523,723 research outputs found

    Data Transmission Over Networks for Estimation and Control

    Get PDF
    We consider the problem of controlling a linear time invariant process when the controller is located at a location remote from where the sensor measurements are being generated. The communication from the sensor to the controller is supported by a communication network with arbitrary topology composed of analog erasure channels. Using a separation principle, we prove that the optimal linear-quadratic-Gaussian (LQG) controller consists of an LQ optimal regulator along with an estimator that estimates the state of the process across the communication network. We then determine the optimal information processing strategy that should be followed by each node in the network so that the estimator is able to compute the best possible estimate in the minimum mean squared error sense. The algorithm is optimal for any packet-dropping process and at every time step, even though it is recursive and hence requires a constant amount of memory, processing and transmission at every node in the network per time step. For the case when the packet drop processes are memoryless and independent across links, we analyze the stability properties and the performance of the closed loop system. The algorithm is an attempt to escape the viewpoint of treating a network of communication links as a single end-to-end link with the probability of successful transmission determined by some measure of the reliability of the network

    Data Transmission Over Networks for Estimation and Control

    Full text link

    How Much Do Downlink Pilots Improve Cell-Free Massive MIMO?

    Get PDF
    In this paper, we analyze the benefits of including downlink pilots in a cell-free massive MIMO system. We derive an approximate per-user achievable downlink rate for conjugate beamforming processing, which takes into account both uplink and downlink channel estimation errors, and power control. A performance comparison is carried out, in terms of per-user net throughput, considering cell-free massive MIMO operation with and without downlink training, for different network densities. We take also into account the performance improvement provided by max-min fairness power control in the downlink. Numerical results show that, exploiting downlink pilots, the performance can be considerably improved in low density networks over the conventional scheme where the users rely on statistical channel knowledge only. In high density networks, performance improvements are moderate.Comment: 7 pages, 5 figures. IEEE Global Communications Conference 2016 (GLOBECOM). Accepte

    Change Sensor Topology When Needed: How to Efficiently Use System Resources in Control and Estimation Over Wireless Networks

    Get PDF
    New control paradigms are needed for large networks of wireless sensors and actuators in order to efficiently utilize system resources. In this paper we consider when feedback control loops are formed locally to detect, monitor, and counteract disturbances that hit a plant at random instances in time and space. A sensor node that detects a disturbance dynamically forms a local multi-hop tree of sensors and fuse the data into a state estimate. It is shown that the optimal estimator over a sensor tree is given by a Kalman filter of certain structure. The tree is optimized such that the overall transmission energy is minimized but guarantees a specified level of estimation accuracy. A sensor network reconfiguration algorithm is presented that leads to a suboptimal solution and has low computational complexity. A linear control law based on the state estimate is applied and it is argued that it leads to a closed-loop control system that minimizes a quadratic cost function. The sensor network reconfiguration and the feedback control law are illustrated on an example

    CONTROL AND ESTIMATION OVER UNRELIABLE COMMUNICATION NETWORKS

    Get PDF
    corecore