32 research outputs found

    Glottal Parameter Estimation by Wavelet Transform for Voice Biometry

    Get PDF
    Voice biometry is classically based on the parameterization and patterning of speech features mainly. The present approach is based on the characterization of phonation features instead (glottal features). The intention is to reduce intra-speaker variability due to the `text'. Through the study of larynx biomechanics it may be seen that the glottal correlates constitute a family of 2-nd order gaussian wavelets. The methodology relies in the extraction of glottal correlates (the glottal source) which are parameterized using wavelet techniques. Classification and pattern matching was carried out using Gaussian Mixture Models. Data of speakers from a balanced database and NIST SRE HASR2 were used in verification experiments. Preliminary results are given and discussed

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Models and analysis of vocal emissions for biomedical applications: 5th International Workshop: December 13-15, 2007, Firenze, Italy

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies. The Workshop has the sponsorship of: Ente Cassa Risparmio di Firenze, COST Action 2103, Biomedical Signal Processing and Control Journal (Elsevier Eds.), IEEE Biomedical Engineering Soc. Special Issues of International Journals have been, and will be, published, collecting selected papers from the conference

    Unveiling the impact of neuromotor disorders on speech: a structured approach combining biomechanical fundamentals and statistical machine learning

    Get PDF
    Speech has been shown to convey clinically useful information in the study of Neurodegenerative Disorders (NDs), such as Parkinson’s Disease (PD). Traditionally the use of speech as an exploratory tool in People with Parkinson’s (PwP) has focused on the estimation of acoustic characteristics and their study at face value, analysing the physio-acoustical markers and using them as features for the differentiation between Healthy Controls (HC) and PwP. The present work takes a step further, given the intricate interoperation between neuromotor activity, responsible for both planning and driving the system, and the production of the acoustic speech signal; by the study of speech, this relationship may be properly exploited and analysed, providing a non-invasive method for the diagnosis, analysis, and observation of NDs. This work aims to introduce a working model that is capable of linking both domains and serves as a projection tool to provide insights about a speaker’s neuromotor state. This is based on a review of the neurophysiological background of the structure and function of the nervous system, and a review of the main nervous system dysfunctions involved in PD and other related neuromotor disorders. The role of the respiratory, phonatory, and articulatory systems is reviewed in the production of voice and speech under normal and pathological circumstances. This setting might allow for speech to be considered a useful trait within the precision medicine framework, as it provides a personal biometric marker that is innate and easy to elicit, can be recorded remotely with inexpensive equipment, is non-invasive, cost-effective, and easy to process. The problem can be divided into two main categories: firstly, a binary detection task distinguishing between healthy controls and individuals with NDs based on the projection model and phonatory estimates; secondly, a progression and tracking task providing a set of quantitative indices that enable clinically interpretable scores. This study aims to define a set of features and models that help to characterise hypokinetic dysarthria (HD). These incorporate the neuroscientific knowhow semantically and quantitatively to be used in clinical decision support tools that provide mechanistic insight on the processes involved in speech production, incorporating into the algorithmic element neuromotor considerations that add to better interpretability, consequently leading to improved clinical decisions and diagnosis. An overview of the acoustic signal processing algorithms for use in speech articulation and phonation system inversion regarding neuromotor disorder assessment is provided. An algorithmic methodology for model inversion and exploration has been proposed for the functional characterization and system inversion of each subsystem involved under the neuro-biomechanical foundations exposed before. A description of the vocal fold biomechanics using the glottal source, and formant dynamics provides the base for specific mapping to articulation kinematics. The statistical methods used in performance evaluation are based on three-way comparisons and transversal and longitudinal assessment by classical hypothesis testing. Three related experimental studies are shown to empirically illustrate the potential of phonation and articulation analysis: the characterization of PD from glottal biomechanics based on the amplitude distributions of the glottal flow and on the vocal fold body stiffness in assessing the efficiency of transcranial magnetic stimulation, and the description of PD dysarthria through an articulation projection model. The results from the biomechanical analysis of phonation showed that the behaviour of glottal source amplitude distributions from PD and healthy controls using three-way comparisons and hierarchical clustering were essentially distinguishable from those from normative young participants with the best accuracy scores produced by SVM classifiers of 94.8% (males) and 92.2% (females). Nevertheless, PD participants were barely separable from age-matched controls, possibly pointing to confounding factors due to age. The outcomes from using vocal fold stiffness in assessing the efficiency of transcranial magnetic stimulation showed mixed results, as some PD participants reflected clear improvements in phonation stability after stimulation, whereas some others did not. Some cases of sham controls experienced also minor improvements of unknown origin, possibly expressing a placebo effect. The overall results on the efficiency of stimulation showed an accuracy global score of 67% over the 18 cases studied. The results from articulation projection modelling showed the possibility of formulating personalised models for PD and control participants to transform acoustic formant dynamics into articulation kinematics. This might open the possibility of characterising PD dysarthria based on speech audio records. The most remarkable findings of the study include the determination of the glottal source amplitude distribution behaviour of normative and PD participants; the impact of age effects in phonation as a confounding factor in neuromotor disorder characterization; the importance of ensuring that the classification of speech dysarthria is based on principles that can be explained and interpreted; the need of taking into account the effects of medication when framing new classification experiments; the potential of using EEG-band decomposition to analyse vocal fold stiffness correlates, as well as the possibility of using these descriptions in longitudinal monitoring of treatment efficiency; the feasibility of establishing a relationship between acoustic and kinematic variables by projection model inversion; and the potential of these descriptions for estimating neuromotor activities in midbrain related to phonation and articulation activity. The most important outcome to be brought forth from the thesis is that the methodology used throughout the project uses a bottom-up approach based on speech model inversion at the acoustical, biomechanical, and neuromotor levels allowing to estimate glottal signals, biomechanical correlates, and neuromotor activity from speech alone, establishing a common neuromechanical characterisation framework on its own

    Nasality in automatic speaker verification

    Get PDF

    A variable passive low-frequency absorber

    Get PDF

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications (MAVEBA) came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the neonate to the adult and elderly. Over the years the initial issues have grown and spread also in other aspects of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years always in Firenze, Italy. This edition celebrates twenty years of uninterrupted and succesfully research in the field of voice analysis

    Digital phenotype of mood disorders: A conceptual and critical review

    Get PDF
    BackgroundMood disorders are commonly diagnosed and staged using clinical features that rely merely on subjective data. The concept of digital phenotyping is based on the idea that collecting real-time markers of human behavior allows us to determine the digital signature of a pathology. This strategy assumes that behaviors are quantifiable from data extracted and analyzed through digital sensors, wearable devices, or smartphones. That concept could bring a shift in the diagnosis of mood disorders, introducing for the first time additional examinations on psychiatric routine care.ObjectiveThe main objective of this review was to propose a conceptual and critical review of the literature regarding the theoretical and technical principles of the digital phenotypes applied to mood disorders.MethodsWe conducted a review of the literature by updating a previous article and querying the PubMed database between February 2017 and November 2021 on titles with relevant keywords regarding digital phenotyping, mood disorders and artificial intelligence.ResultsOut of 884 articles included for evaluation, 45 articles were taken into account and classified by data source (multimodal, actigraphy, ECG, smartphone use, voice analysis, or body temperature). For depressive episodes, the main finding is a decrease in terms of functional and biological parameters [decrease in activities and walking, decrease in the number of calls and SMS messages, decrease in temperature and heart rate variability (HRV)], while the manic phase produces the reverse phenomenon (increase in activities, number of calls and HRV).ConclusionThe various studies presented support the potential interest in digital phenotyping to computerize the clinical characteristics of mood disorders
    corecore