686 research outputs found

    Estimating parallel runtimes for randomized algorithms in constraint solving

    Get PDF
    International audienceThis paper presents a detailed analysis of the scalability and par-allelization of Local Search algorithms for constraint-based and SAT (Boolean satisfiability) solvers. We propose a framework to estimate the parallel performance of a given algorithm by analyzing the runtime behavior of its sequential version. Indeed, by approximating the runtime distribution of the sequential process with statistical methods, the runtime behavior of the parallel process can be predicted by a model based on order statistics. We apply this approach to study the parallel performance of a Constraint-Based Local Search solver (Adaptive Search), two SAT Local Search solvers (namely Sparrow and CCASAT), and a propagation-based constraint solver (Gecode, with a random labeling heuristic). We compare the performance predicted by our model to actual parallel implementations of those methods using up to 384 processes. We show that the model is accurate and predicts performance close to the empirical data. Moreover, as we study different types of problems, we observe that the experimented solvers exhibit different behaviors and that their runtime distributions can be approximated by two types of distributions: exponential (shifted and non-shifted) and lognormal. Our results show that the proposed framework estimates the runtime of the parallel algorithm with an average discrepancy of 21% w.r.t. the empirical data across all the experiments with the maximum allowed number of processors for each technique

    The Potential of Restarts for ProbSAT

    Full text link
    This work analyses the potential of restarts for probSAT, a quite successful algorithm for k-SAT, by estimating its runtime distributions on random 3-SAT instances that are close to the phase transition. We estimate an optimal restart time from empirical data, reaching a potential speedup factor of 1.39. Calculating restart times from fitted probability distributions reduces this factor to a maximum of 1.30. A spin-off result is that the Weibull distribution approximates the runtime distribution for over 93% of the used instances well. A machine learning pipeline is presented to compute a restart time for a fixed-cutoff strategy to exploit this potential. The main components of the pipeline are a random forest for determining the distribution type and a neural network for the distribution's parameters. ProbSAT performs statistically significantly better than Luby's restart strategy and the policy without restarts when using the presented approach. The structure is particularly advantageous on hard problems.Comment: Eurocast 201

    Neural Networks for Predicting Algorithm Runtime Distributions

    Full text link
    Many state-of-the-art algorithms for solving hard combinatorial problems in artificial intelligence (AI) include elements of stochasticity that lead to high variations in runtime, even for a fixed problem instance. Knowledge about the resulting runtime distributions (RTDs) of algorithms on given problem instances can be exploited in various meta-algorithmic procedures, such as algorithm selection, portfolios, and randomized restarts. Previous work has shown that machine learning can be used to individually predict mean, median and variance of RTDs. To establish a new state-of-the-art in predicting RTDs, we demonstrate that the parameters of an RTD should be learned jointly and that neural networks can do this well by directly optimizing the likelihood of an RTD given runtime observations. In an empirical study involving five algorithms for SAT solving and AI planning, we show that neural networks predict the true RTDs of unseen instances better than previous methods, and can even do so when only few runtime observations are available per training instance

    Learning sequential and parallel runtime distributions for randomized algorithms

    Get PDF
    In cloud systems, computation time can be rented by the hour and for a given number of processors. Thus, accurate predictions of the behaviour of both sequential and parallel algorithms has become an important issue, in particular in the case of costly methods such as randomized combinatorial optimization tools. In this work, our objective is to use machine learning to predict performance of sequential and parallel local search algorithms. In addition to classical features of the instances used by other machine learning tools, we consider data on the sequential runtime distributions of a local search method. This allows us to predict with a high accuracy the parallel computation time of a large class of instances, by learning the behaviour of the sequential version of the algorithm on a small number of instances. Experiments with three solvers on SAT and TSP instances indicate that our method works well, with a correlation coefficient of up to 0.85 for SAT instances and up to 0.95 for TSP instances

    Prediction of Parallel Speed-ups for Las Vegas Algorithms

    Get PDF
    International audienceWe propose a probabilistic model for the parallel execution of Las Vegas algorithms, i.e. randomized algorithms whose runtime might vary from one execution to another, even with the same input. This model aims at predicting the parallel performances (i.e. speedups) by analysis the runtime distribution of the sequential runs of the algorithm. Then, we study in practice the case of a particular Las Vegas algorithm for combinatorial optimization on three classical problems, and compare the model with an actual parallel implementation up to 256 cores. We show that the prediction can be accurate, matching the actual speedups very well up to 100 parallel cores and then with a deviation of about 20% up to 256 cores

    SATzilla: Portfolio-based Algorithm Selection for SAT

    Full text link
    It has been widely observed that there is no single "dominant" SAT solver; instead, different solvers perform best on different instances. Rather than following the traditional approach of choosing the best solver for a given class of instances, we advocate making this decision online on a per-instance basis. Building on previous work, we describe SATzilla, an automated approach for constructing per-instance algorithm portfolios for SAT that use so-called empirical hardness models to choose among their constituent solvers. This approach takes as input a distribution of problem instances and a set of component solvers, and constructs a portfolio optimizing a given objective function (such as mean runtime, percent of instances solved, or score in a competition). The excellent performance of SATzilla was independently verified in the 2007 SAT Competition, where our SATzilla07 solvers won three gold, one silver and one bronze medal. In this article, we go well beyond SATzilla07 by making the portfolio construction scalable and completely automated, and improving it by integrating local search solvers as candidate solvers, by predicting performance score instead of runtime, and by using hierarchical hardness models that take into account different types of SAT instances. We demonstrate the effectiveness of these new techniques in extensive experimental results on data sets including instances from the most recent SAT competition

    Learning dynamic algorithm portfolios

    Get PDF
    Algorithm selection can be performed using a model of runtime distribution, learned during a preliminary training phase. There is a trade-off between the performance of model-based algorithm selection, and the cost of learning the model. In this paper, we treat this trade-off in the context of bandit problems. We propose a fully dynamic and online algorithm selection technique, with no separate training phase: all candidate algorithms are run in parallel, while a model incrementally learns their runtime distributions. A redundant set of time allocators uses the partially trained model to propose machine time shares for the algorithms. A bandit problem solver mixes the model-based shares with a uniform share, gradually increasing the impact of the best time allocators as the model improves. We present experiments with a set of SAT solvers on a mixed SAT-UNSAT benchmark; and with a set of solvers for the Auction Winner Determination proble
    corecore