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Background: Mood disorders are commonly diagnosed and staged using

clinical features that rely merely on subjective data. The concept of

digital phenotyping is based on the idea that collecting real-time markers

of human behavior allows us to determine the digital signature of a

pathology. This strategy assumes that behaviors are quantifiable from

data extracted and analyzed through digital sensors, wearable devices, or

smartphones. That concept could bring a shift in the diagnosis of mood

disorders, introducing for the first time additional examinations on psychiatric

routine care.

Objective: The main objective of this review was to propose a conceptual

and critical review of the literature regarding the theoretical and technical

principles of the digital phenotypes applied to mood disorders.

Methods: We conducted a review of the literature by updating a

previous article and querying the PubMed database between February 2017

and November 2021 on titles with relevant keywords regarding digital

phenotyping, mood disorders and artificial intelligence.

Results: Out of 884 articles included for evaluation, 45 articles

were taken into account and classified by data source (multimodal,

actigraphy, ECG, smartphone use, voice analysis, or body temperature).

For depressive episodes, the main finding is a decrease in terms of

functional and biological parameters [decrease in activities and walking,

decrease in the number of calls and SMS messages, decrease in

temperature and heart rate variability (HRV)], while the manic phase

produces the reverse phenomenon (increase in activities, number

of calls and HRV).
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Conclusion: The various studies presented support the potential

interest in digital phenotyping to computerize the clinical characteristics

of mood disorders.

KEYWORDS

mood disorders, digital phenotyping, machine learning, artificial intelligence,
depressive disorder, bipolar disorder

Introduction

The diagnosis of mood disorders currently relies purely
on clinical interviews based on the identification of symptoms
that can be either subjective (sadness, anhedonia, exaltation,
etc.), or that could potentially be objectified (attention
disorders, psychomotor retardation, sleep disorders, etc.).
The search for biomarkers is one of the major challenges
in this field, and the concept of the “Digital Phenotype”
(DP) of a pathology can be understood as a kind of
digital biomarker, sustaining the extended phenotype,
a concept introduced by Richard Dawkins that implies
that phenotypes should not be limited just to biological
processes (1).

Defined in 2015 by S. H. Jain (2) and shortly after by
J. Torous (3) for psychiatry, the digital phenotype refers to
the real-time capture by computerized measurement tools
of certain characteristics specific to a psychiatric disorder.
Some behaviors or symptoms could be quantifiable, which
would bring a shift in the assessment of psychiatric semiology,
offering a new branch of investigation constituted by an “e-
semiology.” An accelerometer or an actigraphic device can
detect changes in a motor symptomatology (e.g., acceleration
during a manic episode, decreased activation during a depressive
episode, or replacement of graphorrhoea by an increase in
the number of SMS messages sent). Models based on these
new signs are starting to emerge since the miniaturization
of sensors and the ubiquitous use of smartphones allow
extensive data collection to which psychiatrists did not
have access before.

To highlight objective symptoms of mood disorders, the
most often studied criteria are those relating to motor aspects
(slowing down and restlessness), speech characteristics (speed,
prosody, tenor), or sleep disorders (insomnia or hypersomnia)
as well as biometric data detectable by sensors [heart rate
(HR), temperature, etc.]. This collection method is called
“passive data gathering”; no intervention is necessary, reducing
the weight of the observers and mitigating cognitive bias
of the clinicians. This term is opposed to “active data
gathering,” which requires the involvement of the patient in the
collection of the data (e.g., Ecological Momentary Assessment
EMA) (Figure 1).

Passive data are collected automatically in real time,
without requiring any input from the user and relying on
tools such as the accelerometer (number of steps, motor
behavior), GPS, mobile phone-based software sensing (e.g., sleep
analysis), or wearables that measure HR, heart rate variability
(HRV), galvanic skin conductance, temperature, blood pressure
or others indicators that could be considered as potential
biomarkers of certain psychiatric disorders. Smartphone use
(e.g., number of SMS messages, call log, voice analysis, social
media posts, internet use, online shopping, music, pictures,
calendar) provides access to psychosocial functioning and to
passive assessment of content.

All that information can be considered “big data” since it
comes from multiple sources (e.g., multimodal passive data)
and aggregates different features, and many research teams aim
to determine the digital phenotypes of several mood disorders
using machine learning, regression analysis or natural language
processing approaches.

In this review we propose to investigate the digital
phenotype of mood disorders (depressive disorder and
bipolar disorder).

Methods

We conducted a review of the literature by updating
a previous article (4) covering the literature from 2010 to
February 2017. The present review was conducted by querying
the PubMed database between February 2017 and November
2021 for titles with the terms [computer] OR [computerized]
OR [mobile] OR [automatic] OR [automated] OR [machine
learning] OR [sensor] OR [heart rate variability] OR [HRV]
OR [actigraphy] OR [actimetry] OR [digital] OR [motion] OR
[temperature] with each of the terms AND each of the following:
[mood], [bipolar], [depression], [depressive], [manic], [mania].
For studies published before 2017 see Bourla et al. (4). Article
selection can be seen in the PRISMA diagram (Figure 2).

Exclusion criteria were:

• Reviews and meta-analyses
• The use of digital phenotype for evaluating treatment

response
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FIGURE 1

The concept of digital phenotype for mood disorders as opposed to EMA.

• The use of digital phenotype for evaluating interventions
• The use of medical equipment for HRV/HR assessment

(only smartphone sensors)
• Therapeutic interventions
• Postpartum depression or pregnancy studies
• Child or adolescent studies
• Age above 65 years
• Comorbidities (e.g., post-stroke depression, chronic

obstructive pulmonary disease, Human Immunodeficiency
Virus, cardiosurgical patients)

• Multimodal evaluation with blood or imagery biomarkers
• Study protocols
• Case reports
• Ecological Momentary Assessment (EMA) or self-rating

questionnaires or self-reports not associated with digital
phenotype.

Results

Some studies use multiple sensors at the same time
(multimodal data source), while other studies focus specifically
on one type of sensor (unimodal data source). Forty-five articles
were included and classified by data source: Smartphone and

Internet use, actigraphy and GPS, electrocardiogram (ECG),
voice analysis, body temperature and multimodal data source.

Unimodal data source

Results using a unimodal data source are summarized in
Table 1.

Internet use
Safa et al. (5) and Islam et al. (6) explored the potential

of linguistic approaches on Twitter and Facebook. They
focus on tweets or comments, and use n-gram language
model, or Linguistic Inquiry and Word Count (LIWC),
based on the relationships between patterns of language, first
person pronouns, anger words, various negative emotions
and mental disorders. They show 91 and 83% accuracy in
predicting depressive symptoms, respectively. Linguistic data
from Facebook comments provides the highest accuracy. Yue
et al. (7) explore metadata of internet traffic on smartphones
for depression screening. They develop techniques to identify
internet usage sessions and create their own algorithm to predict
depression correlating with the Patient Health Questionnaire 9
(PHQ9). The internet traffic data was divided into application
categories (e.g., mail, social, video, audio, game, shopping,
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FIGURE 2

PRISMA diagram.

study) with a focus on usage (total duration, number of sessions,
duration during morning afternoon, and night, and screen
on-off events) and they achieve a specificity up to 77% for
depression prediction.

Smartphone use
Depressive disorders

Opoku Asare et al. (8) studied 629 individuals assessing
multiple features: battery consumption, time zone, time
stamped data, foreground app usage, internet connectivity,
screen lock and unlock logs with demographic information and
self-reports (PHQ8). They find a positive correlation between

screen status-normalized entropy (defined as the degree of
variability, complexity and randomness in behavior states, e.g.,
disconnection and connection states, frequency of use, etc.) and
depression. But they find no exploitable association between
other screen, app, and internet connectivity features. Using
their best supervised machine learning, they achieved accuracy
of up to 92.51%.

Bipolar disorder

Gillett et al. (9) showed a significant interaction
between a bipolar disorder population and smartphone
use. A negative correlation is highlighted between total
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outgoing call frequency, total duration, total outgoing
SMS messaging frequency and bipolar depressive episodes.
Razavi et al. (10) confirmed that call durations and
number of text messages had a negative correlation
with depressive symptoms. Furthermore, using machine

learning (random forest classifier), they found an accuracy
of up to 81.1% for diagnosing bipolar depression.
Zulueta et al. (11) demonstrate a significant positive
correlation between accelerometer displacement, average
interKEY delay, session count and autocorrect rate and

TABLE 1 Unimodal data source.

Study (year) Disorder n Questionnaire Features Accuracy Sensitivity Specificity

Smartphone Safa et al. (5) MDD 1023 LIWC Twitter posts and bio-text 83–91% n.c. n.c.

Yue et al. (7) MDD 79 PHQ9 Metadata of internet traffic 80% n.c. n.c.

Gillett et al. (9) BD/BPD/HC 55 QIDS Phone calls and SMS
messaging

n.c. n.c. n.c.

Razavi et al. (10) BD 412 BDI – II Phone use (calls and text
messages)

76–81% n.c. n.c.

Islam et al. (6) MDD 7145 uc LIWC Comments on Facebook n.c. n.c. n.c.

Zulueta et al. (11) BD 16 HDRS/YMRS Metadata of keystroke
entry with accelerometer

n.c. n.c. n.c.

Actigraphy Difrancesco et al. (14) MDD/GAD 359 Deutsch 30-IDS Sleep parameters n.c. n.c. n.c.

Minaeva et al. (16) MDD 179 IDSR/CIDI/BDI-II Global activity n.c. n.c. n.c.

Jakobsen et al. (17) BD 55 MADRS Global activity n.c. 82% 84%

Kaufmann et al. (20) BD 131 YMRS Sleep parameters n.c. n.c. n.c.

Merikangas et al. (13) BDI/BDII
MDD

242 PHQ9 Global activity n.c. n.c. n.c.

Tonon et al. (15) BD 15 YMRS Global activity n.c. 71% 100%

Zhang et al. (12) MDD 308 PHQ8 Bluetooth features n.c. n.c. n.c.

HR or HRV Gregório et al. (33) HP/BD 36 MINI/BrMaS Heart parameters n.c. n.c. n.c.

Ortiz et al. (30) BDI/BDII 53 IBI/SADSL/MADRS/
YMRS

Heart parameters n.c. n.c. n.c.

Brugnera et al. (28) HP 65 BDI II Heart parameters during
stress protocol

n.c. n.c. n.c.

Byun et al. (25) HP/MDD 78 HAMD Heart parameters during
stress protocol

74% 73% 75.6%

Byun et al. (26) MDD 66 HAMD Heart parameters during
stress protocol

70% 64% 76%

Hartmann et al. (24) HP/MDD 127 HDRS 17 Heart parameters n.c. n.c. n.c.

Lesnewich et al. (23) HP 152 BDI II Heart parameters n.c. n.c. n.c.

Faurholt-Jepsen et al. (17) BD 16 HDRS17/YMRS Heart parameters n.c. n.c. n.c.

Wazen et al. (31) BD1 19 MINI/BRMS Heart parameters during
hospitalization

n.c. n.c. n.c.

Carnevali et al. (21) HP 42 RRS Heart parameters n.c. n.c. n.c.

Chen et al. (17) HP/MDD 80 No Heart parameters during
stress protocol

n.c. n.c. n.c.

Kuang et al. (27) MDD 76 PID Heart parameters during
stress protocol

86.4% 89.5% 84.2%

Temperature Ma et al. (35) MDD/SR 62 HAMD17/PHQ9/HAMA Temperature during
treatment

n.c. n.c. n.c.

Kim et al. (36) MDD 67 HAMD Electrodermal activity
during stress protocol

74% 74% 71%

Voice Shin et al. (37) MDD 93 MINI/BAI/HDRS/
BIS/PHQ9

Voice characteristics n.c. 65.6% 66.2%

Weiner et al. (39) BP 56 YMRS/QIDSC16 Voice characteristics 83–86% n.c. n.c.

Weintraub et al. (40) BP 123 LIWC Emotional expression 75.2–81.8% 70% 80%

Zhang et al. (38) MDD n.c. PHQ9 Voice characteristics in
audio files

n.c. n.c. n.c.

BAI, Beck Anxiety Inventory; BDI II, Beck Depression Inventory; BP, Bipolar Disorder; BPI, Bipolar Disorder Type I; BPII, Bipolar Disorder Type II; BrMaS, Bech-Rafaelsen Mania
Scale; GAD, Generalized Anxiety Disorder; HAMD17 or HDRS, Hamilton Depression Rating Scale; HAMA, Hamilton for Anxiety; HP, Healthy Patient; IDSR, Inventory of Depressive
Symptomatology (self-report); LIWC, Linguistic Inquiry and Word Count; MADRS, Montgomery Asberg Depression Rating Scale; MDD, Major Depressive Disorder; MINI, Mini-
International Neuropsychiatric Interview; PHQ9, Patient Health Questionnaire 9; QIDS, Quick Inventory Depression Scale; uc, user comments; n.c., not communicated; SR, Suicidal
Risk; SA, History of Suicidal Attempt; w, week; YMRS, Young Mania Rating Scale.
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depressive symptomatology using the Hamilton Depression
Rating Scale (HDRS).

Actigraphy or GPS use
Depressive disorders

Zhang Y. et al. (12) extracted 49 Bluetooth features including
periodicity and regularity of individuals’ life rhythms using
Nearby Bluetooth Device Count (NBDC; detected by Bluetooth
sensors in mobile phones). During a two-year follow up study
with 308 patients, they tried to correlate these features with a
bi-weekly PHQ8 questionnaire assessing for depression. They
show that before a depressive episode, several changes were
found in the preceding 2 weeks of Bluetooth data (the amount,
the variance and the periodicity decreased and NBDC sequence
became more irregular). Merikangas et al. (13) highlight a direct
and positive correlation of sleep and energy (assessed by minute-
to-minute activity counts from an actigraphy device worn on the
non-dominant wrist for 2 weeks) with mood in a large nested-
case control study. They found a unidirectional association
between motor activity and subjective mood level and a
bidirectional association between motor activity and subjective
energy level and sleep duration. Difrancesco et al. (14) obtained
similar results, with a negative correlation of gross motor activity
(GMA) and sleep parameters with depressive symptoms. Tonon
et al. (15) demonstrate the reliability of using an actigraphic
strategy for evaluating the intensity of depression. They show a
sensitivity up to 71% and a specificity up to 100% for evaluating
melancholia in depressed patients, since nocturnal activity
was significantly higher in non-melancholic patients. Minaeva
et al. (16) explore a predictive model based on actigraphy
and Experience Sampling Methodology (ESM). The actigraphy
model was provided by the GMA and time and maximal activity
level across the 24-h period. The ESM model has a fixed design,
with questionnaires including items on current mood states,
social interactions, daily experiences and behaviors. They found
reasonable discriminative ability for the actigraphy model alone
and excellent discriminative ability for both the ESM and the
combined-domains model (actigraphy + ESM). These results
were based on a strong correlation between depression and
lower levels of physical activity.

Bipolar disorder

Jakobsen et al. (17) used several machine-learning
techniques using actigraphy and observed an 84% accuracy,
sensitivity and specificity when differentiating between
depressed bipolar patients and healthy individuals. Jacobson
et al. (18) re-analyzed Jakobsen’s data using novel methods
and their machine-learning algorithm correctly predicted
the diagnostic status 89% of the time. These results remain
inconsistent, as observed by Freyberg et al. (19) since they
found no difference between healthy controls and younger
bipolar patients in activity energy expenditure, suggesting that

these outcomes could progress along with disease duration.
Kaufman et al. (20) explored several sleep features using night
actigraphy: total sleep time, waking after sleep onset, percent
of sleep and number of awakenings. Using a ML algorithm
(LASSO regression) they found that none of those features differ
between bipolar patients and healthy controls. However, there
is considerable variability among those with bipolar disorder.
Zulueta et al. (11) demonstrate a significant correlation between
accelerometer displacement and HDRS or YMRS during
depressive or manic episodes.

Heart rate/heart rate variability
Depressive disorders

Carnevali et al. (21) have published a long-term follow-
up study of 3 years, assessing HRV at several points (T0, 13th
and 34th month). They find that resting HRV is negatively
correlated with both rumination and depressive symptoms.
They suggest a link between HRV at T0 and the evolution from
rumination and depressive symptoms at month 13. They also
conclude that a low vagal tone is a characteristic of depressive
symptoms, which is consistent with Chen et al. (22), who have
suggested the implication of an over-activated parasympathetic
nervous system under long-term depression. Thus, a negative
correlation is usually found between HRV and diagnosis of
depression. But use of current antidepressants can turn this
correlation into a positive one as Lesnewich et al. demonstrated
in (23). Hartmann et al. (24) demonstrate that HRV could
be used as a unique biomarker which could vary with the
depressive symptomatology and be correlated with symptom
severity. Byun et al. (25) used machine learning on 20 HRV
indices and achieved an accuracy of 74.4%, a sensitivity of
73%, and a specificity of 75.6% for depression detection. In
another study (26), they found a similar result, proving that
entropy features of HR are lower in depressive patients in stress
conditions. All those results are in line with Kuang et al. (27)
who obtained an accuracy of 86.4%, sensitivity of 89.5%, and
specificity of 84.2% for depression. Brugnera et al. (28) showed
a significant and positive relationship with a higher resting-state
HRV, but confirmed a blunted reactivity to the stress protocol.
They suggest that healthy individuals with higher depressive
symptoms have atypical cardiovascular responses to stressful
events. Despite these results, Sarlon et al. (29) have not found
any interaction between HRV and depression severity.

Bipolar disorder

Ortiz et al. (30) showed a positive correlation between
reduction of HRV and illness duration, number of depressive
episodes, duration of the most severe manic/hypomanic
episodes, co-morbid anxiety disorder and family history of
suicide. Wazen et al. (31) observed an increase in HR and
decrease in HRV in mania relative to euthymia. Faurholt-
Jepsen et al. (32) found an increase of 18% of HRV in mania
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state compared with a depressed state, but no significant
HRV difference has been found between euthymia and the
depressed stage in bipolar disorder. Gregorio et al. (33) showed
non-linear HRV dynamics consistent with high sympathetic
heat modulation with less vagal modulation compared to
healthy controls. They show a possible reduction of sympathetic
modulation after treatment, with an increased vagal or
parasympathetic modulation.

Body temperature
Lorenz et al. (34) first showed no significant temperature

difference between mood disorders and healthy control groups,
but after excluding antidepressant-medicated participants, they
found that the depression group has lower skin temperature
amplitude and a less stable skin temperature rhythm. Ma et al.
(35) find a peripheral body temperature rhythm higher in major
depressive disorder patients than in healthy controls. They
highlighted the existence of phase delay of temperature that was
greater in mood disorder patients with suicidal risk than those
without suicidal risk and healthy controls. The same results
can be found with patients before treatment introduction. They
suggest that the body temperature anomalies can diminish with
the improvement of depressive symptoms after the treatment
with antidepressants. Kim et al. (36) used a machine learning
approach to analyze an electrodermal activity data set and
predict MD diagnoses during a stress protocol. They observed
74% accuracy and sensitivity and 71% specificity for depression.

Vocal recording
Depressive disorders

Shin et al. (37) used machine learning on data extracted
from semistructured interview recordings. Previous research
showed that depressed patients had simpler, lifeless voices with
lower volume. Their movements of the vocal tract were slow
and they spoke in low voices. Thus, the features extracted are
from four aspects: namely glottal, tempo-spectral, formant, and
other physical features. Glottal features included information
about sound articulation with the vocal cords, obtained by
parameterizing each numeric after drawing a waveform. They
used it for calculating three parameters: the opening phase,
closing phase, and closed phase. They extracted tempo-spectral
features with the help of “librosa,” an audio processing toolkit.
Temporal features refer to the time or length of the interval
when participants continue an utterance. For spectral features,
they used averaged spectral centroid, spectral bandwidth, roll-
off frequency, and root mean square energy. Formant features
are phonetic information obtained through linear prediction.
The formant was considered as the resonance of the vocal tract
and as the local maximum of the spectrum. The first to third
formants were exploited with their bandwidths. Other physical
attributes were obtained as the mean and variance of pitch and
magnitude, zero crossing rate (which indicated how intensely

the voice was uttered), and the voice portions (which indicated
how frequently they appeared). Silence was represented by
frames with zero crossing rates below the average. This study
was conducted on 93 patients in three different groups: non-
depressed, major depression, and minor depression. The minor
depression group had the lowest voices and more pitch changes
during speech. The major depression group was between the
non-depressed and the minor depression group. A multilayer
processing method achieved 65.9% accuracy, 65.6% sensitivity,
and 66.2% specificity for distinguishing depressed people from
healthy controls. Zhang L. et al. (38) were able to predict the
PHQ9 score with an AUC of 0.825 with features extracted from
recorded audio of depressed subjects.

Bipolar disorder

Weiner et al. (39) applied machine learning on verbal
fluency tasks (letter, semantic, free word generation, and
associational fluency data) to classify two distinct acute episodes
in each of 56 patients as manic, mixed manic, depressive, or
mixed depressive. They used a two-step procedure with a first
one beginning by selection of single words using a voice activity
detection algorithm. Then, speech features were calculated for
each word. The word detection algorithm used the energy of
the audio signal to analyze the temporal and spectral features.
Then, they used the Camacho SWIPE algorithm according to
a spectral matching procedure, which analyses signal intensity,
zero crossing rate, spectral strength, and finally permitted
detection of single words. Speech feature estimation was based
on the estimation of specific features related to prosody and
voice quality. Pauses calculated between words, word length
and estimating F0 (pitch) dynamics (temporal windows of 10
milliseconds) were obtained with the SWIPE algorithm and
supplied the prosodic features. For each word, they supplied
estimates of F0, median, median absolute deviation. Then they
extended the use of these features to all the voiced segments
within each word and finally they reported the resulting
features as amplitude, duration and tilt (mean of amplitude
and duration). Voice quality was obtained by estimating the
long-term muscular setting of the larynx and vocal tract that
deviated from the neutral point which was calculated with the
help of a DYPSA algorithm. They highlighted that in the mixed
manic and manic groups, voice quality patterns were elevated in
subjects with a high score in the Quick Inventory of Depressive
Symptomatology (QIDS-c16) questionnaire. Higher score on
the Young Mania Rating Scale (YMRS) questionnaire was
correlated with higher median pitch, with a higher variability
as expressed by the dispersion of voiced sound fundamental
frequency, and with higher tilt. Given these results, they selected
features for a mixed versus non-mixed and depression algorithm
detection. They achieved an accuracy of 84% for discriminating
depression from mixed depression, 86% for discriminating
hypomania from mixed hypomania. They suggest that vocal
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features via verbal fluency tasks could be reliable biomarkers and
help to improve diagnostic accuracy. Weintraub J. et al. (40) also
used machine learning to achieve an algorithm with an accuracy
of at least 75.2% for detecting high or low expressed mood.

Several studies tried to demonstrate a new correlation
between DP and mood disorders, while others tried to prove
the reliability of predictive models using different machine
learning algorithms based on the previous correlations. Only a
few focused on specific symptoms of mood disorders.

Multimodal data source

Results from multimodal data sources are summarized
in (Table 2).

Meyerhoff et al. (41) studied a cohort of 282 healthy
individuals who used wearable devices measuring steps, energy
level, HR, and sleep change and trained a supervised machine
learning algorithm to study the interaction between those
passive data and a PHQ8 questionnaire. They observed changes
in GPS features, exercise duration, and use of active apps
before the rise of depressive symptoms, suggesting a directional
correlation between changes in behaviors and subsequent
changes in depressive symptoms. Bai R. et al. (42) recruited 334
patients with a major depressive disorder to a study using an
app called “Mood Mirror” that allows active data and passive
data collection (phone and wearable wristband) in order to
classify patients between several mood states: steady remission,
mood Swing (drastic or moderate), and steady depressed. They
tested several combinations of data in order to achieve the best
classification. The best features were passive data (1 feature
from phone usage and 3 from the wearable) and achieved
over 75% accuracy.

Rykov et al. (43) recruited 267 healthy people and used
wearables to record physical activity, sleep patterns, circadian
rhythms (CRs) for step usage, HR, energy expenditure and
sleep data. They used supervised machine learning and found
an accuracy of 80%, a sensitivity of 82%, and a specificity of
78% for detection of depression, but only in subsamples of
depressed and healthy participants with no risk of depression
(no or minimal depressive symptoms). Apart from this, the
ability of the digital biomarkers to detect depression in the whole
sample was limited. Nickels et al. (44) recruited 415 individuals
(around 80% with MDD) and created a large specific operating
system that recorded accelerometer, ambient audio, phone
information, barometric air pressure, battery charge, Bluetooth,
light level, network, gyroscope, physical activity level, phone
calls, ping, proximity, screen state, step count, text messages,
volume, and Wi-fi network. Using a subset of 34 DP features,
they found that 11 features showed a significant correlation
with PHQ9. They found that a more negative sentiment of the
voice diary, obtained from a derived measure from a sentiment
classification algorithm, is associated with a higher PHQ9 score.

Moreover, bad self-reported sleep quality, higher ambient audio
level, letting the phone ring for longer periods until the call
was missed, fewer different locations visited in a given week,
fewer words spoken per minute, longer duration of voice diary,
lower weekly mean battery percentage, the number of emojis
in outgoing text messages, receiving or making more phone
calls per week, and less variability in where participants spent
time were correlated with higher PHQ9 score. They achieved a
logistic regression model resulting in a 10 fold cross-validated
mean AUC of 0.656 (SD 0.079).

Pedrelli et al. (45) observed that it was not possible to
determine if one modality (smartphone, wearable or both)
could outperform the others. They highlighted that the most
predictive features were related to phone engagement, activity
level, skin conductance and HRV, but stated that further
studies are needed to increase strategy accuracy. Jacobson
et al. (46) conserved a rate of accuracy to predict depression
with only a 1 week recording study with 15 participants
with MDD. They combined only two assessing tools with
actigraphy, which records continuous movement, to estimate
global activity and with ambient light exposure to estimate
social activity. A deep neural network combined with SMOTE
class balancing technique achieved an accuracy of 84%, a
sensitivity of 82%, and a specificity of 84%. A prospective
observational cohort study was performed by Cho et al. (47)
on 55 patients with MDD and bipolar disorder type 1 and
type 2 during 2 years using a smartphone-based EMA and
a wearable activity tracker (Fitbit). They processed the digital
phenotypes into 130 features based on circadian rythms (e.g.,
steps before bedtime, light exposure during daytime, and HR
amplitude) and performed mood classification using a random
forest algorithm.

Di Matteo et al. (48) designed an Android app to collect
periodic measurements including samples of ambient audio,
GPS location, screen state, and light sensor data during
a 2-week observational study. They found good accuracy
with an AUC of 0.64.

Jacobson et al. (49) used passive sensor data, including GPS,
location type based on the Google Places location type, local
weather information (temperature, humidity, precipitation),
light level, HR information (average HR and HRV), and
outgoing phone calls, and used machine learning algorithms
to correlate these data with a dynamic mood assessment using
EMA. They found good accuracy, with predicted depressed
mood scores that were highly correlated with the observed
depressed mood scores from the models.

Narziev et al. (50) designed a Short-Term Depression
Detector using EMA and various passive sensors available
on a smartphone (phone calls, app usage, unlocked state,
stationary state, light sensor, accelerometer, step detection) and
on a smartwatch (HRM, accelerometer). They used support
vector machine and random forest models to achieve group
classification with an accuracy of 96.00%.

Frontiers in Psychiatry 08 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.895860
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-13-895860 July 20, 2022 Time: 20:31 # 9

Maatoug et al. 10.3389/fpsyt.2022.895860

TABLE 2 Multimodal data source.

Study
(year)

Disorder n Smart-
phone

GPS or
actigraphy

HR –
HRV

Body
tempe-rature

Voice Light
exposure

Scale Accuracy

Bai et al. (42) MDD 334 Yes Yes Yes Yes Yes No PHQ9 76.67%

Meyerhoff et al. (41) MDD/GAD/SAD 282 Yes Yes Yes No No No PHQ8/DAS7 n.c.

Nickels et al. (44) MDD 415 Yes Yes No No No Yes PHQ9 n.c.

Opoku Asare et al. (8) MDD 629 Yes No No No No No PHQ8 98%

Rykov et al. (43) MDD 267 Yes Yes Yes No No No PHQ9 80%

Sarlon et al. (29) MDD 89 No No Yes Yes No No BDI II No

Di Matteo et al. (48) Gen pop 112 Yes Yes No No Yes Yes PHQ8 n.c.

Jacobson and Chung,
(49)

MDD 31 Yes Yes Yes No No Yes PANAS-X n.c.

Narziev et al. (50) MDD 20 Yes Yes Yes No No Yes PHQ9 96%

Freyberg et al. (19) BD 60 No Yes Yes No No No HDRS17 n.c.

Pedrelli et al. (45) MDD 31 Yes Yes Yes No No No HDRS17 n.c.

Cho et al. (47) MDD/BDI/BDII 55 Yes Yes Yes No No Yes Mood chart app 85/94%

Jacobson et al. (46) BDII 15 No Yes No No No Yes MADRS 84%

Lorenz et al. (34) MDD 242 No Yes Yes Yes No No CES D score n.c.

BDI, Bipolar Disorder Type 1; BDII, Bipolar Disorder Type 2; BDI II, Beck Depression Inventory; CES D, Centre for Epidemiological Studies-Depression; DAS7, Dyadic Adjustment Scale;
GAD, General Anxiety Disorder; Gen pop, General population; HDRS, Hamilton Depression Rating Scale; HP, Healthy People; MADRS, Montgomery Asberg Depression Rating Scale;
MDD, Major Depressive Disorder; n.c., not communicated; PANAS-X, Positive and Negative Affect Schedule Expanded; PHQ9, Patient Health Questionnaire 9; SAD, Social Anxiety
Disorder; w, week.

Discussion

Principal results

Digital phenotypes compute the clinical characteristics
specific to various mental states, sometimes with better precision
than a clinician can achieve, and with the possibility of doing
it remotely. Table 3 summarizes the most relevant features
according to this review and our previous one (4).

The unimodal data source type is the first and the most
common type of study. As we can observe in Table 1,
we have as many studies focused on the new correlation
demonstration as new predictive models with different levels
of precision. It can be explained by a faster and easier
protocol, with more innovative possibilities. Results in unimodal
data sources have an accuracy around 75% with a sensitivity
range between 64 and 91%, and a specificity between 66.2
and 100%. Studies focusing on smartphone use are the most
dynamic unimodal approach, providing disruptive ways to
a better understanding of mood disorders. The tools which
are used for that purpose are multiple: call frequency, SMS
message frequency, SMS message length, keystroke entry date,
accelerometer displacement, activity tracker via Bluetooth,
usage sessions from internet traffic, and linguistic analyses on
Twitter and Facebook posts with the help of EMA provided
by smartphone apps. In most cases, applications are developed
specially for each study. ECG recording is the most common
type of wearable found in this review. Features were Resting HR,
HRV, Respiration Rate, high-frequency HRV, low-frequency
HRV, and root mean square of the successive differences, with
experimental exposition using a protocol for assessing the

autonomic responses to stress and recovery. Body temperature
recording is also a promising source. This extracts global
body temperatures using a Holter monitor that detects 24-
h peripheral body temperature. Several studies combined
temperature with actigraphy, making it possible to categorize
body temperature throughout the day’s phases, and adjust the
amplitude with activity. While promising, voice analysis still
remains one of the poorest study domains. The data provided
come from speech text provided by smartphone and use of
acoustic data automatically recorded. Other metrics can also
be calculated: total speech activity, the proportion of speech
during a day, analysis of voice and linguistic patterns, GPS
location provided by environmental sounds, and verbal fluency
tasks (letter, semantic, free word generation, and associational
fluency). Activity of humans in daily life is often represented
through GPS location or actigraphy on wearables that can
be used to study physical activity, recording GMA, and sleep
quality with CR. This technique helps us to understand the
link between state of health, activity and sleep conditions. They
try to implement reliable values such as total sleep time, wake
after sleep onset, percent sleep and number of awakenings, sleep
latency, sleep efficiency, and relative amplitude between daytime
and night-time activity.

The multimodal data source approach uses combinations
of the research presented from the unimodal data. We can
observe that in most cases, it is focused on the development
of new predictive models for diagnosing mood disorders.
Therefore, in most cases it uses machine learning for training
new helpful algorithms for increased diagnostic accuracy.
Different models are proposed to achieve this goal. However,
multimodal data sources, despite the promising possibilities of
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this technique, have hardly succeeded in demonstrating new
disruptive comprehension of the DP of mood disorders.

Beyond the aspects mentioned in this article, the digital
phenotype offers interesting perspectives for treatment and
clinical research, in particular for the dimensional approach to
mental disorders. Because mood disorders manifest themselves

in a heterogeneous way on the different components of the
mind, psychiatric classifications have often been criticized,
particularly for their validity, and more contemporary
approaches attempt to increase their reliability by using
more integrative approaches, the most successful of which is
the RDoC matrix (51). This model proposed by the NIMH

TABLE 3 Digital phenotype of features relevant to mood disorders.

MDD or bipolar depression Mania

Actigraphy Decreased daytime activities
Decreased walking
Nearby Bluetooth Device Count: Number, variance and
periodicity are decreased and NBDC sequence becomes more
irregular
Nocturnal activity is significantly higher in non-melancholic
patients
Unidirectional association between motor activity and
subjective mood level and a bidirectional association between
motor activity and subjective energy level or sleep duration.
Negative correlation between gross motor activity and sleep
parameters with depressive symptoms
Lower level of activity
Late start of activities
Peak activity at noon
Poor evening activities

Increase in activities
Increase in number of locations

HR and HRV Severity-dependent decrease in HRV
Increase in low-frequency HRV and
low-frequency/high-frequency ratio
Decreased high-frequency HRV
Higher heart rate and lower HRV in bipolar than in unipolar
depression
Increase in the low-frequency/high-frequency ratio and
decrease in high-frequency HRV in BPII
Resting HRV is negatively correlated with both rumination and
depressive symptoms
Reduction of HRV is correlated with illness severity

Decreased RR interval (increased HR), variance, low-frequency
HRV, and high-frequency HRV;
Increase in the low-frequency/high-frequency ratio
Increased and decreased HRV were both found

Temperature Decrease in temperature
Night-time temperature increase
Decreased amplitude
Phase advance
Depression group has a lower skin temperature amplitude and a
less-stable skin temperature rhythm
Body temperature rhythm higher in major depressive disorder
patients than healthy
Body temperature anomalies can diminish with the
improvement of depressive symptoms

n.c.

Smartphone Decrease in smartphone use (number of SMS messages,
number of calls)
Change in the duration of calls
Linguistic data: patterns of language, first person pronouns,
anger words, various negative emotions expressed on Twitter or
Facebook
Internet traffic data (mail, social, video, audio, game, shopping,
study): total duration, number of sessions, duration in morning,
afternoon, and midnight, and screen on-off events
Smartphone use: outgoing call frequency, total duration, total
outgoing SMS messaging frequency, call durations, number of
text messages, average interKEY delay, session count and
autocorrect rate
Positive correlation between screen status-normalized entropy
and depression

Number of calls increased;
Increased call duration;
Number of messages increased

Voice Increased response latency;
Number of breaks and length of breaks increased

Reduced number of breaks
Increased verbal fluency

Multimodal The most predictive features were related to phone engagement, activity level, skin conductance, and heart rate variability

MDD, Major Depressive Disorder; HRV, Heart Rate Variability; HR, Heart Rate; SMS, Short Message Service; NBDC, Nearby Bluetooth Device Count.
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offers a relevant framework to better exploit the links existing
between clinical and biological markers from a dimensional
perspective. The numerous passive and active markers of DP
make it possible to collect information specifically related to
each clinical dimension (emotional and affective, cognitive,
conative, and physical) and therefore to propose a more
detailed evaluation of semiology. In this perspective, Torous
et al. (3) state that it will thus be possible to collect preclinical
information at the community level, thus establishing a
reference level of the psychological dimensions of the general
population and to compare them with the pathological
variations observed in clinical populations. We suppose that
it will be possible to determine predictive patterns for the
occurrence of a clinical episode; in short, to make predictions.

From a therapeutic point of view, use by clinical dimension
therefore makes it possible to offer, in real time, more specific
and therefore personalized interventions. For example, in a
recent article we have listed the interventions more specific to
the conative dimension (which refers to goal-directed behavior
intentionally based on motivational factors), which can be
provided in support of active and passive DP data (52).

Finally, as mentioned above, DP can be an effective tool
for bias mitigation. Indeed, the processes related to decision-
making can benefit at several levels from the data collected, both
active and passive. For illustration, the passive collection of data,
less subject to the subjectivity of the patient and the clinician,
makes it possible to have a more efficient control of certain
cognitive human constraints (recall bias for example).

Limitations

Some limitations have been found in the review. The
majority of apps are available on Android, but only a few
on iOS. That means that data collected could introduce a
new type of bias based on social grounds. A significant
number of studies show an over-representation of the female
population. Large cohort studies remain the exception to
the rule, and the ability of digital phenotype to be widely
and easily deployed has remained untapped. That could be
explained by the legal procedures for protection of privacy,
which differ significantly between countries. Therefore, there is
an overrepresentation of the American or Asian population in
digital phenotype studies.

The majority of the recent studies focused on smartphone
use, HRV, GPS and multiple wearable strategies. Multimodal
strategies can be observed to present better reliability than
the unimodal approach. Questionnaires used by studies are
different, making comparisons more difficult, although use
of the PHQ9 (or PHQ8) questionnaire is common. Further
exploration could be achieved through other technologies,
bringing more accuracy with less recording, which is
logically more efficient.

Comparison with prior work

Most authors recommend the use of passive data
preferentially to active data in the context of bipolar disorder
because this type of automatically generated data makes it
possible to limit bias and limit the feeling of intrusion that
self-questionnaires can cause (especially if they must be filled
in regularly or if they appear in a “pop-up”). Some authors
emphasize the limitations of the actual DSM-5 approach, which
is based on clinical statistical observation. As reported above,
the digital phenotype provides new insight into the classification
of disorders from a behavioral perspective.

The concept of a digital phenotype, which is materially
supported by a technological tool that is theoretically accessible
at any time, thus makes it possible to track an individual’s
behavioral change processes over a more sustained period
of time compared to periodic visits to the practitioner (53).
However, it is not recommended for all clinical approaches and
as reported by Patoz et al. (54), many studies suggest that these
applications would be more appropriate for mild and moderate
stages of depression. Indeed, their use in severe mood disorders
is potentially limited.

We have also emphasized the appeal of passive data, which
encourages the involvement and commitment of subjects more
easily; for example, it requires little effort to make an inventory
of one’s symptoms. O’Brien and Toms (55) point out that
engagement is not a static process, but a multi-stage process:
one starts at the point of engagement, then comes a period
of engagement, and finally it is possible to encounter a point
of disengagement and a period of re-engagement. Finally, in
the absence of symptoms, the feeling of need for care may
diminish and thus cause the subject to disengage. These tools
allow for a more detailed and personalized behavioral follow-
up, and therefore to propose effective corrective actions, such as
feedback screen for promoting the reward dimension (56).

Conclusion

Ultimately, it appears that the digital phenotype of a
pathology is the computer translation of objectifiable signs of
mental illness, and it should therefore be understood as a means
of strengthening the observation capacities of psychiatrists.
Regarding depressive disorders, the main elements are the
decrease in functional and biological parameters (decrease in
activity and walking, decrease in the number of calls and SMS
messages, decrease in temperature and HRV) while the manic
phase results in the reverse phenomenon (increase in activity,
number of calls, and HRV) as one would expect. As of now,
most of the studies have focused on one tool, with significant
accuracy. But there still remains lack of evidence of the usability
of these technologies for long-term follow-up.
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