 856709. The work of S. Angieri and M. Bagnulo was partially
funded by the InBlock project of the Huawei Innovation Research Program.
A. Garcı́a-Martı́nez, S. Angieri and M. Bagnulo are with the Universidad
Carlos III de Madrid, 28911 Madrid, Spain (e-mail: alberto@it.uc3m.es;
sangieri@pa.uc3m.es; marcelo@it.uc3m.es).
B. Liu and C. Wang are with the Huawei, 100095 Beijing, China (e-mail:
liubingyang@ huawei.com; wangchuang@huawei.com).
Digital Object Identifier KK.KKKK/XXX.XXXXXX

Authorization (ROA) statement to indicate that a given
AS number is entitled to originate a BGP route for that
prefix, using the private key associated to a given prefix,
and include it in the RPKI. Third parties can validate BGP
routes by contrasting the received announcement with the
corresponding ROA. In order to prevent routing attacks,
routes for which the ROA validation fails are expected to
be discarded.

The RPKI standard dates back to 2012 [1]. After eight
years during which numerous successful attacks against
BGP have been widely reported in the media (e.g., [3],
[4]), the deployment of the RPKI is still far from universal.
According to the global RPKI deployment monitor1, more
than 80% of prefixes announced in the global routing table
cannot be validated using the RPKI. While there are multiple
reasons that explain this lag on the RPKI deployment [5],
different voices [6], [7] have raised concerns regarding the
centralisation effects that the RPKI has on the global routing
system. Indeed, under the RPKI model, the entities in the
top of the hierarchy may now, through the capabilities
provided by the RPKI mechanisms, change at will and
in real time the validity of the allocations made by the
inferior levels in the hierarchy. As it has been previously
shown [8] this opens the door to a number of errors and
abuses from higher entities in the hierarchy, with potentially
catastrophic consequences for the rest. This centralisation of
the enforcement power over the global routing system is a
distinctive feature of the RPKI deployment.

Centralisation (a.k.a. consolidation) in the Internet has
received a lot of attention lately. There are more and more
parties that warn about the impact of centralisation in the
Internet architecture, including the Internet Architecture
Board (IAB) [9] and the Internet Society [10]. In particular,

1. https://rpki-monitor.antd.nist.gov/

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSYST.2020.3003526

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://orcid.org/0000-0002-6877-3486
https://orcid.org/0000-0001-8005-0638
https://orcid.org/0000-0003-0815-4613

2

the IAB has identified four main areas of concerns regarding
the centralisation of the Internet infrastructure [11], namely,
reliability (given that the central entity becomes a single
point of failure), surveillance, concentration of information and
extended scope of the effects of the actions of a few entities.
The RPKI brings all these concerns to the routing system.
Indeed, the top of the hierarchy now becomes a single point
of failure, and if compromised can jeopardise the integrity of
the internet routing as whole. In the same vein, the top of the
RPKI can be abused to modify BGP routes to divert global
traffic towards specific eavesdropping points, having both
surveillance and concentration of information implications. The
scope of the effects of the actions of the top tiers of the RPKI
becomes now global. Observe that we are not claiming that
the entities at the top of the RPKI hierarchy are likely to
abuse the power granted to them. We are merely challenging
whether from an architectural viewpoint, the centralised
approach of the RPKI is the most appropriate one for a
global distributed infrastructure such as the Internet.

In this paper, we present InBlock, an alternative system
to perform route origin authorization based on a decentral-
ized trust model, aiming to limit the centralization of en-
forcement power in the higher levels of the allocation hierar-
chy. InBlock relies on the use of a blockchain to store address
allocations and route origin authorizations. By storing prefix
allocation information in the blockchain, InBlock embraces
a different trust model in which blockchain consensus is
required to revert or subvert an existing allocation. InBlock
is defined as a set of smart contracts, i.e., code that runs
autonomously in the blockchain, that manages IP addresses
without any human intervention. While InBlock can support
both IPv4 and IPv6, we focus on IPv6 as it has a large
remaining pool of unassigned addresses.

1.1 Main Contributions.

The first contribution of this paper is the design of the
InBlock, a system to securely manage a global pool of
IPv6 addresses in a fully de-centralized manner. By rely-
ing on blockchain technology, the proposed InBlock design
provides a distributed, automatic, irrevocable, tamper-free,
publicly accessible, privacy-preserving resource allocation
mechanism for the Internet. At the same time, the proposed
design of the InBlock complies with the goals stated for
the current Internet address assignment mechanism, i.e.,
uniqueness, fairness, conservation, aggregation, registration
and minimized overhead [12]. We illustrate the proposed
design by describing the overall operation of the proposed
InBlock solution, including the different roles involved and
the functions performed by each of them.

The second contribution of this paper is a Proof-Of-
Concept implementation of InBlock. InBlock is implemented
as a set of smart contracts in Ethereum [13]. We describe
the different transactions and calls that are implemented to
manage the IP address pool. The InBlock implementation is
open source and publicly available.

The third contribution of this paper is the experimental
validation of the proposed InBlock design and implemen-
tation. We deployed our InBlock implementation both in
a private testebe and the public blockchain and assessed
its functionality and performance. We systematically test

all the transactions and calls implemented. We observe that
InBlock is able to perform the IPv6 registry functions in
an efficient manner, significantly reducing the operational
costs compared to a traditional registry and also reducing
in orders of magnitude the time required to perform an
allocation. The scripts used to test the implementation are
also publicly available to enable the reproducibility of the
reported results.

2 BACKGROUND ON IP ADDRESS MANAGEMENT
AND BGP SECURITY

2.1 IP address management
The global pool of IP addresses is managed by ICANN, the
Internet Corporation for Assigned Names and Numbers.
ICANN has delegated the address management duties to
the five Regional Internet Registries, RIRs, namely AFRINIC
(Africa), APNIC (Asia Pacific region), ARIN (mainly US
and Canada), LACNIC (Latin America and the Caribbean),
RIPE (Europe, Middle East and Central Asia). RIRs are open
membership-based bodies composed primarily of organiza-
tions that operate networks. The address resources received
from ICANN are assigned according to policies developed
regionally by each RIR, although coordinated with the rest.
Then, the resources are allocated to their requesters accord-
ing to the policies defined by each RIR (e.g. [12].

RIRs can allocate Provider Aggregatable (PA) blocks
to Local Internet Registries (LIRs) and they also provide
direct Provider Independent (PI) assignments directly to
end-users. All RIRs define a minimum PA IPv6 allocation
of /32 (e.g. see [12]).

2.2 BGP security
BGP is used to exchange prefix reachability information be-
tween the different networks in the Internet. The networks
participating in the BGP protocol are identified by AS num-
bers, 32-bit unique identifiers. The lack of security features of
the original BGP specification has enabled attackers to ma-
nipulate the routing information, or propagate legitimately
held information in unintended ways. The effects of an
attack to BGP include [14]:

• the traffic affected can experience a reduction of the
quality of the traffic transmission, even resulting in
the complete discard of the traffic (blackholing)

• the traffic affected can be manipulated or eaves-
dropped (man-in-the-middle)

• the services of the victim can be impersonated (im-
posture)

An example of one of such an attack occurred in De-
cember 2017 [3]. Prefixes usually originated by Google,
Apple, Facebook, Microsoft, Twitch, NTT Communications
and Riot Games were diverted for three minutes through
networks that were not supposed to receive this traffic.
Many other attacks against BGP occurred before and after
this particular incident. In order to ameliorate the effect of
such incidents, the BGP ecosystem has been enhanced with
origin and path validation capabilities.

Origin validation is provided by the RPKI [1] archi-
tecture. This architecture defines a distributed repository

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSYST.2020.3003526

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

of X.509 certificates used to assert that an entity is the
legitimate holder of a set of IP addresses or a set of AS
numbers. At the leafs of the RPKI certificate chain we find
Route Origin Authorizations (ROAs), by which the holder
of the prefix authorizes a network with an AS number to
originate advertisements for it. A ROA is only valid if the
whole certificate chain from which it is derived is valid.

The RPKI chain of trust follows the structure defined
by the hierarchy of authorities involved in the allocation
process for the IP address space and AS numbers. Thus, in
order for an End User network to be able to issue a ROA
for its prefixes, it needs a certificate issued by the LIR from
which it received the addresses; in turn this LIR should have
received a certificate from its corresponding RIR.

The chain of trust defined for the RPKI also implies that
the RIRs are the natural Trust Anchors to configure in order
to bootstrap the process of certificate validation.2

A router performing origin validation checks if the in-
formation included in a BGP route regarding to the AS that
originated the announcement of a prefix matches with the
content of a valid ROA. The certificate path, and eventually
the ROAs, are discarded if the validation fails.

2.3 Adverse actions against the RPKI
We now describe the set of adverse actions that can be
carried out against the different components of the RPKI.
In the context of the RPKI, an adverse action is defined as
a modification of the information published by the RPKI
regarding a set of prefixes that is against the wishes of the
holder of the resources. There are different forms of adverse
actions [15]:

Deletion is the removal of an object from the publication
point, against the wishes of the resource holder.

Suppression is failing to delete or publish an object
according to the resource holder wishes.

Corruption is the modification of an object without
including a valid signature. The object will not pass the
signature validation checks.

Modification is the publication of a new valid object that
is different to (and replaces) the current version approved by
the resource holder.

Revocation of a certificate, so that the object will not
pass the signature validation checks. This is achieved by
including the certificate in the the appropriate Certificate
Revocation List, without permission of the resource holder.

Injection is the creation of a new valid object into a pub-
lication point, without permission of the resource holder.

These actions can be taken against the CA certificates,
the ROAs, the manifest and the revocation list. The three
first actions can be performed by the publication point of
the objects of the resource holders. The latter three actions
require compromising the private key of the resource holder.
Also, all of them can be executed by a parent CA. For a
more detailed description of the possible actions, the reader
is referred to [15].

2. Although Trust Anchor selection remains local to the validating
network, who may add/remove Trust Anchors at will (for example,
to support internal routing policies), in practical terms the anchors of
the five RIRs must be configured, or the security information for large
regions of the Internet will remain unknown, defeating the purpose of
the mechanism.

3 BLOCKCHAINS AND SMART CONTRACTS

A blockchain[16] is an immutable distributed ledger that
records validated transactions permanently without the
need of a trusted third party. The blockchain is a distributed
ledger since all the information is stored in all the nodes
composing the blockchain peer-to-peer network.

The blockchain is composed of a growing list of blocks,
securely linked between each other through cryptography.
Every block contains a hash pointer to a parent block, a
timestamp and transactions’ data. The addition of new valid
blocks is determined through a distributed consensus mech-
anism. The consensus is an emerging artefact representing
the agreement reached by the nodes of the blockchain net-
work regarding the blocks to be added. The most popular
consensus mechanism is Proof-of-Work (PoW).

In PoW, nodes try to solve a complex mathematical
problem in order to gain the right to append a block to the
existent chain (and make some profit). New block signers
are chosen through a mining race. Every time a block is
added, a new mining race starts and every miner tries to
find the solution to gain the next mining block contest and
receive the related fee.

The hash structure of the blockchain makes computa-
tionally unfeasible to alter the data of one block without
the manipulation of all subsequent blocks. Tampering the
ledger then requires both the collusion of the majority of the
network and an enormous amount of computational power
to rebuild the chain from the replaced block. This is the sense
in which we interpret the immutability of the blockchain.

The blockchain paradigm can be extended to the au-
tomation of complex resource manipulation and transfer-
ence procedures in a transparent and trustable manner, by
means of the specification of smart contracts. A Smart Con-
tract is a program stored in the blockchain that is executed
by the nodes of the blockchain network. Smart Contracts
can store state in the blockchain, and retrieve it securely
(e.g., ensuring that the value retrieved corresponds to the
last modification stored in the blockchain).

Blockchain and smart contracts technology is being
adopted in a vast number of scenarios, including finances,
Internet of Things, health care, energy, education and
more [17]. There are multiple public blockchains currently
available some of them with a large number of users.

Ethereum [13] is a popular public blockchain platform
created to facilitate the development of Smart Contracts.
Ethereum implements a Proof of Work (PoW) based con-
sensus mechanism. Miners are rewarded in Ether, the
Ethereum cryptocurrency, for the storage and processing
power they contribute with [18]. Processing operations are
defined through a built-in Turing-complete programming
language, Solidity, that is executed in blockchain nodes
by an Ethereum Virtual Machine. Every operation in the
Ethereum network is triggered by transactions between ac-
counts, either Externally Owned Accounts (EOAs), controlled
by users, or Contract Accounts, associated to a Smart Contract
with code and state stored with the account itself. Being a
public blockchain, any party can create one or more EOAs
and deploy (and run) smart contracts in Ethereum.

Smart Contracts are deployed in Ethereum through
a blockchain transaction. Once deployed, the blockchain

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSYST.2020.3003526

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

nodes will execute the code corresponding to the Smart
Contract and modify its state whenever a monetary trans-
action directed to the Contract Account is received. Every
Ethereum transaction includes a transaction-fee payable to
the miners. Miners execute the smart contract, verify the
validity of the transactions, i.e., that the transactions com-
plies with the rules expressed in the smart contract, and, if
valid, compute the resulting state. This state is eventually
appended to the blockchain. Every miner executes the code
of the contract, reaching the same final state.

The value (in Ether) of the transaction fee is set by the
user issuing the transaction and should reflect the execution
and storage cost of an operation, as well as the priority that
the user wants to get from the blockchain miners. Higher
transaction fees imply that the transaction will be processed
earlier by the miners. The fee of a transaction is represented
in Ethereum through the concept of gas. A fixed amount
of gas is assigned to each operation and each transaction
sets its own gas price. The amount of Ether that the issuer
of the transaction transfers to the miner is the amount of
gas required by the transaction multiplied by the gas price
offered. Also, every transaction defines the gas limit field to
set the maximum amount of gas that the transaction may
consume. If during the runtime of the code associated to a
transaction the gas used exceeds the gas-limit defined for
the transaction, the processing is stopped with an out-of-gas
error. Finally, Ethereum defines a global upper bound to the
gas limit value for any single transaction.

Ethereum Smart Contracts can also include calls, code
that does not generate blockchain annotations and does
not incur in a transaction cost. A call operates over the
blockchain data to retrieve information, perform valida-
tions, etc. Calls can be used as a mean to the smart con-
tract designer to provide a canonical way of retrieving,
elaborating or validating blockchain information. The exe-
cution of this code provides a higher compliance with the
intentions of the smart contract designer, as opposed to
an equivalent specification in pseudo-code, or a third-party
implementation. Ethereum also imposes gas restrictions on
the execution of calls. The reader is referred to [18] for
further information regarding blockchains in general and
Ethereum technology in particular.

4 INBLOCK ROLES AND OPERATION

InBlock is implemented as a set of Smart Contracts in
Ethereum. InBlock runs autonomously, i.e., without humans
involved in its daily operation. In this section we present an
overview of how the InBlock works and then we describe
the different roles involved in its operation.

4.1 Overview of InBlock’s operation
InBlock is configured with a block of globally routable
IPv6 addresses to allocate. This is done at the moment
of the deployment of the InBlock smart contract and can-
not be modified afterwards. Once deployed, InBlocks runs
autonomously, processing address allocation requests re-
ceived and managing the available address pool. Additional
InBlock instances can be deployed with different address
blocks to allocate, so that each instance independently man-
ages a mutually disjoint block of addresses.

When an entity (called an InBlock LIR) wants to obtain
an address allocation from the InBlock, it uses its Ethereum
account to perform a request. The request is in the form of a
blockchain transaction that transfers an allocation fee (paid
in Ether) to InBlock. InBlock verifies that the transaction is
valid and that the fee has been correctly transferred.

All the prefixes allocated by an InBlock instance have
the same size. However, InBlock supports aggregatable allo-
cations, i.e., a requesting party may ask for multiple prefix
allocations that can be aggregated in a larger prefix.

The allocation fee is significantly larger than the actual
costs of the InBlock operation. As we present later on, the
operational cost (i.e., the miner’s fees to perform the transac-
tions required to annotate the allocation in the blockchain) is
in the order of a few US$, while the allocation fee is expected
to be similar to the cost of an allocation in the RIR system,
around several hundreds of US$. The reason for this is that
the fee serves as a mechanism to deter address stockpiling
and other wasteful practices. The reader is referred to [19]
for a thorough discussion on prefix allocation sizes and fees.

Upon reception of the transaction, the InBlock code goes
through its associated state (stored in the blockchain) and
finds an address prefix that is not currently allocated. Once
an available prefix is found, InBlock associates the prefix
with the identity of the requester, its Ethereum identity. This
allocation information is recorded in the blockchain.

Allocations have a predefined lifetime. The holder of
the resources can renew the allocation by making a new
transaction in which it transfers the yearly fee to the InBlock
before the expiration date. If this happens, InBlock extends
the lifetime of the allocation for another one-year period.
Each IPv6 allocation record stored in the blockchain contains
the information about the allocated prefix, the holder’s
Ethereum Identity, the expiration date and a pointer to ad-
ditional information, such as the holder’s contact or routing
policy information.

Once an InBlock LIR has obtained an address allocation
from the InBlock, it can suballocate part of this prefix to
other entities (called InBlock End Users). In this way, the
InBlock mimics the RIR allocation chain, from InBlock to
InBlock LIRs and to InBlock End Users. All entities that
have obtained an InBlock prefix can also include ROA
information for it, enabling route origin validation by third
parties based on the information stored in the InBlock.

4.2 InBlock roles

We next describe the different roles defined for InBlock and
their associated operations.

InBlock Manager. The InBlock manager inserts the In-
Block code into the Ethereum blockchain by means of a
transaction. Then, it issues another transaction to activate
the InBlock instance, in which it defines the address pool
available for the InBlock to allocate, the size of the alloca-
tions and the allocation fee in dollars. The InBlock manager
also manages the Ethereum account that is used to receive
the allocation fees, so that it can transfer the funds received
through the InBlock account to any destination account.

InBlock does not provide functions to allow the manager
to create or modify prefix allocations once the contract has
been activated. The InBlock manager cannot revoke existent

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSYST.2020.3003526

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

allocations nor it can prevent any party to issue a transaction
to obtain a new allocation or to renew an existent one.
The InBlock manager cannot modify the allocation fees
neither. The motivation for this is to prevent the manager
from arbitrarily raising the prefix allocation fees in order to
impede particular entities to obtain an address allocation.
The allocation fee is automatically updated by the InBlock
contract according to the world’s gross domestic product, to
account for global inflation. All these restrictions serve the
purpose of limiting the power of the InBlock manager over
the system, drastically reducing the centralisation of power
in the allocation system.

InBlock LIR. An InBlock LIR is an entity that obtains
a prefix allocation directly from the InBlock. To do so, the
InBlock LIR issues a transaction that transfers the allocation
fee to the InBlock. While the prefix allocation fee is defined
in a fiat currency (e.g., US$), the Ethereum transactions
transfer Ether. Historically, the exchange rate between these
two has varied greatly in time. So, the InBlock LIR first
determines the amount of Ether that corresponds to the
prefix allocation fee. This is done through the use of oracles.3

The InBlock LIR issues a first transaction by which the
InBlock code writes in the blockchain the currency exchange
rate information retrieved from the oracles. Then a second
transaction is issued by the LIR through which the InBlock
code computes the allocation fee (expressed in the fiat
currency) and stores it in the blockchain. This fee value is
valid only for 24 hours for the requester account. Once the
value in Ether of the allocation fee has been determined, the
LIR issues the transaction that transfers the said amount of
Ether to the InBlock, requesting the allocation of a prefix.

Upon the reception of the transaction, the InBlock code
selects a free IPv6 prefix from the InBlock address pool, and
associates the prefix to the account of the LIR. If the LIR
already has a prefix allocated, it can request that the addi-
tional address space allocated is contiguous to previously
owned allocations, if such address space is available. The
prefix allocation is valid for a year and the LIR has to pay a
yearly fee to renew it. If the prefix is not renewed, it returns
to the InBlock free address pool for future allocations.

The LIR is entitled to manage its prefix allocations, so
that it can include ROAs, contact and routing information
associated to its prefixes (or subprefixes) in the blockchain.
The InBlock provides functions to enable the LIR to assign
sub-prefixes to other accounts (InBlock End Users). These
users can autonomously update the contact and routing
information for these delegated prefixes. The InBlock LIR
also has the capability to revoke a prefix assignment to an
InBlock End User.

InBlock End User. We refer to the entities which have
received a prefix assignment from InBlock LIRs as Inblock
End Users. We expect that a common case will be that
InBlock LIRs are Internet Service Providers (ISPs) and that
the InBlock End Users will be the ISP’s customers. In this
case, the address assignment from the InBlock LIR to the
InBlock End User will be part of the provisioning of the
Internet access service from the ISP to the customer. InBlock
does provide the means to annotate information about

3. Oracles are third party services that write in the blockchain data
from the external world.

the InBlock End Users in the blockchain though. InBlock
End Users are authorized to update the InBlock registries
associated with their assigned prefixes with contact and
routing information. In particular, InBlock End Users can
include Route Origin Authorizations (ROAs) that indicate
the numbers of the ASes authorized to originate a BGP route
advertisement for the prefix.

InBlock Third Parties. InBlock Third Parties access to
the InBlock information stored in the blockchain to validate
routes. A Third Party accesses the Ethereum blockchain
and configures the InBlock identifier contract as a Trust
Anchor for the validation of the information related with the
prefixes managed by InBlock, meaning that the Third Party
trusts in InBlock for the management of these prefixes.

InBlock Third Party validation is performed through
Ethereum calls. The calls encode and enforce the validation
rules defined in the InBlock. For example, the InBlock de-
fines a call to verify if a given AS number is allowed to
originate a route for a given prefix (i.e., if there is a valid
ROA for a ’prefix, AS number’ couple). This call executes the
following verifications. First, it verifies the allocation chain
to ensure that the prefix belongs to the InBlock address pool
and that it has been allocated to a LIR and that the LIR
has assigned it to an End User. Once the allocation chain is
verified, it obtains the ROA information from the blockchain
and verifies that it contains the requested AS number.

Although these checks could be left for implementation
to interested parties, we believe that the provision in the
InBlock itself of the code that performs all the intended
checks provides an additional level of security and com-
pliance. The validation of the AS information according to
the assignment, lifespan and delegation rules encoded in
the InBlock extends the ’code-is-law’ motto from the state
creation to its validation. Besides, users of these calls do not
need to be aware of the inner InBlock machinery to make
use of its information.

4.3 InBlock security analysis

In this section, we analyse different attacks that can be
performed against InBlock. InBlock does not propose a new
security method. Instead, InBlock relies on existent security
methods, i.e., the Ethereum blockchain, with well-known
security properties, to provide functions currently supplied
by the RPKI. So, in order to analyze InBlock from a secu-
rity perspective, we follow the attack analysis framework
presented in Section 2.3 for the RPKI and compare it to the
security properties of Ethereum established in the literature.
As described earlier, there are six types of adverse actions
that can be executed against a secure IP address attestation,
namely, Deletion, Suppression, Corruption, Modification, Revo-
cation and Injection.

In Table 1 we compare the means required to execute
the different types of adverse actions against the RPKI and
the InBlock. The fundamental difference is that in the case
of the RPKI all these actions can be performed by a parent
CA, while this is not possible in the InBlock, as InBlock does
not rely on a hierarchical structure. Avoiding the potential
errors, abuses and misuses incurred by a parent CA is the
main design goal of InBlock. In addition, regarding the
first three types of actions, the difference is that blockchain

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSYST.2020.3003526

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

information publication is not limited to a reduced set
of publication points, but all blockchain nodes propagate
the blockchain information. We next present in detail the
different attacks against the InBlock.

Deletion: In the context of InBlock, we define the Dele-
tion adverse action as the removal of information contained
in a confirmed block.4 Removal of information that was
included in an unconfirmed block is considered a Suppres-
sion adverse action and discussed in the next paragraph.
In InBlock, because of the very nature of the underlying
blockchain technology, the Deletion attack is essentially
unfeasible without affecting the whole blockchain. Once the
data is stored in a confirmed block in the blockchain, it is
immutable.5 In order for the data to be actually removed,
all Ethereum full nodes (from which the blockchain can
be retrieved) must be compromised. At the time of this
writing, there are 7,530 active full nodes in the Ethereum
blockchain.6 An InBlock third party can connect to any of
these to obtain a copy of the InBlock data. In the case of
the RPKI, there are 14 repositories to retrieve the RPKI
data from.7 While each RPKI item is associated to a single
authoritative publication point, other repositories can store
copies [1].

Suppression: This action can be achieved if the attacker
controls at least 51% of the mining power of Ethereum [13].
If this the case, the attacker can prevent new transactions to
be included in the blockchain by using its hashing power to
mine new blocks on top of blocks that do not contain the
victim’s transactions and discard those that do. Currently,
the hash rate of the Ethereum network is 176TH/s.8 The
cost of acquiring the computational power to perform a
51% attack against the Ethereum network is estimated as
US$ 136,982 per hour9, and the effort should be kept for the
time during which the information is to be suppressed.

Corruption: Because every Ethereum full node validates
all the transactions included in all the blocks before propa-
gating the new block, performing this action would require

4. In Ethereum, a block is considered confirmed after 12 additional
blocks have been added to the blockchain

5. The modification the data stored in the blockchain requires a fork of
the blockchain. Forking is a public event that forces all Ethereum nodes
to actively position themselves regarding the adoption of the fork and
third parties would act accordingly.

6. https://www.ethernodes.org/sync
7. To obtain the number of different RPKI repositories, we config-

ured an FRR router, https://frrouting.org, to gather the existing RPKI
information and we parsed the logs resulting from this operation. The
RPKI validator connects to the repositories associated to the five trust
anchors (AFRINIC, APNIC, ARIN, LACNIC, RIPE), and retrieves the
information stored and pointers to other repositories. The total number
of repositories observed by January 2020 is 14.

8. https://www.crypto51.app/
9. https://www.crypto51.app/

Adverse action RPKI InBlock LIR
Deletion Pub. Point, Parent CA Ethereum nodes
Suppression Pub. Point, Parent CA 51% attack
Corruption Pub. Point, Parent CA Ethereum nodes
Modification Priv. Key, Parent CA Priv. Key
Revocation Priv. Key, Parent CA Priv. Key
Injection Priv. Key, Parent CA Priv. Key

TABLE 1: Comparison of adverse actions against the RPKI
and the InBlock

to compromise all full nodes in the blockchain to publish
invalid information, so the analysis is similar to the one
for the Deletion attack presented earlier. Note that the
corrupted transaction is stored in the blockchain, and this
will become apparent to any third party auditing it.

Modification: To add a new transaction that modifies the
information of an attestation contained in the InBlock, the
attacker needs to compromise the private key of the affected
LIR. The effort to compromise the private key of the holder
of the resources is equal in the InBlock and the RPKI, the
difference being that in the case of the RPKI, it is also subject
to the vulnerabilities involving the parent CA.

Revocation: To revoke an existing attestation in the
InBlock, the attacker must compromise the LIR’s private key.
The vulnerabilities of the parent CA also affect the RPKI in
this case.

Injection: Similarly to the two previous attacks, this is
feasible only by compromising the LIR’s private key. The
vulnerabilities of the parent CA also affect the RPKI in this
case.

5 INBLOCK SMART CONTRACT IMPLEMENTATION

We have implemented InBlock as a set of smart contracts
(a main smart contract and several utilities implemented in
different contracts for convenience) written in Solidity, and
deployed it in Ethereum. We next describe different relevant
aspects of our implementation.

5.1 Activating InBlock
To activate an InBlock Smart Contract previously inserted
in the Ethereum blockchain, the InBlock Manager issues
an activateInBlock transaction. This transaction defines
the InBlock pool of prefixes, in the form of a (large) prefix,
the length of the prefixes to allocate, and the prefix allocation
fee. The fee is set in a fiat currency and its value is updated
yearly by the InBlock according to the variation of the world
gross domestic product, GDP, measured over the last 10-
year period, i.e., 3.3% for 2008/2018.

5.2 Allocating prefixes
Any entity can request a prefix from InBlock, thus becoming
an InBlock LIR. The prefix allocation process is performed
in two steps: a first phase which comprises two transactions
and one call to determine the value in Ether of the prefix
allocation fee, and a second phase to actually allocate the
prefix to the LIR, accomplished in one transaction.

InBlock relies on several third parties, oracles, for ob-
taining the conversion rate between the fiat currency and
Ether. An oracle is a service provided by a third party
that annotates in the blockchain a particular external world
value. Once ensured that the information was inserted by
the trusted oracle, this value can be used by a smart contract.
Provable [20] is a solution to provide a secure connection
between Ethereum smart contracts and the external world.
In order to avoid dependency with a single oracle, InBlock
uses several (three) different oracles providing currency con-
version. The risk of individual oracles being compromised is
reduced by removing outlier values: if the three oracles are
available, the median value is returned; with two oracles,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSYST.2020.3003526

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

the mean is used. If the all the oracles go offline, InBlock
uses a default value set in deployment time.

The getOracleCurrencyConversion transaction is
issued by the LIR and triggers the InBlock’s query to the
oracles to obtain the exchange rate. Once the exchange rate
is retrieved, the LIR issues the computeAllocationCost
transaction to determine the allocation fee in Ether. The
calculated fee is valid for 24 hours.

With the fee value, the LIR can select one of two different
types of transactions to obtain a prefix allocation, namely
getAllocation and getSequentialAllocation. The
getAllocation transaction allocates a new prefix without
considering previous allocations made by the InBlock to the
requesting LIR. This is used normally when the requesting
LIR has not previously received any prefix from the InBlock.
The getSequentialAllocation function is used to re-
quest the allocation of a new prefix that is aggregatable10 to
an InBlock prefix previously allocated to the requesting LIR.

The getAllocation transaction implements the sparse
allocation algorithm [21] to perform initial prefix allocations
as separated to each other as possible. This algorithm max-
imizes the chances of obtaining aggregatable prefix alloca-
tions for all requesting LIRs. The sparse allocation algorithm
starts by dividing the InBlock pool in halves, and allocates
the first prefix at the beginning of the first half. The next
request receives the prefix at the beginning of the second
half. Then, the two halves are further divided equally, and
the algorithm is applied recursively to the resulting blocks.
InBlock checks that the prefixes selected by the algorithm
have not been previously allocated before by a sequential
request. If this is the case, the next prefix according to the
sparse allocation algorithm is selected.

The request for sequential address allocation contiguous
to a previously allocated prefix is implemented through the
getSequentialAllocation transaction, that succeeds if
the requester already holds a prefix, and the aggregatable
prefix is available.

When a LIR issues a transaction requesting a prefix,
the InBlock smart contract allocates storage for the prefix
information record, which includes the Ethereum account
identifier of the LIR, the time at which the prefix has
been allocated (or renewed), the ROA(s), and the additional
routing and policy information.

Any allocated prefix needs to be renewed before the
expiration date. For this purpose, InBlock provides the
renewAllocation transaction.

5.3 Prefix Delegation
A LIR can assign more-specific prefixes of the alloca-
tion it holds to InBlock End Users, by means of the
delegatePrefix transaction. This transaction is only
valid if the prefix to assign (or any part of it) has not been
already assigned. A LIR can revoke a prefix assignment
through the revokeDelegatedPrefix transaction. A LIR
delegating the prefixes can revoke any assignment, as op-
posed to the InBlock which cannot revoke the allocations
made to the LIRs.

10. Two prefixes are aggregatable if they can be expressed as a single
(larger) prefix. This can only be done if the two prefixes are subsequent
one another. Aggregation is considered beneficial for the global routing
system scalability.

5.4 Recovering prefixes from expired allocations

The InBlock Manager discovers expired allocations with
the getIDsPrefixExpired call. Then, through the
recoverExpiredAllocation transaction, it inserts in the
blockchain the list of prefixes discovered, so that they are
eligible for next allocations.

The InBlock Manager is expected to asynchronously run
this process for recovering expired allocations and return
the resulting address space to the available address pool.

Note that the expiration of allocations also serves to fix a
well-known issue with storing tokens in blockchains: if the
holder of the resource loses the private key that secures the
allocation, the resource is lost. It is estimated that 20% of
existing Bitcoins are lost because of this [22]. In the case of
InBlock, prefixes for which the holder’s private key is lost
are not renewed and can be returned to the InBlock pool.

5.5 ROAs and additional information

The current holder of a prefix, an InBlock LIR or an InBlock
End User, can register in the InBlock the AS allowed to
originate a BGP advertisement for the prefix by means of a
setROA transaction. The setROA function can also be used
to update or delete an existing ROA.

In addition, the holder of a prefix can perform a
setPolicyURI transaction to include a link to an external
URI where contact information or routing policy for a prefix
is registered. This information is expected to be defined
using RPSL [23], the standard routing policy language used
in the Internet Routing Registries. The motivation for using
an URI instead of including the whole policy information
itself directly in the blockchain is to reduce the cost of the
transaction to update the routing policy, which depends on
the amount of information stored. The information stored by
the setPolicyURI transaction in the blockchain includes
a hash of the routing policy description, proving that the
policy information accessible through the URI is authentic
(generated by the holder of the prefix in InBlock), integral
(unmodified), and up-to-date.

5.6 Third-party information retrieval

Third parties such as a router can access the blockchain
to use the information stored in the InBlock to perform
BGP route origin validation. To do so, the validating router
configures the InBlock contract identifier as a Trust Anchor
for the validation of the prefixes managed by the InBlock.

BGP
router

rpki-rtr
cache
server

RPKI validator

InBlock
validatorEthereum

blockchain

ROAs

ROAs

RPKI
servers

1

N

rpki-rtr
protocol

Validated ROAs

Validated ROAs

Fig. 1: Combined validation.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSYST.2020.3003526

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

InBlock information retrieval can be implemented as
calls. The isPrefixInUse call is used to determine if
a prefix has been allocated or assigned to an End User.
The get getROA call returns the ROA for a prefix and
the getPolicyURI call gets the URI in which the routing
policy corresponding to a prefix is stored.

The ROA information retrieved from the InBlock can be
used to configure filter in a validating router. This can be
implemented by proper modification of the RPKI-to-router
(rpki-rtr) architecture [24]. In the rpki-rtr architecture
routers access through a standard protocol to a trusted
cache server to acquire prefix origin data. The integration
of InBlock into this architecture requires the modification of
the software at the rpki-rtr server to retrieve, validate
and integrate InBlock’s information into the prefix-to-origin
AS state conveyed to the routers.

InBlock and RPKI route origin validation can coexist. A
validating router can use the RPKI information to validate
the origin of the routes of a set of prefixes and use the
InBlock to validate another (disjoint) set of prefixes. This
can be achieved by feeding both streams of information to
the rpki-rtr server as shown in Figure 1.

To ensure that the validation information is fresh, we
need to be able to update the InBlock state frequently. In
order to efficiently support periodic updates of the InBlock
information for all the allocated prefixes, we leverage on the
blockchain monitoring capabilities, the ability of blockchain
nodes to be configured to track the events associated to a
particular contract and return those annotated after a given
block identifier. In the case of the RPKI, RFC8182 [25] indi-
cates that the information received by a repository must be
published within a minute, but limits the polling frequency
of the end users to a minute. As a result, information could
be available to the routers in the order of few minutes
(subject to the ability of the repositories to support requests
from all validating entities at this rate). As we will show in
Section 6, the blockchain monitoring capabilities can easily
achieve refresh rates in the order of few minutes.

5.7 Key rollover

To enable the update of the cryptographic information
granting access to InBlock resources, InBlock provides func-
tions to transfer some of the resources to different Ethereum
accounts in a way which resembles key rollover procedures
common in network resource management.

The InBlock Manager can perform a
transferInBlockControl transaction to transfer
the ownership of the main InBlock contract to another
Ethereum account. After executing this transaction, the
holder of the new account will receive the fees resulting
from allocations and renewals and it will be able to execute
all the InBlock manager operations.

A LIR holding a prefix can also transfer
its control to another account by means of the
transferAllocatedPrefixControl transaction.
InBlock also provides tools for the transfer of delegated
prefixes. In this case, it is the LIR who indicates to
which account the prefix is transferred to, through the
transferDelegatedPrefixControl function.

5.8 Emergency stop
The provision of code implementing an emergency stop
is a security mechanism that allows the InBlock manager
to block the execution of some selected functions. This
provides a countermeasure to limit the damages caused by
a bug or a security issue [26], [27].

In the case of InBlock, the emergency stop func-
tion prefixAllocationStop suspends temporarily the
getAllocation and getSequentialAllocation func-
tions, so that InBlock cannot perform further allocations.
The suspended functions can be reactivated by executing
prefixAllocationResume.

This stop function does not affect the operation with pre-
fixes already allocated. This means that previously allocated
prefixes can still be renewed, delegated, ROAs can be set,
etc., even if the aforementioned stop functions are executed,
so that the InBlock manager cannot disrupt the system.

5.9 Execution in light nodes
Ethereum smart contracts are executed by Ethereum nodes.
While full nodes download and verify every block in the
blockchain, it is also possible to operate with the blockchain
through a light client, with similar security as full nodes, but
much lower memory and computing requirements [28]. A
light client connects to full nodes to retrieve the most recent
block headers. The light client leverages in the Merkle tree
structure to identify the blocks containing the transactions
related with the InBlock smart contract. Then, it requests
these particular blocks and validates them. Note that the
Merkle tree information of the last block can be used to
determine the integrity of the whole blockchain or just a
stream of transactions associated to a single account. In this
way, the light client can securely obtain all the information
related with InBlock, without the need to retrieve and vali-
date the whole blockchain.

6 INBLOCK EXPERIMENTS

We next present the results of several experiments targeted
to evaluate the computation/storage and monetary costs
involved in InBlock operation as well as the delays of the
different operations involved.

The implementation of InBlock as well as the scripts
used in the experiments are available at https://github.
com/steang91/InBlock Code/tree/IPv6.

6.1 Local experiments
Goal of the experiments: experimentally measure the com-
putational cost of different functions implemented in in-
Block. The computational cost of executing a function in
Ethereum is expressed in gas. Because the coast in Ether
associated to a transaction depends both in the gas and
the gas prize set for that transaction, and Ether can be
converted into a fiat currency such as US$, we also express
the measured cost of the different functions in US$.

Experimental setup: The cost in gas of executing a
function solely depends on the operations included in the
function and it is constant for all the nodes in Ethereum.
For this reason, it is enough to measure the gas incurred
for the different functions on a local node and the result

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSYST.2020.3003526

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://github.com/steang91/InBlock_Code/tree/IPv6
https://github.com/steang91/InBlock_Code/tree/IPv6

9

/20 /8
Operation Min Gas Max Gas Mean Gas Mean US$ Min Gas Max Gas Mean Gas Mean US$
getAllocation 209223 286518 218126 1.09 253875 272723 262512 1.31
getSequentialAllocation 237869 246119 242925 1.21 288196 296446 292181 1.46
renewAllocation 37739 37803 37786 0.19 37803 37867 37867 0.19
recoverExpiredAllocation 53451 60951 53482 0.27 53483 61015 53522 0.27
getOracleCurrencyConversion 120421 141568 130994 0.65 120421 141568 130994 0.65
computeAllocationCost 34703 34703 34703 0.17 34703 34703 34703 0.17
delegatePrefix 436466 1383448 904203 4.52 486670 1433652 954407 4.77
setRoa 45208 45272 45255 0.23 45272 45336 45336 0.23
setPolicyURI 88939 89003 88986 0.44 89003 89067 89067 0.44

TABLE 2: Gas and US$ transaction cost for different InBlock transactions (gas price 19 GWei, 1 Ether = US$ 263.43)

will concur with the gas in any node in the real Ethereum
network. Thus, to estimate the cost in gas required by
InBlock functions, we use the blockchain emulator Ganache
CLI11 within its default configuration. Ganache CLI is part
of the Truffle suite of Ethereum development tools. It of-
fers a fast and customizable blockchain emulator. It uses
ethereumjs to simulate full client behaviour and allows
to make transactions and calls to the blockchain without the
overheads of running an actual Ethereum node. The use of
Ganache CLI offers the following advantages: i) transactions
are instantly mined, ii) no transaction costs, iii) accounts can
be re-cycled, reset and instantiated with a fixed amount of
Ether (no need for faucets or mining), iv) mining speed and
gas price and can be modified. The specific details of the
node hardware are irrelevant, since the experiment results
does not depend on it.

Experimental methodology: We deploy InBlock in the
local testnet and we execute the different functions de-
scribed in 5. The amount of gas required to complete a
transaction depends on the associated computation and
storage needs. For some functions, these needs vary with
the parameters involved on each particular execution, e.g.,
slight differences may arise from the number of bits of the
prefix that is allocated next by a getAllocation function.
For those functions, we execute the different InBlock func-
tions varying the parameters and we calculate the mean,
maximum and minimum gas used.

To provide a rough estimation of the cost in US$ for each
transaction, we consider the daily mean gas price offered
at the Ethereum network in the three-month period from
December 2018 to February 2019 [29]. The mean gas value
of this series is 19 GWei12. For the calculation of the cost in
US$ we use an exchange rate of 1 Ether = US$ 263.43.

Experiments and results: We perform two rounds of
experiments using two different InBlock root prefix lengths,
/20 and /8. In both cases, the length of the allocatable
prefix is a /32. The first case, /20, contains 4,096 allocatable
prefixes, which we deem a reasonable size for an InBlock
instance. The second case represents an upper bound for
the size of an InBlock root prefix, as it covers the total
amount of IPv6 addresses currently reserved for global
unicast addresses (a /8 prefix). We next describe the results
for each of the tested functions.

deploy: This function is executed by the InBlock man-
ager once, to deploy the InBlock in the blockchain. The cost

11. https://www.trufflesuite.com/ganache
12. The maximum value observed is 370 GWei, reported for Feb 19th

2019; the second highest daily cost is more than ten times lower

in gas to perform it is constant, and does not depend on
InBlock root prefix size. We verify this by executing the
function a reduced number of times, to obtain a constant
result. It is not possible to deploy the whole InBlock con-
tract in Ethereum through a single transaction because it
would exceed the maximum gas limit per transaction, set
to 6.7 MGAS. So, the code is divided into modules that are
deployed separately. The total gas required for deploying
InBlock is 12.18 MGAS, with an estimated cost of US$ 60.96.
This is the most expensive operation, as it implies the
storage of a large amount of bytes.

activateInBlock: This function is executed by the
InBlock manager to activate the InBlock once deployed. The
cost in gas of this function is constant, 154 KGAS (US$ 0.77).

getSequentialAllocation and getAllocation:
These functions are used by an InBlock LIR to request
new prefixes, either aggregatable to a previous allocation or
sparse. As different executions of these functions can require
different amounts gas, we define the following sequence
of transactions to evaluate their cost: execute 100 times the
getAllocation transaction (sparse allocation algorithm),
and then perform one getSequentialAllocation. This
sequence is repeated until 4,096 prefixes are allocated. Re-
sults are presented in Table 2.

renewAllocation, delegatePrefix, setRoa and
setPolicyURI: After running the previous test involving
the prefix allocations operations, for each round of tests, the
InBlock has 4,096 prefixes allocated. We execute the four
aforementioned operations, in this case once per prefix and
measure the required gas for them. Results are presented in
Table 2. The highest gas cost results from the delegation of
prefixes, due to the costs of managing the tree that stores
the prefix delegation information. This operation requires
variable computation effort depending on the position of
the prefix to allocate within the tree. The costs for managing
ROAs and policies, which are expected to be the most
frequent operations, are very low, well below US$ 1.

recoverExpiredAllocation. Using the state from
the previous test, we artificially force to expire 100 prefix al-
locations and then we run recoverExpiredAllocation.
We repeat the procedure 10 times. The results are shown in
Table 2.

6.2 Mainet measurements
Goals of the experiment: The primary goal of the exper-
iment is to measure the time required for executing the
different InBlock transactions in the Ethereum blockchain.
More precisely, we measure two delays: the time to write

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSYST.2020.3003526

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

Mining
block
N+1

Mining
block
N+12

Mining
block
N+13

set timestamp
block N

Issue InBlock
transaction X

set timestamp
block N+1

Time to
include

X in
block N

Time
left

to mine
block N

Time to mine
block N

Time to write
transaction X

Mining
block N

Time to confirm
transaction X

set timestamp
block N+13

Fig. 2: Blockchain transaction times.

a transaction in the blockchain and the time to confirm
a transaction. The time to write a transaction is the time
between the transaction is issued and the time that the
transaction appears in a block in the blockchain. The time
to confirm a transaction is the time to write a transaction
plus the time it takes to mine additional 12 new blocks
on top of the block containing the transaction [30]. The
confirmation time represents the recommended time to wait
to have reasonable guarantees that the transaction cannot be
reverted.

A secondary goal of the experiment is to validate
the results obtained in the local tests and to mea-
sure the cost of getOracleCurencyConversion and
computeAllocationCost that, because they involve ex-
ternal third parties, cannot be measured in a local testbed.

Experimental setup: We deploy the InBlock contracts
into the live Ethereum blockchain (Mainnet). To this end, we
use geth, an implementation of an Ethereum node in the Go
programming language. geth also serves as a console for
typing commands and executing specific functions. Using
geth, we locally setup an Ethereum light node and connect
it to the Mainnet. Then, we create and fund an EOA account,
to be able to deploy InBlock and interact with it to run
transactions. This setup also allows us to measure both the
time it takes to execute transactions in the real Ethereum
blockchain, and the cost (in gas, Ether and US$) of doing so.

Experimental methodology: To measure the transac-
tion write time, we issue a transaction and observe the
timestamps of the new block published in the blockchain
containing our transaction. However, simply computing the
difference between the timestamp of the block and the
time we requested the transaction poses some issues. As
illustrated in Figure 2, the timestamp included in a given
block reflects the time when the miner started mining the
block. Miners can include transactions in the block that were
received after they started mining it. Thus, it is possible
that our transaction appears in a block with a timestamp
showing a value prior to the time the transaction was
generated. In order to obtain an upper bound for the time
when the block was actually mined, we use the timestamp
of the subsequent block in the blockchain. This is an upper
bound, under the assumption that miners start mining the
next block as soon as the previous block was mined. So, our
time measure is obtained by subtracting the local time when
the transaction was issued from the timestamp of the block
after the one where the transaction was registered.

To measure the time to confirm a transaction, the usual
rule is to wait until 12 blocks are build upon the one to trust.
We then measure the time elapsed until 12 additional blocks

Operation Mean
time

Max
time

Mean
time

Max
time

to write to write to
confirm

to
confirm

getAllocation 30 170 173 316
getSequential 35 149 213 433
Allocation
renewAllocation 33 139 204 355
recoverExpired 37 182 187 306
Allocation
getOracle 31 147 202 360
CurrencyConversion
computeAllocation-
Cost

49 99 262 387

delegatePrefix 28 153 183 365
setRoA 29 97 189 292
setPolicyURI 25 84 186 293

TABLE 3: Time in seconds to write and to confirm different
InBlock transactions (gas price 19 GWei)

are mined and we present it along the results.

During these experiments, we also measured the gas
actually used by the different transactions.

Experiments and results: We deploy InBlock on the
Ethereum Mainnet blockchain, and activate it with a /20
InBlock root prefix, being able to allocate 4,096 prefixes. We
perform 50 transactions for each of the InBlock functions
tested and we measure their transaction write and confir-
mation times, as well as the gas used. Experiments were
performed in March 2019. The experiment spanned over 10
hours, and each transaction is mined in a different block. We
set the gas price to 19 GWei for all the experiments. In Ta-
ble 3 we show the measured time for different transactions.

As the gas price is the same for all operations, the varia-
tions depend on the particular conditions of the blockchain
when a transaction is issued. In general, we observe that the
time to write a transaction is always below 3 minutes and
the time to confirm an operation is below 440 seconds.

The overall time required to request a block can be es-
timated as the sum of getOracleCurrencyConversion,
computeAllocationCost and the allocation itself (either
getAllocation, getSequentialAllocation), so it is
in the order of 10 minutes, as each operation should not
be initiated until the previous one has been confirmed.
However, the most frequent operations are expected to be
policy changes, which result from the execution of indi-
vidual functions, setRoA and setPolicyURI, with mean
confirmation times around 3 minutes.

Additionally, using these experiments we measured
the gas used by the getOracleCurencyConversion
and the computeAllocationCost. These functions rely
on external third parties, which is why we were un-
able to measure them in the local tests. Results are pre-
sented in Table 2. The mean of the sum of the fees
the Oracles request for providing their services is 0.012
Ether (US$ 3.16 according to the change rates consid-
ered). The total cost for obtaining the price of the allo-
cation fee is the sum of the Oracle fees plus the cost
of the two transactions getOracleCurencyConversion
and computeAllocationCost.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSYST.2020.3003526

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

Mechanism
name

Blockchain
technology

Resource bootstrap Initial alloca-
tion for LIR

Managed resources Implementation

Internet
Blockchain [31]

New
blockchain,
Bitcoin-like

Genesis block includes existing
allocations, RIRs register new
allocations

Centralized
(through RIR)

IPv4 and IPv6 addresses,
AS numbers, DNS and
BGP routes

NA, only general
architecture is de-
fined

IPchain [32] New
blockchain,
Proof of Stake

RIRs allocate blocks to them-
selves in genesis block, then reg-
ister futher updates

Centralized
(through RIR)

IP addresses, ROA Open source

BGPcoin [33] Ethereum IANA, RIRs, NIRs use their ac-
counts to include their resources

Centralized
(through RIR)

IP addresses, AS num-
bers, ROA, adjacent ASes

Open source (smart
contracts)

Sfyrakis,
Kotronis [34]

New
blockchain,
Proof of Work

Genesis block includes existing
allocations, RIRs register new
allocations

Centralized
(through RIR)

IP address, AS numbers,
ROA, adjacent ASes

Open source

InBlock Ethereum Genesis block includes IPv6 ad-
dress block to use in InBlock

Decentralized Specific subset of IPv6 ad-
dresses, ROA

Open source (smart
contracts)

TABLE 4: Comparison among blockchain proposals for management of Internet resources

7 RELATED WORK

Several recent proposals (Internet Blockchain [31],
IPchain [32], BGPcoin [33], [34]) specifically address the
application of blockchain technology to the management of
Internet addresses and routing resources. Table 4 describes
the main characteristics of each of these proposals, along
with its comparison with the InBlock implementation.

Regarding to the underlying blockchain used, some
works (including InBlock) rely on an existing blockchain
(Ethereum), while others propose to create a new one for
this purpose. Internet Blockchain suggests the use of a
Bitcoin-like blockchain, but no details are provided about
the specifics of its design, implementation and deployment.
IPchain is based on a PoS consensus mechanism with the
addresses being the asset defining the stake balance. The
main concern with such approach is that PoS results in ma-
jor stakeholders having more chances to mine new blocks.
While this may work well for IPv4, for IPv6, it means that
the current authority of the global IPv6 address pool (IANA)
would certainly control the majority of the stakes and prob-
ably the blockchain, defeating the goal of preventing cen-
tralized control of the IP address allocation system. Sfirakis
and Kotronis [34] propose using a new PoW blockchain, but
they do not discuss the risks of managing valuable resources
as IP addresses in a small mining network.

In all cases, except for InBlock, the resources (IP ad-
dresses, AS numbers, etc.) are initially allocated to LIRs by
IANA/RIRs. We name this approach as centralized, as it de-
pends on the central authorities currently defined for Inter-
net resource management. For the blockchains specifically
created for this purpose, existing allocations (e.g., obtained
from current registries or the RPKI) can be written in the
genesis block. For all other proposals except for InBlock, ini-
tial allocations to LIRs have to be performed by IANA/RIRs.
For InBlock, IANA/RIRs delegate the IPv6 pool to InBlock,
but the assignment to LIRs is decentralized. Because all pro-
posals other than InBlock rely on IANA/RIRs to annotate
initial allocations to LIRs, the mechanisms can be used for
both IPv4 and IPv6. The decentralized mechanism defined
for InBlock requires abundance of resources to allocate, so
that it is currently defined for IPv6; it could also be easily
extended to AS numbers, but managing IPv4 addresses
would need a different approach.

All the proposals facilitate the transference of the man-
aged resources (or a subset of them) to other LIRs, without

the participation of the RIRs or other higher-level entities.
They also enable secure route origin validation by register-
ing the association of the managed prefixes and their cor-
responding AS numbers (ROA). In fact, all other proposals
but InBlock aim to replace the RPKI for this purpose. As
InBlock only manages a subset of the (IPv6) address space,
it does not aim to replace the RPKI, but to complement it
for cases where decentralisation is desired (besides, InBlock
could also coexist with any of this technologies to replace
the RPKI for RIR-assigned prefixes).

Additional information such as the list of ASes that are
adjacent to a given one can be included in the blockchain
to enable limited path validation, such as checking that the
AS pairs observed in a BGP route match with the topology
annotated in the blockchain ([33] for the last hop, [31], [34]
for the whole the path), although concerns are raised about
the ability to perform this in practice [31].

Many papers [35], [36] show the design, implementation
and measurement of the cost of systems based on Ethereum
smart contracts. The main parameter measured in all these
system papers is the gas spent in the transactions involved,
as it is a key metric to prove its effectively usability in terms
of economic cost. In Section 6 we use the same measurement
methodology to provide the amount of gas consumed by
each transaction and, after selecting a gas price, their actual
cost in dollars. In addition, we include the measurement
of mining and confirmation times of the InBlock operations
that require writing into the blockchain.

8 CONCLUSIONS

In this paper we have presented the design and imple-
mentation of InBlock, a decentralized autonomous organi-
zation that is capable of performing the IPv6 global registry
functions without human intervention. InBlock implements
an alternative trust model to the hierarchical one currently
provided by the RPKI. In particular, InBlock is not under
control of any single entity, so no single entity can prevent
another to obtain IP address allocations. InBlock provides
quite strong privacy guarantees and censorship resistance.

Blockchain technology represents an opportunity to im-
prove the management of sensible Internet resources such as
IP addresses. Either as an autonomous decentralized organi-
zation, as we discuss in this paper, or as a system supervised
by the current top-level resource holders, blockchain has the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSYST.2020.3003526

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

potential to operate at low cost, fast update times and high
ledger visibility without sacrificing security.

REFERENCES

[1] M. Lepinski and S. Kent. An Infrastructure to Support Secure
Internet Routing. IETF RFC 6480, Feb 2012.

[2] M. Lepinski and K. Sriram. BGPsec Protocol Specification. RFC
8205, September 2017.

[3] A. Toonk. Today’s BGP leak in Brazil. https://bgpmon.net/
todays-bgp-leak-in-brazil/, Oct 2017. Accessed: 2020-02-18.

[4] Cisco. All Events for BGP Stream. https://bgpstream.com/.
Accessed: 2020-02-18.

[5] Y. Gilad, A. Cohen, A. Herzberg, M. Schapira, and H. Shulman.
Are We There Yet? On RPKI’s Deployment and Security. In NDSS
2017. The Internet Society, 2017.

[6] L. Reyzin E. Heilman, D. Cooper and S. Goldberg. From the
Consent of the Routed: Improving the Transparency of the RPKI.
Proceedings of the 2014 ACM conference on SIGCOMM, Aug 2014.

[7] B. Kuerbis and M. Mueller. Negotiating a new governance hier-
archy: An analysis of the conflicting incentives to secure internet
routing. Communications and Strategies, 81, 03 2011.

[8] D. Cooper, E. Heilman, K. Brogle, L. Reyzin, and S. Goldberg. On
the risk of misbehaving RPKI authorities. In HotNets-XII, 2013.

[9] J. Arkko, B. Trammell, M. Nottingham, C. Huitema, M. Thomson,
J. Tantsura, and N. ten Oever. Considerations on Internet Consol-
idation and the Internet Architecture. Internet-Draft draft-arkko-
iab-internet-consolidation-02, IETF, July 2019.

[10] Internet Society. Consolidation in the Internet Economy. ISOC
Global Internet Report, ISOC, 2019.

[11] J. Arkko. Centralised Architectures in Internet Infrastruc-
ture. Internet-Draft draft-arkko-arch-infrastructure-centralisation-
00, IETF Secretariat, November 2019.

[12] RIPE. IPv6 Address Allocation and Assignment Policy. https://
www.ripe.net/publications/docs/ripe-699#minimum allocation,
May 2018.

[13] V. Buterin. Ethereum White Paper. https://github.com/
ethereum/wiki/wiki/White-Paper, May 2018.

[14] P. Sermpezis, V. Kotronis, P. Gigis, X. Dimitropoulos, D. Cicalese,
A. King, and A. Dainotti. ARTEMIS: Neutralizing BGP Hijacking
within a Minute. IEEE/ACM Transactions on Networking, Oct 2018.

[15] S. Kent and D. Ma. Adverse Actions by a Certification Authority
(CA) or Repository Manager in the Resource Public Key Infras-
tructure (RPKI). RFC 8211, September 2017.

[16] R. Bhadoria and V. Agasti. The paradigms of blockchain tech-
nology: Myths, facts & future. International Journal of Information
Systems and Social Change, 10:1–14, 04 2019.

[17] R. Bhadoria, A. Nimbalkar, and N. Saxena. On the Role of Blockchain
Technology in the Internet of Things, pages 129–140. Springer, 2020.

[18] R. Bhadoria, Y. Arora, and K. Gautam. Blockchain Hands on for
Developing Genesis Block, pages 269–278. Springer, 2020.

[19] S. Angieri, A. Garcı́a-Martı́nez, B. Liu, Z. Yan, C. Wang, and
M. Bagnulo. A Distributed Autonomous Organization for Internet
Address Management. IEEE Transactions on Engineering Manage-
ment, 2019.

[20] Provable Documentation. http://docs.provable.xyz/#home. Ac-
cessed: 2020-02-6.

[21] P. Wilson, R. Plzak and A. Pawli. IPv6 Address Space Manage-
ment. RIPE-343, Jun 2018.

[22] J. Roberts and N. Rapp. Exclusive: Nearly 4 Million Bitcoins Lost
Forever, New Study Says. Fortune. http://fortune.com/2017/11/
25/lost-bitcoins/, Jun 2018.

[23] D. Kessens, T. J. Bates, C. Alaettinoglu, D. Meyer, C. Villamizar,
M. Terpstra, D. Karrenberg, and E. P. Gerich. Routing Policy
Specification Language (RPSL). RFC 2622, June 1999.

[24] R. Bush and R. Austein. The Resource Public Key Infrastructure
(RPKI) to Router Protocol, Version 1. IETF RFC 8210, 2017.

[25] T. Bruijnzeels, O. Muravskiy, B. Weber, Cobenian and R. Austein.
The RPKI Repository Delta Protocol (RRDP). IETF RFC 8182, 2017.

[26] A. Bahga and V. Madisetti. Blockchain Applications: A Hands-On
Approach. VPT, 2017.

[27] M. Wohrer and U. Zdun. Smart contracts: security patterns in the
ethereum ecosystem and solidity. In 2018 International Workshop on
Blockchain Oriented Software Engineering, pages 2–8, March 2018.

[28] IPv6 Address Space Management. https://www.parity.io/
what-is-a-light-client/. Accessed: 2020-02-4.

[29] Etherscan. Ethereum GasPrice History. https://etherscan.io/
chart/gasprice, March 2019.

[30] V. Buterin. On slow and Fast Block Times. https://blog.ethereum.
org/2015/09/14/on-slow-and-fast-block-times/, Sep. 2015.

[31] A. Hari and T.V. Lakshman. The Internet Blockchain: A Dis-
tributed, Tamper-Resistant Transaction Framework for the Inter-
net. HotNets-XV, 2016.

[32] J. Paillisse, A. Rodriguez-Natal, V. Ermagan, F. Maino, L. Vegoda,
and A. Cabellos-Aparicio. An analysis of the applicability of
blockchain to secure IP addresses allocation, delegation and bind-
ings. Internet-Draft draft-paillisse-sidrops-blockchain-02, IETF,
June 2018. Work in Progress.

[33] Q. Xing, B. Wang, and X. Wang. BGPcoin: Blockchain-based
internet number resource authority and BGP security solution.
Symmetry, 10(9):408, 2018.

[34] I. Sfirakis and V. Kotronis. Validating IP prefixes and AS-paths
with blockchains. arXiv preprint arXiv:1906.03172, 2019.

[35] P. McCorry, S. F. Shahandashti, and F. Hao. A smart contract
for boardroom voting with maximum voter privacy. In Financial
Cryptography and Data Security, pages 357–375. Springer, 2017.

[36] M. Al-Bassam. SCPKI: A Smart Contract-based PKI and Identity
System. In Proceedings of the ACM Workshop on Blockchain, Cryp-
tocurrencies and Contracts, pages 35–40, 2017.

Alberto Garcı́a-Martı́nez received a Ph.D. in
telecommunications in 1999. In 1998 he joined
Universidad Carlos III of Madrid (UC3M), where
he has been an associate professor since 2001.
His main interest areas are interdomain rout-
ing, transport protocols, network security and
blockchain technology. He has published more
than 50 papers in technical journals, magazines,
and conferences, and has also co-authored
three RFCs.

Stefano Angieri received a computer science
bachelor degree in 2014 and a master degree
in 2018 at Università degli studi Federico II di
Napoli with a master thesis on blockchain tech-
nology. In 2018 he joined Universidad Carlos III
de Madrid (UC3M) as Ph.D student. His main
interest area is blockchain technology.

Liu Bingyang received his Ph.D. degree in com-
puter science from Tsinghua University, Beijing,
China in 2014. From 2014 to 2016, he was a
postdoctoral research associate in the institute
for network science and cyberspace in Tsinghua
University. He is now a principal research en-
gineer in Huawei network technologies lab. His
research interest lies on network architecture,
security, protocols and quality of services.

Fei Yang received his Ph.D. degree from Bei-
jing University of Posts and Telecommunication,
China, in 2001. He worked on mobile system
software development in Samsung from 2001 to
2015. He is currently a principal research engi-
neer in Huawei, working on network technology
research.

Marcelo Bagnulo holds a tenured associate
professor position at UC3M since 2008. His
research interests include Internet architecture
and protocols, interdomain routing and security.
He has published more than 60 papers in jour-
nals and congresses and is the author of 18
RFCs in the IETF. Dr. Bagnulo was a member
of the Internet Architecture Board between 2009
and 2011.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSYST.2020.3003526

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://bgpmon.net/todays-bgp-leak-in-brazil/
https://bgpmon.net/todays-bgp-leak-in-brazil/
https://bgpstream.com/
https://www.ripe.net/publications/docs/ripe-699#minimum_allocation
https://www.ripe.net/publications/docs/ripe-699#minimum_allocation
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://docs.provable.xyz/#home
http://fortune.com/2017/11/25/lost-bitcoins/
http://fortune.com/2017/11/25/lost-bitcoins/
https://www.parity.io/what-is-a-light-client/
https://www.parity.io/what-is-a-light-client/
https://etherscan.io/chart/gasprice
https://etherscan.io/chart/gasprice
https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/
https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/

