1,028 research outputs found

    A combined machine learning and residual analysis approach for improved retrieval of shallow bathymetry from hyperspectral imagery and sparse ground truth data

    Get PDF
    Mapping shallow bathymetry by means of optical remote sensing has been a challenging task of growing interest in recent years. Particularly, many studies exploit earlier empirical models together with the latest multispectral satellite imagery (e.g., Sentinel 2, Landsat 8). However, in these studies, the accuracy of resulting bathymetry is (a) limited for deeper waters (>15 m) and/or (b) is being influenced by seafloor type albedo. This study explores further the capabilities of hyperspectral satellite imagery (Hyperion), which provides several spectral bands in the visible spectrum, along with existing reference bathymetry. Bathymetry predictors are created by applying the semi-empirical approach of band ratios on hyperspectral imagery. Then, these predictors are fed to machine learning regression algorithms for predicting bathymetry. Algorithm performance is being further compared to bathymetry predictions from multiple linear regression analysis. Following the initial predictions, the residual bathymetry values are interpolated by applying the Ordinary Kriging method. Then, the predicted bathymetry from all three algorithms along with their associated residual grids is used as predictors at a second processing stage. Validation results show that by using a second stage of processing, the root-mean-square error values of predicted bathymetry is being improved by ≈1 m even for deeper water (up to 25 m). It is suggested that this approach is suitable for (a) contributing wide-scale, high-resolution shallow bathymetry toward the goals of the Seabed 2030 program and (b) as a coarse resolution alternative to effort-consuming single-beam sonar or costly airborne bathymetric laser surveying

    Remote Sensing of Submerged Aquatic Vegetation

    Get PDF

    Seabed mapping in coastal shallow waters using high resolution multispectral and hyperspectral imagery

    Get PDF
    Coastal ecosystems experience multiple anthropogenic and climate change pressures. To monitor the variability of the benthic habitats in shallow waters, the implementation of effective strategies is required to support coastal planning. In this context, high-resolution remote sensing data can be of fundamental importance to generate precise seabed maps in coastal shallow water areas. In this work, satellite and airborne multispectral and hyperspectral imagery were used to map benthic habitats in a complex ecosystem. In it, submerged green aquatic vegetation meadows have low density, are located at depths up to 20 m, and the sea surface is regularly affected by persistent local winds. A robust mapping methodology has been identified after a comprehensive analysis of different corrections, feature extraction, and classification approaches. In particular, atmospheric, sunglint, and water column corrections were tested. In addition, to increase the mapping accuracy, we assessed the use of derived information from rotation transforms, texture parameters, and abundance maps produced by linear unmixing algorithms. Finally, maximum likelihood (ML), spectral angle mapper (SAM), and support vector machine (SVM) classification algorithms were considered at the pixel and object levels. In summary, a complete processing methodology was implemented, and results demonstrate the better performance of SVM but the higher robustness of ML to the nature of information and the number of bands considered. Hyperspectral data increases the overall accuracy with respect to the multispectral bands (4.7% for ML and 9.5% for SVM) but the inclusion of additional features, in general, did not significantly improve the seabed map quality.Peer ReviewedPostprint (published version

    IN-SITU MEASUREMENT OF DIFFUSE ATTENUATION COEFFICIENT AND ITS RELATIONSHIP WITH WATER CONSTITUENT AND DEPTH ESTIMATION OF SHALLOW WATERS BY REMOTE SENSING TECHNIQUE

    Get PDF
    Diffuse attenuation coefficient, Kd(λ), has an empirical relationship with water depth, thus potentially to be used to estimate the depth of the water based on the light penetration in the water column. The aim of this research is to assess the relationship of diffuse attenuation coefficient with the water constituent and its relationship to estimate the depth of shallow waters of Air Island, Panggang Island and Karang Lebar lagoons and to compare the result of depth estimation from Kd model and derived from Landsat 8 imagery. The measurement of Kd(λ) was carried out using hyperspectral spectroradiometer TriOS-RAMSES with range 320 – 950 nm. The relationship between measurement Kd(λ) on study site with the water constituent was the occurrence of absorption by chlorophyll-a concentration at the blue and green spectral wavelength. Depth estimation using band ratio from Kd(λ) occurred at 442,96 nm and 654,59 nm, which had better relationship with the depth from in-situ measurement compared to the estimation based on Landsat 8 band ratio. Depth estimated based on Kd(λ) ratio and in-situ measurement are not significantly different statistically. Depth estimated based on Kd(λ) ratio and in-situ measurement are not significantly different statistically. However, depth estimation based on Kd(λ) ratio was inconsistent due to the bottom albedo reflection because the Kd(λ) measurement was carried out in shallow waters. Estimation of water depth based on Kd(λ) ratio had better results compared to the Landsat 8 band ratio

    Uncertainty in Hyperspectral Remote Sensing: Analysis of the Potential and Limitation of Shallow Water Bathymetry and Benthic Classification

    Get PDF
    Propagating the inherent uncertainty in hyperspectral remote sensing is key in understanding the limitation and potential of derived bathymetry and benthic classification. Using an improved optimisation algorithm, the potential of detecting temporal bathymetric changes above uncertainty was quantified from a time series of hyperspectral imagery. A new processing approach was also developed that assessed the limitations and potential of benthic classification by analysing optical separability of substrates above total system uncertainty and attenuating water column

    Ocean remote sensing techniques and applications: a review (Part II)

    Get PDF
    As discussed in the first part of this review paper, Remote Sensing (RS) systems are great tools to study various oceanographic parameters. Part I of this study described different passive and active RS systems and six applications of RS in ocean studies, including Ocean Surface Wind (OSW), Ocean Surface Current (OSC), Ocean Wave Height (OWH), Sea Level (SL), Ocean Tide (OT), and Ship Detection (SD). In Part II, the remaining nine important applications of RS systems for ocean environments, including Iceberg, Sea Ice (SI), Sea Surface temperature (SST), Ocean Surface Salinity (OSS), Ocean Color (OC), Ocean Chlorophyll (OCh), Ocean Oil Spill (OOS), Underwater Ocean, and Fishery are comprehensively reviewed and discussed. For each application, the applicable RS systems, their advantages and disadvantages, various RS and Machine Learning (ML) techniques, and several case studies are discussed.Peer ReviewedPostprint (published version
    corecore