2,504 research outputs found

    Bio-inspired vision-based leader-follower formation flying in the presence of delays

    Get PDF
    Flocking starlings at dusk are known for the mesmerizing and intricate shapes they generate, as well as how fluid these shapes change. They seem to do this effortlessly. Real-life vision-based flocking has not been achieved in micro-UAVs (micro Unmanned Aerial Vehicles) to date. Towards this goal, we make three contributions in this paper: (i) we used a computational approach to develop a bio-inspired architecture for vision-based Leader-Follower formation flying on two micro-UAVs. We believe that the minimal computational cost of the resulting algorithm makes it suitable for object detection and tracking during high-speed flocking; (ii) we show that provided delays in the control loop of a micro-UAV are below a critical value, Kalman filter-based estimation algorithms are not required to achieve Leader-Follower formation flying; (iii) unlike previous approaches, we do not use external observers, such as GPS signals or synchronized communication with flock members. These three contributions could be useful in achieving vision-based flocking in GPS-denied environments on computationally-limited agents

    Bearing-Based Distributed Control and Estimation of Multi-Agent Systems

    Full text link
    This paper studies the distributed control and estimation of multi-agent systems based on bearing information. In particular, we consider two problems: (i) the distributed control of bearing-constrained formations using relative position measurements and (ii) the distributed localization of sensor networks using bearing measurements. Both of the two problems are considered in arbitrary dimensional spaces. The analyses of the two problems rely on the recently developed bearing rigidity theory. We show that the two problems have the same mathematical formulation and can be solved by identical protocols. The proposed controller and estimator can globally solve the two problems without ambiguity. The results are supported with illustrative simulations.Comment: 6 pages, to appear in the 2015 European Control Conferenc

    Dynamic Quantized Consensus of General Linear Multi-agent Systems under Denial-of-Service Attacks

    Get PDF
    In this paper, we study multi-agent consensus problems under Denial-of-Service (DoS) attacks with data rate constraints. We first consider the leaderless consensus problem and after that we briefly present the analysis of leader-follower consensus. The dynamics of the agents take general forms modeled as homogeneous linear time-invariant systems. In our analysis, we derive lower bounds on the data rate for the multi-agent systems to achieve leaderless and leader-follower consensus in the presence of DoS attacks, under which the issue of overflow of quantizer is prevented. The main contribution of the paper is the characterization of the trade-off between the tolerable DoS attack levels for leaderless and leader-follower consensus and the required data rates for the quantizers during the communication attempts among the agents. To mitigate the influence of DoS attacks, we employ dynamic quantization with zooming-in and zooming-out capabilities for avoiding quantizer saturation

    Efficient, Optimal kk-Leader Selection for Coherent, One-Dimensional Formations

    Full text link
    We study the problem of optimal leader selection in consensus networks with noisy relative information. The objective is to identify the set of kk leaders that minimizes the formation's deviation from the desired trajectory established by the leaders. An optimal leader set can be found by an exhaustive search over all possible leader sets; however, this approach is not scalable to large networks. In recent years, several works have proposed approximation algorithms to the kk-leader selection problem, yet the question of whether there exists an efficient, non-combinatorial method to identify the optimal leader set remains open. This work takes a first step towards answering this question. We show that, in one-dimensional weighted graphs, namely path graphs and ring graphs, the kk-leader selection problem can be solved in polynomial time (in both kk and the network size nn). We give an O(n3)O(n^3) solution for optimal kk-leader selection in path graphs and an O(kn3)O(kn^3) solution for optimal kk-leader selection in ring graphs.Comment: 7 pages, 5 figures, submitted to ECC1

    Formation control of non-identical multi-agent systems

    Get PDF
    The problem considered in this work is formation control for non-identical linear multi-agent systems (MASs) under a time-varying communication network. The size of the formation is scalable via a scaling factor determined by a leader agent. Past works on scalable formation are limited to identical agents under a fixed communication network. In addition, the formation scaling variable is updated under a leader-follower network. Differently, this work considers a leaderless undirected network in addition to a leader-follower network to update the formation scaling variable. The control law to achieve scalable formation is based on the internal model principle and consensus algorithm. A biased reference output, updated in a distributed manner, is introduced such that each agent tracks a different reference output. Numerical examples show the effectiveness of the proposed method
    • …
    corecore