857 research outputs found

    PALM: Predicting Internet Network Distances Using Peer-to-Peer Measurements

    Get PDF
    Landmark-based architecture has been commonly adopted in the networking community as a mechanism to measure and characterize a host's location on the Internet. In most existing landmark based approaches, end hosts use the distance measurements to a common, fixed set of landmarks to derive an estimated location on the Internet. This paper investigates whether it is possible for participating peer nodes in an overlay network to collaboratively construct an accurate geometric model of its topology in a completely decentralized peer-to-peer fashion, without using a fixed set of landmarks. We call such a peer-to-peer approach in topology discovery and modeling using landmarks PALM (Peers As LandMarks). We evaluate the performance characteristics of such a decentralized coordinates-based approach under several factors, including dimensionality of the geometric space, peer distance distribution, and the number of peer-to-peer distance measurements used. We evaluate two PALM-based schemes: RAND-PALM and ISLAND. In RAND-PALM, a peer node randomly selects from existing peer nodes as its landmarks. In ISLAND (Intelligent Selection of Landmarks), each peer node selects its landmarks by exploiting the topological information derived based on existing peer nodes' coordinates values.Singapore-MIT Alliance (SMA

    On the feasibility of using current data centre infrastructure for latency-sensitive applications

    Get PDF
    It has been claimed that the deployment of fog and edge computing infrastructure is a necessity to make high-performance cloud-based applications a possibility. However, there are a large number of middle-ground latency-sensitive applications such as online gaming, interactive photo editing and multimedia conferencing that require servers deployed closer to users than in globally centralised clouds but do not necessarily need the extreme low-latency provided by a new infrastructure of micro data centres located at the network edge, e.g., in base stations and ISP Points of Presence. In this paper we analyse a snapshot of today's data centres and the distribution of users around the globe and conclude that existing infrastructure provides a sufficiently distributed platform for middle-ground applications requiring a response time of 20-20020\hbox{-}20020-200 ms. However, while placement and selection of edge servers for extreme low-latency applications is a relatively straightforward matter of choosing the closest, providing a high quality of experience for middle-ground latency applications that use the more widespread distribution of today's data centres, as we advocate in this paper, raises new management challenges to develop algorithms for optimising the placement of and the per-request selection between replicated service instances

    Decentralized Prediction of End-to-End Network Performance Classes

    Full text link
    In large-scale networks, full-mesh active probing of end-to-end performance metrics is infeasible. Measuring a small set of pairs and predicting the others is more scalable. Under this framework, we formulate the prediction problem as matrix completion, whereby unknown entries of an incomplete matrix of pairwise measurements are to be predicted. This problem can be solved by matrix factorization because performance matrices have a low rank, thanks to the correlations among measurements. Moreover, its resolution can be fully decentralized without actually building matrices nor relying on special landmarks or central servers. In this paper we demonstrate that this approach is also applicable when the performance values are not measured exactly, but are only known to belong to one among some predefined performance classes, such as "good" and "bad". Such classification-based formulation not only fulfills the requirements of many Internet applications but also reduces the measurement cost and enables a unified treatment of various performance metrics. We propose a decentralized approach based on Stochastic Gradient Descent to solve this class-based matrix completion problem. Experiments on various datasets, relative to two kinds of metrics, show the accuracy of the approach, its robustness against erroneous measurements and its usability on peer selection.Peer reviewe

    The Use of European Internet Communication Properties for IP Geolocation

    Get PDF
    IP Geolocation is a term used for finding the geographical location of an IP node. In this paper, we study the Internet communication properties and their use for client-independent Geolocation - finding the location without assistance of the node being located. We present and discuss the communication properties dependence on geographical aspects such as the geographical distance, differences between the source and destination country, and country population density and country ICT development index. For the study, we used a large set of data captured between the nodes geographically distributed across Europe. Based on the results, we propose an algorithm for a final location estimation within the delimited geographical area. The proposed algorithm improves the location accuracy when compared with the current techniques

    Overlay networks monitoring

    Get PDF
    The phenomenal growth of the Internet and its entry into many aspects of daily life has led to a great dependency on its services. Multimedia and content distribution applications (e.g., video streaming, online gaming, VoIP) require Quality of Service (QoS) guarantees in terms of bandwidth, delay, loss, and jitter to maintain a certain level of performance. Moreover, E-commerce applications and retail websites are faced with increasing demand for better throughput and response time performance. The most practical way to realize such applications is through the use of overlay networks, which are logical networks that implement service and resource management functionalities at the application layer. Overlays offer better deployability, scalability, security, and resiliency properties than network layer based implementation of services. Network monitoring and routing are among the most important issues in the design and operation of overlay networks. Accurate monitoring of QoS parameters is a challenging problem due to: (i) unbounded link stress in the underlying IP network, and (ii) the conflict in measurements caused by spatial and temporal overlap among measurement tasks. In this context, the focus of this dissertation is on the design and evaluation of efficient QoS monitoring and fault location algorithms using overlay networks. First, the issue of monitoring accuracy provided by multiple concurrent active measurements is studied on a large-scale overlay test-bed (PlanetLab), the factors affecting the accuracy are identified, and the measurement conflict problem is introduced. Then, the problem of conducting conflict-free measurements is formulated as a scheduling problem of real-time tasks, its complexity is proven to be NP-hard, and efficient heuristic algorithms for the problem are proposed. Second, an algorithm for minimizing monitoring overhead while controlling the IP link stress is proposed. Finally, the use of overlay monitoring to locate IP links\u27 faults is investigated. Specifically, the problem of designing an overlay network for verifying the location of IP links\u27 faults, under cost and link stress constraints, is formulated as an integer generalized flow problem, and its complexity is proven to be NP-hard. An optimal polynomial time algorithm for the relaxed problem (relaxed link stress constraints) is proposed. A combination of simulation and experimental studies using real-life measurement tools and Internet topologies of major ISP networks is conducted to evaluate the proposed algorithms. The studies show that the proposed algorithms significantly improve the accuracy and link stress of overlay monitoring, while incurring low overheads. The evaluation of fault location algorithms show that fast and highly accurate verification of faults can be achieved using overlay monitoring. In conclusion, the holistic view taken and the solutions developed for network monitoring provide a comprehensive framework for the design, operation, and evolution of overlay networks

    Interference charecterisation, location and bandwidth estimation in emerging WiFi networks

    Get PDF
    Wireless LAN technology based on the IEEE 802.11 standard, commonly referred to as WiFi, has been hugely successful not only for the last hop access to the Internet in home, office and hotspot scenarios but also for realising wireless backhaul in mesh networks and for point -to -point long- distance wireless communication. This success can be mainly attributed to two reasons: low cost of 802.11 hardware from reaching economies of scale, and operation in the unlicensed bands of wireless spectrum.The popularity of WiFi, in particular for indoor wireless access at homes and offices, has led to significant amount of research effort looking at the performance issues arising from various factors, including interference, CSMA/CA based MAC protocol used by 802.11 devices, the impact of link and physical layer overheads on application performance, and spatio-temporal channel variations. These factors affect the performance of applications and services that run over WiFi networks. In this thesis, we experimentally investigate the effects of some of the above mentioned factors in the context of emerging WiFi network scenarios such as multi- interface indoor mesh networks, 802.11n -based WiFi networks and WiFi networks with virtual access points (VAPs). More specifically, this thesis comprises of four experimental characterisation studies: (i) measure prevalence and severity of co- channel interference in urban WiFi deployments; (ii) characterise interference in multi- interface indoor mesh networks; (iii) study the effect of spatio-temporal channel variations, VAPs and multi -band operation on WiFi fingerprinting based location estimation; and (iv) study the effects of newly introduced features in 802.11n like frame aggregation (FA) on available bandwidth estimation.With growing density of WiFi deployments especially in urban areas, co- channel interference becomes a major factor that adversely affects network performance. To characterise the nature of this phenomena at a city scale, we propose using a new measurement methodology called mobile crowdsensing. The idea is to leverage commodity smartphones and the natural mobility of people to characterise urban WiFi co- channel interference. Specifically, we report measurement results obtained for Edinburgh, a representative European city, on detecting the presence of deployed WiFi APs via the mobile crowdsensing approach. These show that few channels in 2.4GHz are heavily used and there is hardly any activity in the 5GHz band even though relatively it has a greater number of available channels. Spatial analysis of spectrum usage reveals that co- channel interference among nearby APs operating in the same channel can be a serious problem with around 10 APs contending with each other in many locations. We find that the characteristics of WiFi deployments at city -scale are similar to those of WiFi deployments in public spaces of different indoor environments. We validate our approach in comparison with wardriving, and also show that our findings generally match with previous studies based on other measurement approaches. As an application of the mobile crowdsensing based urban WiFi monitoring, we outline a cloud based WiFi router configuration service for better interference management with global awareness in urban areas.For mesh networks, the use of multiple radio interfaces is widely seen as a practical way to achieve high end -to -end network performance and better utilisation of available spectrum. However this gives rise to another type of interference (referred to as coexistence interference) due to co- location of multiple radio interfaces. We show that such interference can be so severe that it prevents concurrent successful operation of collocated interfaces even when they use channels from widely different frequency bands. We propose the use of antenna polarisation to mitigate such interference and experimentally study its benefits in both multi -band and single -band configurations. In particular, we show that using differently polarised antennas on a multi -radio platform can be a helpful counteracting mechanism for alleviating receiver blocking and adjacent channel interference phenomena that underlie multi -radio coexistence interference. We also validate observations about adjacent channel interference from previous studies via direct and microscopic observation of MAC behaviour.Location is an indispensable information for navigation and sensing applications. The rapidly growing adoption of smartphones has resulted in a plethora of mobile applications that rely on position information (e.g., shopping apps that use user position information to recommend products to users and help them to find what they want in the store). WiFi fingerprinting is a popular and well studied approach for indoor location estimation that leverages the existing WiFi infrastructure and works based on the difference in strengths of the received AP signals at different locations. However, understanding the impact of WiFi network deployment aspects such as multi -band APs and VAPs has not received much attention in the literature. We first examine the impact of various aspects underlying a WiFi fingerprinting system. Specifically, we investigate different definitions for fingerprinting and location estimation algorithms across different indoor environments ranging from a multi- storey office building to shopping centres of different sizes. Our results show that the fingerprint definition is as important as the choice of location estimation algorithm and there is no single combination of these two that works across all environments or even all floors of a given environment. We then consider the effect of WiFi frequency bands (e.g., 2.4GHz and 5GHz) and the presence of virtual access points (VAPs) on location accuracy with WiFi fingerprinting. Our results demonstrate that lower co- channel interference in the 5GHz band yields more accurate location estimation. We show that the inclusion of VAPs has a significant impact on the location accuracy of WiFi fingerprinting systems; we analyse the potential reasons to explain the findings.End -to -end available bandwidth estimation (ABE) has a wide range of uses, from adaptive application content delivery, transport-level transmission rate adaptation and admission control to traffic engineering and peer node selection in peer -to- peer /overlay networks [ 1, 2]. Given its importance, it has been received much research attention in both wired data networks and legacy WiFi networks (based on 802.11 a/b /g standards), resulting in different ABE techniques and tools proposed to optimise different criteria and suit different scenarios. However, effects of new MAC/PHY layer enhancements in new and next generation WiFi networks (based on 802.11n and 802.11ac standards) have not been studied yet. We experimentally find that among different new features like frame aggregation, channel bonding and MIMO modes (spacial division multiplexing), frame aggregation has the most harmful effect as it has direct effect on ABE by distorting the measurement probing traffic pattern commonly used to estimate available bandwidth. Frame aggregation is also specified in both 802.11n and 802.1 lac standards as a mandatory feature to be supported. We study the effect of enabling frame aggregation, for the first time, on the performance of the ABE using an indoor 802.11n wireless testbed. The analysis of results obtained using three tools - representing two main Probe Rate Model (PRM) and Probe Gap Model (PGM) based approaches for ABE - led us to come up with the two key principles of jumbo probes and having longer measurement probe train sizes to counter the effects of aggregating frames on the performance of ABE tools. Then, we develop a new tool, WBest+ that is aware of the underlying frame aggregation by incorporating these principles. The experimental evaluation of WBest+ shows more accurate ABE in the presence of frame aggregation.Overall, the contributions of this thesis fall in three categories - experimental characterisation, measurement techniques and mitigation/solution approaches for performance problems in emerging WiFi network scenarios. The influence of various factors mentioned above are all studied via experimental evaluation in a testbed or real - world setting. Specifically, co- existence interference characterisation and evaluation of available bandwidth techniques are done using indoor testbeds, whereas characterisation of urban WiFi networks and WiFi fingerprinting based location estimation are carried out in real environments. New measurement approaches are also introduced to aid better experimental evaluation or proposed as new measurement tools. These include mobile crowdsensing based WiFi monitoring; MAC/PHY layer monitoring of co- existence interference; and WBest+ tool for available bandwidth estimation. Finally, new mitigation approaches are proposed to address challenges and problems identified throughout the characterisation studies. These include: a proposal for crowd - based interference management in large scale uncoordinated WiFi networks; exploiting antenna polarisation diversity to remedy the effects of co- existence interference in multi -interface platforms; taking advantage of VAPs and multi -band operation for better location estimation; and introducing the jumbo frame concept and longer probe train sizes to improve performance of ABE tools in next generation WiFi networks

    On the Feasibility of Using Current Data Centre Infrastructure for Latency-sensitive Applications

    Get PDF
    IEEE It has been claimed that the deployment of fog and edge computing infrastructure is a necessity to make high-performance cloud-based applications a possibility. However, there are a large number of middle-ground latency-sensitive applications such as online gaming, interactive photo editing and multimedia conferencing that require servers deployed closer to users than in globally centralised clouds but do not necessarily need the extreme low-latency provided by a new infrastructure of micro data centres located at the network edge, e.g. in base stations and ISP Points of Presence. In this paper we analyse a snapshot of today & #x0027;s data centres and the distribution of users around the globe and conclude that existing infrastructure provides a sufficiently distributed platform for middle-ground applications requiring a response time of 20200  ms20-200\;ms . However, while placement and selection of edge servers for extreme low-latency applications is a relatively straightforward matter of choosing the closest, providing a high quality of experience for middle-ground latency applications that use the more widespread distribution of today & #x0027;s data centres, as we advocate in this paper, raises new management challenges to develop algorithms for optimising the placement of and the per-request selection between replicated service instances
    corecore