82 research outputs found

    Investigation of low-cost infrared sensing for intelligent deployment of occupant restraints

    Get PDF
    In automotive transport, airbags and seatbelts are effective at restraining the driver and passenger in the event of a crash, with statistics showing a dramatic reduction in the number of casualties from road crashes. However, statistics also show that a small number of these people have been injured or even killed from striking the airbag, and that the elderly and small children are especially at risk of airbag-related injury. This is the result of the fact that in-car restraint systems were designed for the average male at an average speed of 50 km/hr, and people outside these norms are at risk. Therefore one of the future safety goals of the car manufacturers is to deploy sensors that would gain more information about the driver or passenger of their cars in order to tailor the safety systems specifically for that person, and this is the goal of this project. This thesis describes a novel approach to occupant detection, position measurement and monitoring using a low-cost thermal imaging based system, which is a departure from traditional video camera-based systems, and at an affordable price. Experiments were carried out using a specially designed test rig and a car driving simulator with members of the public. Results have shown that the thermal imager can detect a human in a car cabin mock up and provide crucial real-time position data, which could be used to support intelligent restraint deployment. Other valuable information has been detected such as whether the driver is smoking, drinking a hot or cold drink, using a mobile phone, which can help to infer the level of driver attentiveness or engagement

    Research on the System Safety Management in Urban Railway

    Get PDF
    Nowadays, rail transport has become one of the most widely utilised forms of transport thanks to its high safety level, large capacity, and cost-effectiveness. With the railway network's continuous development, including urban rail transit, one of the major areas of increasing attention and demand is ensuring safety or risk management in operation long-term remains for the whole life cycle by scientific tools, management of railway operation (Martani 2017), specifically in developed and developing countries like Vietnam. The situation in Vietnam demonstrates that the national mainline railway network has been built and operated entirely in a single narrow gauge (1000mm) since the previous century, with very few updates of manual operating technology. This significantly highlights that up to now, the conventional technique for managing the safety operation in general, and collision in particular, of the current Vietnamese railway system, including its subsystems, is only accident statistics which is not a scientific-based tool as the others like risk identify and analyse methods, risk mitigation…, that are already available in many countries. Accident management of Vietnam Railways is limited and responsible for accident statistics analysis to avoid and minimise the harm caused by phenomena that occur only after an accident. Statistical analysis of train accident case studies in Vietnam railway demonstrates that, because hazards and failures that could result in serious system occurrences (accidents and incidents) have not been identified, recorded, and evaluated to conduct safety-driven risk analysis using a well-suited assessment methodology, risk prevention and control cannot be achieved. Not only is it hard to forecast and avoid events, but it may also raise the chance and amount of danger, as well as the severity of the later effects. As a result, Vietnam's railway system has a high number of accidents and failure rates. For example, Vietnam Rail-ways' mainline network accounted for approximately 200 railway accidents in 2018, a 3% increase over the previous year, including 163 collisions between trains and road vehicles/persons, resulting in more than 100 fatalities and more than 150 casualties; 16 accidents, including almost derailments, the signal passed at danger… without fatality or casual-ty, but significant damage to rolling stock and track infrastructure (VR 2021). Focusing and developing a new standardised framework for safety management and availability of railway operation in Vietnam is required in view of the rapid development of rail urban transport in the country in recent years (VmoT 2016; VmoT 2018). UMRT Line HN2A in southwest Hanoi is the country's first elevated light rail transit line, which was completed and officially put into revenue service in November 2021. This greatly highlights that up to the current date, the UMRT Line HN2A is the first and only railway line in Vietnam with operational safety assessment launched for the first time and long-term remains for the whole life cycle. The fact that the UMRT Hanoi has a large capacity, more complicated rolling stock and infrastructure equipment, as well as a modern communica-tion-based train control (CBTC) signalling system and automatic train driving without the need for operator intervention (Lindqvist 2006), are all advantages. Developing a compatible and integrated safety management system (SMS) for adaption to the safety operating requirements of this UMRT is an important major point of concern, and this should be proven. In actuality, the system acceptance and safety certification phase for Metro Line HN2A prolonged up to 2.5 years owing to the identification of difficulties with noncompliance to safety requirements resulting from inadequate SMS documents and risk assessment. These faults and hazards have developed during the manufacturing and execution of the project; it is impossible to go back in time to correct them, and it is also impossible to ignore the project without assuming responsibility for its management. At the time of completion, the HN2A metro line will have required an expenditure of up to $868 million, thus it is vital to create measures to prevent system failure and assure passenger safety. This dissertation has reviewed the methods to solve the aforementioned challenges and presented a solution blueprint to attain the European standard level of system safety in three-phase as in the following: • Phase 1: applicable for lines that are currently in operation, such as Metro Line HN2A. Focused on operational and maintenance procedures, as well as a training plan for railway personnel, in order to enhance human performance. Complete and update the risk assessment framework for Metro Line HN2A. The dissertation's findings are described in these applications. • Phase 2: applicable for lines that are currently in construction and manufacturing, such as Metro Line HN3, Line HN2, HCMC Line 1 and Line 2. Continue refining and enhancing engineering management methods introduced during Phase 1. On the basis of the risk assessment by manufacturers (Line HN3, HCMC Line 2 with European manufacturers) and the risk assessment framework described in Chapter 4, a risk management plan for each line will be developed. Building Accident database for risk assessment research and development. • Phase 3: applicable for lines that are currently in planning. Enhance safety requirements and life-cycle management. Building a proactive Safety Culture step by step for the railway industry. This material is implemented gradually throughout all three phases, beginning with the creation of the concept and concluding with an improvement in the attitude of railway personnel on the HN2A line. In addition to this overview, Chapters 4 through Chapter 9 of the dissertation include particular solutions for Risk assessment, Vehicle and Infrastructure Maintenance methods, Inci-dent Management procedures, and Safety Culture installation. This document focuses on constructing a system safety concept for railway personnel, providing stringent and scientific management practises to assure proper engineering conditions, to manage effectively the metro line system, and ensuring passenger safety in Hanoi's metro operatio

    Application of virtual reality for risk assessment and training in the minerals industry

    Get PDF
    The minerals industry often requires people to work in hazardous environments, these environments are constantly increasing in size and complexity as organisations look for new more cost-effective ways of extracting resources. Not only does this size and complexity bring with it additional safety concerns, the introduction of new legislation has placed the responsibility of employee safety with the organisation. Safety has become an important consideration, where once it might have been viewed as costly and counterproductive, organisations are now seeking to gain competitive advantage in this area. Two key areas of a successful safety management programme are risk assessment and training. These are important in designing systems and environments that are as safe as possible and in educating and training personnel to operate safely within those environments. Virtual Reality (VR) technology is one tool that has been applied successfully to the training requirements across a wide range of industries. In the past two years there is evidence to show that VR technology is becoming more widely used, partly due to the reduced cost and a reduction in the perceived technological complexity. As the cost of computing falls and the fidelity of the virtual worlds increases, VR is considered a viable option for a number of applications. Two prototype VR systems were designed and built. The first, a risk visualisation system, enhances a virtual environment with a risk-based overlay. The relationships between dangerous areas and equipment can be visualised in 3D. It also provides a framework for evaluating the risk programmatically at an arbitrary location. The second is a surface mine simulator that uses a hazard identification system as a tool to aid the training of haul truck operators in surface mine. This system includes a world construction tool that allows users to import and prepare the terrain, construct the virtual world, and specify any hazards. The training system can evaluate the performance of a trainee in the virtual world using a simple scoring algorithm
    • …
    corecore