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Abstract Algorithm selection can be performed using a model of runtime distribu-
tion, learned during a preliminary training phase. There is a trade-off between the
performance of model-based algorithm selection, and the cost of learning the model.
In this paper, we treat this trade-off in the context of bandit problems. We propose
a fully dynamic and online algorithm selection technique, with no separate training
phase: all candidate algorithms are run in parallel, while a model incrementally learns
their runtime distributions. A redundant set of time allocators uses the partially
trained model to propose machine time shares for the algorithms. A bandit problem
solver mixes the model-based shares with a uniform share, gradually increasing the
impact of the best time allocators as the model improves. We present experiments
with a set of SAT solvers on a mixed SAT-UNSAT benchmark; and with a set of
solvers for the Auction Winner Determination problem.
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1 Motivation

Most problems in AI can be solved by more than one algorithm. Most algorithms
feature a number of parameters that have to be set. Both choices can dramatically
affect the quality of the solution, and the time spent obtaining it. Algorithm Selection
[63], or Meta-learning [75] techniques, address these questions in a machine learning
setting. Based on a training set of performance data for a large number of problem
instances, a model is learned that maps (problem, algorithm) pairs to expected
performance. The model is later used to select and run, for each new problem, only
the algorithm that is expected to give the best results.

A generalization of algorithm selection, inspired by the Algorithm Portfolio
paradigm [33], is to use the model to select a subset of the available algorithms,
and run them in parallel until the fastest one solves the problem. For some classes
of algorithms, with a “heavy-tailed” runtime distribution, the execution of multiple
parallel runs differing only for the random seed, can actually have an advantage over
a single run [25]. In any case, only a fraction of the computation time will be spent on
the fastest solver.

These approaches, though preferable to the far more popular “trial and error”,
pose a number of problems:

1. Training set representativeness. Problem instances encountered during the train-
ing phase are assumed to be statistically representative of successive ones. This
hypothesis is practically unavoidable for any model-based selection technique, if
referred to a single instance.

2. Static selection. The actual algorithm performance on a given problem is assumed
to be predictable with sufficient precision before even starting the algorithm. This
assumption is often violated by stochastic algorithms, whose performance can
exhibit large fluctuations across different runs (see, e. g., Section 7.1, or [25]).

3. Training cost. Generating the training data obviously requires solving each
training problem repeatedly, at least once for each of the algorithms. The
computational cost of this initial training phase is neglected, even though it can
be high enough to make algorithm selection impractical.

One common trait of the problems listed above, is that they can be related to the
lack of feedback information from the actual execution of the chosen algorithms.
Such a dynamic feedback can be used to update the model’s predictions, and adapt
the computational resource allocation accordingly, allowing for a finer distinction
among problem instances (problem 2). It can also be used to guide the training phase
itself, avoiding exceedingly long runs of inefficient algorithm/problem combinations
(problem 3).

A step in this direction can be taken using a Dynamic Algorithm Portfolio (DAP)
[17, 18, 21, 59]. Instead of first choosing a portfolio and then running it, a DAP
iteratively allocates a time slice that is shared among all the available algorithms,
and updates the relative algorithm priorities, based on their current state, in order
to favor the most promising ones. To this aim, a model is needed to map (problem,
algorithm, current algorithm state) triples to the expected time to solve the problem.

To reduce training cost, the artificial boundary between training and usage should
be dropped, adopting an online learning technique: after the first problem is solved,
the model is updated, and used to guide the solution of the next problem.
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In previous work, we termed this approach Adaptive Online Time Allocation
(AOTA). In [21], we presented an oblivious time allocator, with no knowledge
transfer across problem instances. Runtime predictions, evaluated by extrapolating
recent performance improvements, were mapped to time allocation for the next
time slice, based on a simple “ranking” heuristic. In [17] we proposed a method for
learning a probabilistic model online, while solving a problem sequence. The model
was conditioned on features of both the problems and the algorithms (parameter val-
ues, current state). The downside of introducing knowledge transfer across problem
instances was that the model would obviously be unreliable during the initial portion
of the problem sequence. Time was then allocated according to a modification of the
ranking heuristic: the first problem was solved with a uniform share, and the impact
of the model on the time allocation was gradually increased through the sequence of
tasks, according to a fixed schedule, independent of model performance.

In this work we keep the same dynamic online philosophy, but we separate the two
problems of allocating time based on runtime predictions, and grading the impact of
model-based allocation, giving a sound solution for both. In the following we briefly
present some related work (Section 2), distinguishing between static techniques,
in which the selection is performed before runtime, and dynamic ones, where the
selection process is somehow adapted during the actual execution of the algorithms.
We then introduce some simple concepts from survival analysis, which are relevant
to our method, and to algorithm performance modeling in general. Section 4 de-
scribes an ideal implementation of a static portfolio, based on exact knowledge of
the runtime distributions of the algorithms, illustrating different optimality criteria
to share machine time among the algorithms. Section 5 introduces the dynamic
extension, and the online learning scheme, discussing the exploration-exploitation
trade-off determined by the online setting. In Section 6, we address this trade-off
in the context of bandit problems [1], and present our new time allocator (TA)
GambleTA. Section 7 analyzes experimental results on two challenging algorithm
selection problems. In the first set of experiments, a local search and a complete
SAT solver are controlled during the solution of a sequence of random satisfiable and
unsatisfiable problems. In the second, we compare with results of a static algorithm
selection approach [45], on a set of combinatorial Auction Winner Determination
problems. Section 8 discusses originality, limitations, and viable improvements of
GambleTA.

2 Related work

Many algorithm selection, or parameter tuning, techniques, are tailored to a specific
algorithm, and often present similar interesting solutions across different fields of
research. We will give some examples of these, but we will keep our focus on “black
box” techniques, that can be applied in more general settings.

We will first introduce some naming conventions. A first distinction needs to
be made among decision problems, in which a binary criterion for recognizing a
solution is available; and optimisation problems, in which different levels of solution
quality can be attained, measured by an objective function [29]. A decision problem
can be viewed as an optimisation problem with a binary objective function; an
optimisation problem can be turned into a decision problem, if a reachable target
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value of performance can be set in advance. Literature on algorithm selection is often
focused on one of these two classes of problems. The selection is normally aimed
at maximizing performance quality for optimisation problems; and at minimizing
solution time for decision problems.

The selection among different algorithms can be performed once for an entire
set of problem instances (per set selection, following the terminology of [34]); or
repeated for each instance (per instance selection). A further independent distinction
[59] can be made among static algorithm selection, in which any decision on the allo-
cation of resources precedes algorithm execution; and dynamic, or reactive, algorithm
selection, in which the allocation can be adapted during algorithm execution.

Another orthogonal feature is related to learning. Here we borrow from the
machine learning terminology, distinguishing between offline or batch learning tech-
niques, in which there is a separate training phase, after which the selection criteria
are kept fixed; and online1 or life-long learning [62] techniques, in which the criteria
are updated at every instance solution. Oblivious algorithm selection techniques do
not transfer any knowledge across different problem instances.

2.1 Static algorithm selection

A seminal paper in this field is [63], in which offline, per instance algorithm selection
is first advocated, both for decision and optimisation problems. More recently, simi-
lar concepts have been proposed, with different terminology (algorithm recommen-
dation, ranking, model selection), by the Meta-Learning community [15, 23, 42, 75].
For example, in [70], different values for the kernel parameter of a Support Vector
Machine [74] are evaluated on different training data sets. Each data set is described
through a set of features. For an unseen data set, the features are first evaluated,
and a ranking of the kernel parameter values is induced, using a k-nearest-neighbor
estimate of performance, based on distance in feature space between the new data
set, and the ones used for training.

Usually, meta-learning research deals with optimisation problems, and is focused
on maximizing solution quality, without taking into account the computational
aspect. An interesting exception is offered by landmarking techniques [61] in which
the performances of fast base-learners, not included in the algorithm set, are used as
task features, in order to obtain a better discrimination of task difficulty.

Works on Empirical Hardness Models [45, 46, 56, 57] are instead applied to
decision problems, and focus on obtaining accurate models of runtime performance,
conditioned on numerous features of the problem instances, as well as on parameters
of the solvers [34, 35]. The models are used to analyze this performance, or to
generate harder benchmarks, but also to perform algorithm selection on a per
instance basis. Online selection is advocated in [34].

Literature on algorithm portfolios [24, 33, 60] is usually focused on choice criteria
for building the set of candidate solvers, such that their areas of good performance

1In previous works [17, 21], the terms “offline” and “online” were used to distinguish among static
and dynamic approaches, but we found this nomenclature to be misleading, especially for the
machine learning community.
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don’t overlap; and optimal static allocation of computational resources among
elements of the portfolio.2

Other interesting research areas, in which both solution quality and computational
aspects are taken into account, include anytime algorithm scheduling [8], and time
limited planning [14, 32, 65, 66]), in which time is allocated sequentially to a set of
planning primitives (e. g., finding the path to a goal) and the subsequent actions
exploiting the decisions taken (e. g., following the chosen path), in order to obtain a
good compromise between solution quality and time spent computing it.

Bandit problem solvers (BPS) [1, 6], can in principle be applied to static per set
algorithm selection, considering each available algorithm as an arm and runtime as
a loss, to be minimized (see also Section 2.2, Section 6, [16, 20]). As an alternative,
one can consider the use of a BPS to solve selection problems on a per instance basis,
in an oblivious setting, as in [11, 12, 73], where the Max K-armed bandit problem is
presented, and solvers for this game are used to maximize performance quality.

In [20], we presented an online method for learning a per set estimate of an
optimal restart strategy (GambleR). The method consists in alternating the universal
strategy of [51], and an estimated optimal strategy, again based on [51]. The estimate
is performed according to a model of runtime distribution on the set of instances,
updated at every solution. Here the bandit problem solver is used at an upper level,
to allocate runs of the two strategies: a similar approach will be taken in this work, to
weight the decisions of different time allocators (Section 6).

The classification of Racing Algorithms [7, 53] as static or dynamic depends on
the definition of a problem instance. In these works, the algorithm set contains
different parametrizations of a given supervised algorithm. Each is repeatedly run on
a sequence of increasingly large leave-one-out training sets, which can be seen as a
sequence of related problems; after a problem is solved, badly performing algorithms
are discarded if statistically sufficient evidence is gathered against them, such that
machine time is shared among fewer algorithms on next problem.

Search in program space can also be formalized as an algorithm selection problem.
For example, the algorithm set of the Optimal Ordered Problem Solver [68] may
include all programs of a universal programming language. Time is allocated to these
programs proportionally to a probability distribution that is updated when a problem
is solved. Other interesting program search techniques include Genetic Programming
[13] and Probabilistic Incremental Program Evolution [67].

2.2 Dynamic algorithm selection

A number of interesting dynamic exceptions to the static selection paradigm have
been proposed recently. In [31], algorithm performance modeling is based on the
behavior of the candidate algorithms during a predefined amount of time, called the
observational horizon. Each algorithm is run on each training problem, with a high
enough cutoff time, and features are extracted from the dynamic data recorded dur-
ing this initial period. Runs are distinguished as belonging to two classes of “short”
and “long” experiments, using the median of runtimes as a decision threshold. A

2With the term algorithm portfolio, we always refer to the parallel execution of (a subset of) the
members of the portfolio. In other works ( e. g., [45]), the term is also referred to the algorithm set
from which single algorithm selection is performed.
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mapping is learned from the static and dynamic features to the correct classification
labels. The same approach is used in [40] to implement dynamic context-sensitive
restart policies for SAT solvers: the authors assume that the runtime distribution
of their algorithm is not known in advance, but belongs to a known finite set of
distributions, from which the correct one can be discriminated based on dynamic
features.

Algorithmic chaining [9] executes a predetermined sequence of Constraint Pro-
gramming solvers, using an ad-hoc mechanism to decide when to switch to next
algorithm, according to a prediction of “thrashing” behavior, given the current state.
This can be viewed as a dynamic portfolio, but all its components are fixed, designed
based on a priori expertise.

In anytime algorithm monitoring [26], the dynamic performance profile of a
planning technique is updated according to its performance, in order to stop the
planning phase when further improvements in the planned action sequence are not
worth the time spent evaluating them. Also in this case, both the quality of a solution
and its computational cost are taken into account.

In [71], the author presents a collection of ideas for solving sequences of time-
limited optimisation problems by searching in a space of problem solving techniques,
allocating time to them according to their probabilities, and updating the probabili-
ties according to positive and negative results.

In a Reinforcement Learning [38] setting, algorithm selection can be formulated as
a Markov Decision Process: in [44], the algorithm set includes sequences of recursive
algorithms, formed dynamically at run-time solving a sequential decision problem,
and a variation of Q-learning is used to find a dynamic algorithm selection policy; in
[58, 59], from which we borrow some terminology, a set of deterministic algorithms is
considered, and, under some limitations, static and dynamic schedules are obtained,
based on dynamic programming. Success Story algorithms [69] can undo policy
modifications that did not improve the reward rate. A simple reinforcement learning
feedback mechanism is used at runtime in [3] to adapt the size of the prohibition list
of a tabu-search algorithm.

Some dynamic selection methods are oblivious, i. e., are characterized by the
absence of any knowledge transfer across problem instances.

The “parameterless GA” [27] may be viewed as a specialized heuristic for dynamic
selection. It consists of a sequence of simple generational Genetic Algorithms [28],
with exponentially spaced population sizes, generated and executed according to a
fixed interleaving schedule that assigns more runtime to smaller populations. Once
a small population converges, or a larger one achieves a higher average fitness, the
small one is discarded.

“Low-knowledge” approaches can be found in [4, 10], in which various simple
indicators of current solution improvement are used for algorithm selection, in order
to achieve the best solution quality within a given time contract. In [4], all available
algorithms are run for a fraction of the contract, and a performance predictor
is then used to select a single one for the remaining time. In [10], the selection
process is iterated: machine time shares are based on a recency-weighted average
of performance improvements. This latter oblivious technique is actually a simple
solver for time-varying bandit problems, here applied on a per instance basis.

In [21] we adopted a similar approach. We considered algorithms with a scalar
state, that had to reach a target value. The time to solution was estimated based
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on a shifting-window linear extrapolation of the learning curves: a recency-weighted
average was tried at first, but its results were not competitive with the comparison
term [27].

3 Algorithm survival analysis

This paper is focused on decision problems, in which a binary criterion for recogniz-
ing a solution is available. In this case, performance modeling aims at predicting the
runtime, i. e., the time to solve a problem. More precisely, consider a randomized
algorithm solving a given problem instance, or, equivalently, a randomized or
deterministic algorithm solving a randomly selected problem instance. In both cases,
the runtime spent before finding a solution can be treated as a random variable
T, described by its cumulative distribution function (CDF), F(t) = Pr{T ≤ t}, F :
[0,∞) → [0, 1], representing the probability that a solution is found within a time
t. This function is referred to as the runtime distribution (RTD) in literature about
algorithm performance modeling (see, e. g., [29]).

A large corpus of research, known under the name of survival analysis3 [37, 54], is
devoted to the modeling of events in time. In this section, we briefly review the basic
concepts and terminology in these fields, and discuss their application to algorithm
performance modeling.

We start by noting a difference between the events of interest in survival analysis,
typically death, or failure, and problem solution: the latter does not necessarily have
to happen. This can be described by a RTD with F(∞) < 1. The resulting probability
density function (pdf), defined as f (t) = dF(t)/dt, is improper, i. e., its integral over
[0,∞) does not sum to 1. In this situation, the expected runtime is ∞, and the usual
formulation

E{T} =
∫ ∞

0
t f (t)dt (1)

cannot be applied. A quantile tα of a the RTD, defined as the time at which F
intercepts the value α, can still be evaluated, solving the equation

tα = F−1(α), α ∈ [0, F(∞)]. (2)

Lifetime distributions are often described in terms of the survival function

S(t) = 1 − F(t), (3)

representing, in our case, the probability that the algorithm is still “alive” and running
at time t.

3This is the most widely used term, in medicine, biostatistics, biology, but different application fields
use other terms. Engineers modeling the duration of a device speak of failure analysis, or reliability
theory. Actuaries setting premiums for insurance companies use the term actuarial science.
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Another ubiquitous concept in survival analysis is the hazard function h(t),
quantifying the instantaneous probability of occurrence of the event of interest at
time t, given that it was not observed earlier:

h(t) = lim
�t→0

Pr{T ≤ t + �t|T > t} = f (t)
1 − F(t)

= f (t)
S(t)

, (4)

where f (t)/S(t) = f (t|T > t) is the pdf conditioned on observed survival until time t.
The integral of (4) is termed cumulative hazard, and can be shown to have the

following relationship with the survival function:

H(t) =
∫ t

0
h(τ )dτ =

∫ t

0

dF(τ )

S(τ )
= − ln S(t), (5)

or S(t) = exp(−H(t)).

3.1 Censored sampling

A typical problem that survival analysts have to face is the incompleteness of the
data. For example, in biostatistics and medicine, patients might “drop-out” a group
of study: in this case, only a lower bound on their lifetime would be known. A sample
containing incomplete data is referred to as a censored sample. In failure analysis
[54], censoring is normally the result of experimenter’s decisions, aimed at reducing
the duration of an experiment. For example, in estimating a duration model of a
newly produced light bulb, an engineer could leave a large number of prototypes
turned on for a predetermined period of time (type I censored sampling): in this
case the number of observed failures is a random variable, related to the lifetime
distribution of the bulbs. As an alternative, the experiment could end as soon as a
predetermined number of bulbs has gone off (type II censored sampling). In this
case, the duration of the experiment is a random variable. In both cases, only a lower
bound on failure time would be available for the surviving bulbs. Unless the engineer
is willing to wait for years, or the new product is quite cheap, this incomplete data
will constitute a large portion of the collected sample. The precision of the model
would clearly be affected. In other words, there is a trade-off between the duration
of the experiment, and the precision of the obtained model: in any case, discarding
incomplete data can result in an extremely biased model.

In algorithm performance modeling, type I censoring is typically performed,
imposing a threshold on runtime. Also in this case there is a trade-off between
training time and model precision. In the context of algorithm selection techniques,
this trade-off should rather be measured between training time and the gain in
performance resulting from the use of the learned model: in this sense, the required
precision can be much lower than expected. We give an example in [19] where this
trade-off is analyzed in the context of restart strategies, reporting the training times,
and resulting performance, of model-based restart strategies, learned with different
levels of censoring.

The treatment of censored data differs in the parametric and non-parametric
settings. When fitting a parametric model f (t|θ), a censored runtime tc can be taken
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into account by expressing the likelihood of the parameter θ , given this piece of data,
as the survival probability at time tc.

Lc(tc|θ) =
∫ ∞

tc
f (τ |θ)dτ = [1 − F(tc|θ)] = S(tc|θ). (6)

In nonparametric methods [41, 72], estimates are based solely on the data observed
so far. The simplest nonparametric method is the empirical CDF,

F̂(t) =
∑
ti<t

1

n
. (7)

In this setting, censored samples can be taken into account by distinguishing
between the number of events recorded, and the number of individuals observed “at
risk” (in our case: still running), at a time t. This is the essence of the Kaplan–Meier
estimator of the hazard function [39]:

ĥ(t) =
∑

ti=t,νi=1 1∑
ti≥t 1

, (8)

where νi is the event indicator, and is 1 for uncensored observations, and 0 for
censored ones.

In these and other nonparametric methods, F(t), S(t), H(t) are “stepwise” func-
tions, that change only at uncensored observations {ti|νi = 1}, and are defined until
the largest one; while f (t), h(t) are pulse trains, i. e., are 0 everywhere, but with
a positive integral across the observation values ti. For example, a non-parametric
hazard function can be represented as h(t) = ∑

i hiδ(t − ti), where hi is the hazard (8)
at ti, and the corresponding cumulative hazard function is H(t) = ∑

ti<t hi. In order
to obtain meaningful predictions also for t /∈ {ti}, hazard or density estimates can be
smoothed [76].

3.2 Conditional models

Conditional estimates [5] take into account covariate or feature values x for each
individual. If dynamic information about the algorithm is also available, this can be
treated as a time-varying covariate, or longitudinal data [43, 49, 55], to update an
estimated RTD. The simplest time-varying covariate is time itself: if an algorithm is
still running at a time y, the RTD for the rest of the run can be evaluated by simply
shifting and scaling the original F

F(t|T > y) = F(t) − F(y)

1 − F(y)
= F(t) − F(y)

S(y)
, (9)

defined only for t > y. Given the definition of the hazard function (4), its formula
does not change, while the cumulative hazard becomes:

H(t|T > y) =
∫ t

y
h(τ )dτ. (10)
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Both cases can be represented in the non-parametric setting, simply discarding
hazard values hi with ti ≤ y.

In the next section, we will apply the simple notions described here, to propose
different optimisation criteria for a static algorithm portfolio. Literature on survival
analysis is obviously much richer than this. Recent research is facing challenging ap-
plications, and developing advanced estimation techniques, with Bayesian methods
playing a major role [36]. For example, biostatisticians working on gene expression
data [50] have to deal with thousands of time-varying covariates, and often very
small and censored samples. Both algorithm performance modeling, and model-
based algorithm selection, can profit from this field of research: for selection, also
the computational complexity of modeling should be taken into account.

4 Static algorithm portfolios

Consider now a portfolio of K algorithms A = {a1, a2, ..., aK}, solving the same
problem instance in parallel, and sharing the computational resources of a single
machine according to a share s = {s1, .., sK}, sk ≥ 0,

∑K
i=1 sk = 1, i. e., for any amount

t of machine time, a portion tk = skt will be allocated4 to ak. An ak that can solve
the problem in a time tk if run alone, will spend a time t = tk/sk if run with a share
sk. If the runtime distribution Fk(tk) of ak on the current problem is available, one
can obtain the distribution Fk,sk(t) of the event “ak solved the problem after a time t,
using a share sk”, by simply substituting tk = skt in Fk:

Fk,sk(t) = Fk(skt). (11)

If the execution of all the algorithms is stopped as soon as one of them solves
the problem, as in Type II censored sampling (Section 3), the resulting duration of
the solution process is a random variable, representing the runtime of the parallel
portfolio. Its distribution FA,s(t) can be evaluated based on the share s, and the {Fk}.
The evaluation is more intuitive if we reason in terms of the survival distribution:
at a given time t, the probability SA,s(t) of not having obtained a solution is equal
to the joint probability that no single algorithm ak has obtained a solution within its
time share skt. Assuming that the solution events are independent for each ai, this
joint probability can be evaluated as the product of the individual survival functions
Sk(skt)

SA,s(t) =
K∏

k=1

Sk(skt), (12)

or, in CDF form:

FA,s(t) = 1 −
K∏

k=1

[1 − Fk(skt)]. (13)

4Here and in the following we assume an “ideal” machine, with no task switching overhead.
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Given (5), (12) has an elegant representation in terms of the cumulative hazard
function5

HA,s(t) = − ln(SA,s(t)) =
K∑

i=1

− ln(Sk(skt)) =
K∑

i=1

Hk(skt). (14)

Algorithm selection can be represented in this framework by setting a single sk

value to 1, while a uniform algorithm portfolio would have s = sU = (1/K, ..., 1/K).
If the distributions Fk are available, other alternatives can be implemented. One
naive approach could consist in evaluating, for each ak, the probability that it will
be the fastest, and using this value as the corresponding sk = Pr{Tk < T j�=k}. This
would only have a good performance if there is one algorithm in the set that greatly
dominates the others. Otherwise, this method would share resources among similarly
performing algorithms, resulting in a poor performance. In [17, 21], we mapped
runtime predictions to s values based on an heuristic “ranking” approach, in which
the rth expected fastest solver would get a share 2−r. Here we propose three different
analytic approaches, based on function optimisation.

1. Expected time. The expected runtime value EA,s(t) = ∫ ∞
0 t fA,s(t)dt can be ob-

tained, and minimized with respect to s:

s = arg min
s

EA,s(t). (15)

2. Contract. If an upper bound, or contract, tu on execution time is imposed, one can
instead use (13) to pick the s that maximizes the probability of solution within
the contract FA,s(tu) = Pr{TA,s ≤ tu} (or, equivalently, maximizes HA,s(tu), or
minimizes SA,s(tu)):

s = arg min
s

SA,s(tu). (16)

3. Quantile. In other applications, one could want to solve the problem with
probability at least α, and minimize execution time. In this case, a quantile
tA,s(α) = F−1

A,s(α) should be minimized:

s = arg min
s

F−1
A,s(α). (17)

If the Fk are parametric, a gradient of the above quantities could be computed
analytically, depending on the particular parametric form: otherwise, the optimisa-
tion can be performed numerically. Note that the shares s resulting from these three
optimisation processes could differ: in the last two cases, they could also depend
on the chosen values for tu and α respectively. In no case is there a guarantee of
unimodality, and it might be advisable to repeat the optimisation process multiple
times, with different random initial values for s, in case of extreme multimodality.

5Apart form the terms sk, (14) is the method used by engineers to evaluate the failure distribution
of a series system, which stops working as soon as one of the components fail, based on the failure
distribution for each single component.
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A choice among the three alternatives, as well as the choice of the relative
parameters, might be imposed by the particular application, or left open as a design
decision. We will postpone its discussion, and conclude this section remarking that
the methods described here all rely on the assumption of independence of the
runtime values among the different algorithms, which allows to express the joint
probability (12) as a product. This assumption is met only if the Fk represent the
runtime distributions of the ak on the particular problem instance being solved. If
instead the only Fk available capture the behavior of the algorithms on a set of
instances, which includes the current one, independence cannot be assumed: in this
case, the methods presented should be viewed as approximations. In a less pessimistic
scenario, one could have access to models M of the Fk conditioned on features, or
covariates, x of the current problem. In such a case the conditional independence of
the runtime values would be sufficient, and the resulting joint survival probability
could still be evaluated as a product

SA,s(t|x) =
K∏

i=1

Sk(skt|x). (18)

In practice, such a model is usually not available, and has to be estimated. The
degree of approximation implied by assumption (18) will depend on the fit of the
model.

5 A continually learning dynamic portfolio

Let us now focus on the second of the issues mentioned in the introduction,
namely, the difficulty of static runtime predictions. It is intuitive that re-evaluating
s periodically could improve the performance, especially if the runtime values are
spread on a large range. To be effective, this evaluation has to be based on a model
M of the RTD conditioned also on the current state xk of each algorithm: in the
simplest setting, one can always consider the time spent yk as the current state
information, updating each Fk as in (9).

A dynamic algorithm portfolio (Algorithm 1) can be implemented by re-
evaluating s periodically, each time based on Fk conditioned on the current state
information, and time already spent. Any of the three methods presented in Section 4
could be used as a time allocator TA to update s. An additional design decision
would be required to set the sequence of time intervals �t. Note also that in (Alg. 1)
it is assumed that, for each incoming problem instance, there is at least one ak that
can solve it.

Algorithm 1 Dynamic algorithm portfolio
Algorithm set A = {a1, ..., aK}
Model M
while problem not solved do

update Fk(tk) := M(tk|xk, yk) for k = 1, ..., K
update �t
update s := TA({Fk})
run A with share s for a maximum time �t

end while
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The conditional model M is usually not available, and would have to be estimated
from experimental data. A straightforward application of the machine learning para-
digm would require solving, with each algorithm, the same sequence of “training”
problem instances, in order to collect a sufficient amount of runtime data. This
approach would share the third issue mentioned in the introduction with other
algorithm selection techniques: a huge amount of time would be spent solving the
same training problems over and over again, in order to gather a sufficiently large
amount of data.

A first idea for reducing training time is inspired by censored sampling techniques.
As the engineers do with the light bulbs, we could run our portfolio with a uniform
share sU = (1/K, 1/K, ..., 1/K) on each training problem instance, and instead of
waiting for all the algorithms to end, we could stop after the first few solve the
problem, and switch to the next. As said in Section 3, this would have an impact on
the accuracy of the model, but the uniform share would at least assure that the fastest
algorithm(s) would not be censored. In this way the model would be less accurate for
less efficient algorithm/problem combinations. The downside of the uniform share, is
that it would still have a huge overhead on performance.6

Another speed-up could be obtained using a partially trained model to guide
further training. There might be good algorithm/problem combinations that are easy
to learn, and bad ones that are easy to avoid. Instead of keeping a uniform sU
throughout the training sequence, we could periodically train the model M during
the sequence, and run our static or dynamic portfolio of choice on the remaining
training problems “mixing” the output of the chosen time allocator sM = TA(M),
with the uniform sU , as s = pMsM + (1 − pM)sU ; the mixing coefficient pM ∈ [0, 1]
could be increased each time the model is updated. This would be more dangerous, as
we would loose the positive effect of sU , and risk of censoring the fastest algorithm. It
is intuitive that, if pM is increased too quickly, and the initial portion of the training
sequence is somehow deceptive, an initially imprecise model could cause more time
to be allocated to less efficient algorithms, and the execution of the fastest algorithms
to be censored, thus reinforcing its own mistakes.

We are facing a trade-off between exploration of the performance of the various
ak, and exploitation of the model obtained so far. In [17], we addressed this trade-
off heuristically, updating the model after each task solution, and gradually shifting
through the problem sequence, from a uniform initial share to a model-based share,
again heuristically evaluated. In the following section, we will treat this trade-off in
the context of bandit problems with expert advice.

6 Time allocation as a bandit problem

In its most basic form [64], the multi-armed bandit problem is faced by a gambler,
playing a sequence of trials against a K-armed slot machine. At each trial, the gam-
bler chooses one of the available arms, whose rewards are randomly generated from
different stationary distributions. The gambler can then receive the corresponding

6If we wait for just one algorithm to terminate, and tI is the performance of the fastest, the resulting
training cost will be KtI : another uncensored sample tI I would cost an additional (K − 1)(tI I − tI),
and so on.



308 M. Gagliolo, J. Schmidhuber

reward rk, and, in the full information game, observe the rewards that he would have
gained pulling any of the other arms. The aim of the game is to minimize the regret
R, defined as the difference between the cumulative reward of the best arm, and the
one earned by the gambler G

R = max
k

∑
j

xk( j ) − G. (19)

A bandit problem solver (BPS) can be described as a mapping from the history
of the observed rewards rk ∈ [0, 1] for each arm k, to a probability distribution p =
(p1, ..., pK), from which the choice for the successive trial will be picked.

In recent works, the original restricting assumptions have been progressively
relaxed, allowing for non-stationary reward distributions, partial information (only
the reward for the pulled arm is observed), and adversarial bandits, that can set their
rewards in order to deceive the player. In [1], no statistical assumptions are made
about the process generating the rewards, which are allowed to be an arbitrary func-
tion of the entire history of the game (non-oblivious adversarial setting). Based on
these pessimistic hypotheses, the authors describe probabilistic gambling strategies
for the full and the partial information games, proving interesting bounds on the
expected value of the regret.

Assuming that all ak can solve all problem instances, it is straightforward to
describe static algorithm selection in a K-armed bandit setting, where “pick arm k”
means “run algorithm ak on next problem instance.” The reward for this game could
be set based on the runtime of the chosen algorithm, for example as rk := 1/tk;
alternatively, runtime tk could represent a loss, to be minimized. The information
would be partial: the runtime for other algorithms would not be available. The
rewards would be generated by a rather complex mechanism, i.e., the algorithms
ak themselves, so the bandit problem would fall into the adversarial setting. As BPS
typically minimize the regret with respect to a single arm, this approach would only
allow to implement per set selection, of the overall best algorithm.

To avoid excessively long tk, machine time could be subdivided into arbitrarily
small intervals δt: “pick arm k” would mean “resume algorithm ak on current
problem instance, for a time δt, then pause it.” Reward could be attributed rk := 1/tk
as before, tk being the total runtime of the winning algorithm. Information would
again be partial: more precisely, in this case it would be censored, as a lower bound
on performance, and a corresponding upper bound on reward, would be available for
the other algorithms. The bandit would be a non-oblivious adversary, as the result of
each arm pull would depend on previous pulls of the same arm.

On a large number of arm pulls, the expected value of time spent executing ak

would be proportional to pk. And, typically, bounds on regret for a BPS are proved
based on expected values. The game described above is then equivalent to a static
portfolio, using the p of the BPS as the share value s, and updating it after a problem
instance is solved. Again, the resulting selection technique is static, per set,7 only
profitable if one of the algorithms dominates the others on all problem instances.

7Oblivious per instance techniques could be based on different reward attributions, as in [10].
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A less restrictive, and more interesting hypothesis, is that there is one of a set
of time allocators, whose performance dominates the others. At this higher level,
one could use a BPS to select among different static time allocators, TA(1), TA(2),...,
working on a same algorithm set A. In this case, “pick arm n” would mean “use time
allocator TA(n) on A to solve next problem instance.” In the long term, the BPS
would allow to select, on a per set basis, the TA(n) that is best at allocating time to
algorithms in A on a per instance basis. If the BPS allows for time-varying reward
distributions, it could also deal with time allocators that are learning to allocate time.

A more refined alternative is suggested by the bandit problem with expert advice,
as described in [1, 2]. Two games are going on on parallel: at a lower level, a partial
information game is played, based on the probability distribution obtained mixing
the advice of different experts, represented as probability distributions on the K
available arms. The experts can be arbitrary functions, and give a different advice
for each trial. At a higher level, a full information game is played, with the N experts
playing the roles of the different arms. The probability distribution p at this level is
not used to pick a single expert, but to mix their advices, in order to generate the
distribution for the lower level game. In [1], Auer et al. propose an algorithm called
Exp4 (Alg. 2) to play this two-level game. Exp4 is a combination of the algorithms
for the full and the partial information setting. It features a fixed lower bound γ on
the exploration probability, which can be set, based on the total number of trials M,
in order to obtain a bound on the expected regret relative to the performance of the
best expert:

E(R) ≤ 2.63
√

MK ln N. (20)

Algorithm 2 Exp4(K, N, M) by Auer et al. [1]
1: K arms, N experts, M trials

2: set γ := min
{

1,
√

K ln N
(e−1)M

}
3: initialize wn := 1 for n = 1, ..., K;
4: for each trial do
5: get advice vectors s(n) ∈ [0, 1]K from experts n = 1, ..., N
6: set pn := wn/

∑N
i=1 wi for n = 1, ..., N

7: pick arm k with probability sk := (1 − γ )
∑N

n=1 pns(n)

k + γ /K
8: observe reward rk ∈ [0, 1]
9: set r̂k := rk/pk

10: update wn := wn exp(γ s(n)

k r̂k/K) for n = 1, ..., N
11: end for

The original formulation is based on a finite upper bound on the cumulative
reward of the best expert, which is at most M if each reward is in [0, 1]. A variant
of the algorithm is proposed if M is unknown, or if the rewards are much smaller
than 1. Bound (20) requires that the uniform expert s = (1/K, ..., 1/K) is included in
the set.

In our case, the time allocators play the role of the experts, each suggesting a
different s, on a per instance basis; and the arms of the lower level game are the
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K algorithms, to be run in parallel with the mixture share. The partial information
on the reward at the lower level (based on the runtime of the ak first to solution) is
translated into full information at the upper level, based on the s(n) proposed by each
TA(n).

Before prosecuting, we need to decide how to attribute the rewards. Ideally, we
would like Exp4 to select the time allocator that is better at giving more time to
the fastest algorithms. As we cannot know the real fastest algorithm, one good idea
could be to reward minimization of solution time, setting rk ∝ 1/tk. One possible
side effect of this choice could be that, for problem sequences on which runtimes
vary of different order of magnitudes, the rewards for the harder problems would be
much lower than the ones for the easy ones. We will then adopt a logarithmic reward
attribution, as in [20]. As Exp4 requires normalized rewards, we can set lower and
upper bounds tmin, tmax on runtime, and set the reward for the winning algorithm
ak as

rk = ln tmax − ln tk
ln tmax − ln tmin

. (21)

This reward will be then distributed by Exp4 to the time allocators, based on how
much time they allocated to ak. The extension to dynamic time allocators (Alg. 1)
is straightforward: in this case the s(n) would depend, for each allocator, on the
sequence of intervals �t(0),�t(1), ..., and the corresponding s proposed during each
interval, and the normalized value of

∑
j s(n)( j )�t( j ) would be used in place of s(n)

at line 10 of Alg. 2.
We can then use Exp4 to address the exploration-exploitation trade-off that we

left open in the last section. We can solve each problem in the training sequence
mixing the uniform sU , and the sM evaluated by the model-based allocator, using the
current output p of Exp4 as a mixing coefficient. In this way Exp4 would detect when
the model is ready to use, and starts gaining a better performance than the uniform
allocator. After each instance is solved, we can also update Exp4.

The regret rate (20) is particularly interesting, as it depends on the logarithm of the
number of experts N. We can exploit this fact to take the design decision that we left
open in Section 4, namely, which allocator function to use: we can leave this decision
to Exp4, picking a redundant set of time allocators. We can also try different values
for the respective parameters. Note that all these allocators can share a common
model M, so the computational overhead would depend on the cost of the time
allocators alone. The resulting “gambling” time allocator (GambleTA) is described
in Alg. 3.

Using a non-uniform share, there is no guarantee that the winner algorithm will
be the actual fastest, so our reward scheme could be deceptive. The sequence of tasks
can also be deceptive, and again cause the model to reinforce its own mistakes. All
this is allowed in the pessimistic settings of Exp4, which will still guarantee that the
expected regret, compared to the gain of the best time allocator, is bounded by (20).

This optimal regret is defined with respect to the best allocator. Nothing can be
said about the performance w.r.t. the best algorithm. In a worst-case setting, if none
of the time allocator learns anything, Exp4 will give most credit to the uniform share,
which gains a reward r̂k/K at every trial. We will now see two example applications
on which the performance of GambleTA is quite far from this pessimistic scenario.
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Algorithm 3 GambleTA Gambling time allocator
1: Algorithm set A with K algorithms
2: N time allocators, including sU = (1/K, ..., 1/K)

3: M problem instances
4: initialize Exp4(K, N, M)

5: let Exp4 initialize p ∈ [0, 1]N

6: initialized model M
7: for each problem b 1, b 2, ..., bM do
8: while b m not solved do
9: update �t

10: for each time allocator TA(1), ..., TA(N) do
11: update s(n) = TA(n)(M), s(n) ∈ [0, 1]K

12: end for
13: evaluate mix s = ∑N

n=1 pns(n)

14: run A with share s, for a maximum time �t
15: end while
16: observe reward rk for winner ak

17: update Exp4
18: let Exp4 update p
19: update M based on collected runtime data
20: end for

7 Experiments

We present two experiments, both with very small algorithm sets (K = 2), but long,
and challenging, problem sequences. The first experiment features a complete and
a local search SAT solver, dealing with a mixed set of CNF3 SAT instances at the
sat-unsat threshold. The second experiment features solvers for a published Auction
Winner Determination Problem (WDP) benchmark [45].

Before proceeding, we will describe the remaining details of our time allocation
algorithm. As said, we use Exp4 [1] at the top level, to mix the share decisions s(n)

of different time allocators TA(n) (Alg. 3). No care was put in selecting the set of
time allocators, as Exp4 is better at this game. The set included (see Section 4 for a
description):

– The uniform time allocator, with share s = (1/K, ..., 1/K), required by Exp4.
– A set of nine quantile minimizers , s = arg mins F−1

A,s(α), with equally spaced
values for the parameter α (0.1, 0.2, ..., 0.9).

– A “greedy” contract allocator, using the next time limit as a contract:
s = arg mins SA,s(�t + ∑K

k=1 yk), yk being the time spent so far by ak.

Each experiment was repeated using each one of the allocators, always accom-
panied by the uniform, but none of them could improve on the performance of
the ensemble. Exp4 preferred different time allocators on the two benchmarks, but
always discarded the quantile allocators with α ≥ 0.5.

The sequence of time intervals �t employed by the dynamic portfolio was
exponential, with base two. (�t0,2�t0,4�t0,...). We set the initial �t0 to two different
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values for the two experiments. Also tmin was different for the two benchmarks, while
tmax was kept fixed at 1010.

As a model, we used the conditional non-parametric hazard estimator (ĥ(t|x)) by
Wichert and Wilke (WW in the following) [77]. This model is conceptually simple,
and computationally efficient. As most non-parametric methods, it stores all the
training data (xi, ti): the time values ti of censored and uncensored events, and the
covariates xi, evaluating an empirical CDF (7) Fx(x) of the covariate value x. In order
to predict the hazard function for an unseen value x of the covariate, it first estimates
its CDF value Fx(x), by simply evaluating its rank in the sorted list of covariates.
The probability Fx(x) is then compared to the Fx(xi) of each sample (again obtained
from the rank), through a kernel function K, with bandwidth parameter bn, and the
value of K((Fx(x) − Fx(xi))/bn) is used to weight the event ti. The weight values are
used in place of “1” in (8), to evaluate a Kaplan–Meier estimate of the hazard for the
covariate x:

ĥ(t|x) =
∑

ti=t,νi=1 K
(

F(x)−F(xi)

bn

)
∑

ti≥t K
(

F(x)−F(xi)

bn

) . (22)

If the covariates are multidimensional, the process is repeated for each dimension,
and the products of the resulting kernel distances are used as weights. In short,
(22) performs a nearest neighbor estimate of the hazard: the kernel distance is
measured on the distribution of covariate values, and is not sensitive to scaling.
The kernel function K is required to be symmetric around 0, and integrate to 1.
We used a uniform kernel (0.5 on [−1, 1], and 0 elsewhere), which is a common
choice in non-parametric statistics. The convergence proof for the estimator requires
the bandwidth parameter bn to be set based on the size n of the stored sample,
as bn ∈ [n−1/2, n−1/4]. We present results for bn = n−1/4, which provides the widest
allowed kernel.

A separate model was learned for each algorithm, using a small set of problem
specific features as covariates.8 The only dynamic feature taken into account was
the time spent yk, as in (9, 10), which, in the non-parametric setting, simply consists
in discarding hazard values h j with t j ≤ yk. The RTD of the portfolio was evaluated
based on the cumulative hazard9 form (14). The time allocators described in Section 4

8As the two algorithms are in both cases not related. For different parametrizations of the same
algorithm, a single model can be used, conditioned also on parameter values.
9The model (WW) outputs, for a given covariate x, two vectors, one of event times {ti}, one of the
corresponding hazard estimates {hi}. Based on this data, a vector of hazard values for the algorithm
running with share sk has first to be evaluated. Note that the derivative of H(skt) would be skh(skt),
but in the nonparametric setting the hi are pulses, not point values: scaling them by sk would not be
correct. To see why, consider that the cumulative hazard at H(∞) should not vary by scaling time, so
the integral across the scaled time values must remain the same. Only time has to be dilated, dividing
the time values ti by the sk chosen by GambleTA. Hazard values relative to different algorithms
are then merged, sorting the resulting list according to time values. The cumulative hazard (14) can
finally be evaluated, as the cumulative sum of the resulting hazard values. This value is used by two
different functions, evaluating the quantile (3) and survival probability at the next contract (2), based
on the survival function obtained from (5). These last two functions are passed as arguments to the
Matlab function fminbnd, to be minimized.
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were evaluated numerically, using a line search routine (see note 9), careless of
multimodality: on runs that were monitored, we observed multimodality only for
high levels of the parameters α or tu, for which the performance of the time allocators
was poor anyway.

We repeated both experiments 50 times, each time with a different random
reordering of the problem instances, and a different random seed for the algorithms,
if randomized. Unless otherwise stated, all results reported are 95% confidence
bounds, evaluated on 50 runs. For both experiments, the parallel execution of the
algorithms was simulated, using stored runtime data;10 the time values reported only
include the algorithm runtimes.11

We assess the performance of GambleTA by comparing it with the uniform time
allocator sU = (1/K, ..., 1/K) alone; and the one of an oracle, with foresight of the
runtime values, which only executes, for each problem instance, the algorithm that
will be fastest. If tG( j ) is the runtime of our time allocator on problem instance
j, tk( j ) is the runtime of algorithm ak, then tO( j ) = mink{tk( j )} is the runtime of
the oracle, and tU = KtO is the runtime of the uniform share. We will describe the
performance of the allocator until task m reporting the cumulative time

∑m
j=1 tG( j ),

and the cumulative overhead ∑m
j=1 tG( j ) − tO( j )∑m

j=1 tO( j )
, (23)

relative to the performance of the oracle. These are fair performance indicators, also
for a per instance selection technique, but do not capture the performance on a single
instance. Plotting this information averaged on multiple runs is problematic, as the
order of the instances is different for every run, and in both benchmarks the runtimes
may differ of several orders of magnitude. We will then plot the performance on each
instance, and for each run, against the runtime of the oracle, and the uniform share.

10Unfortunately, doing research on an online method does not have the benefits of just using one, as
comparing with the performance of an oracle requires the knowledge of all runtimes, which means
that, for the first experiments, we also had to solve all satisfiable problems with Satz–Rand.
11Including the overhead of the quantile evaluations, the model update, etc., would not be fair, as
all these operations are implemented in unoptimized, and rather bloated, Matlab code, while the
ak are written in C. WW, as other nonparametric methods, has a very cheap learning phase, which
consists in sorting independently the event times and the d dimensions of the covariates x ∈ R

d. The
cost of prediction is d searches on the sorted covariate data, and the cost of (22). Quantiles can also
be evaluated just by searching a value on a sorted list. To give a rough idea, we report the profile of a
single run on the SAT-UNSAT benchmark: on 1, 899 problems, two WW models were updated once
per problem, for a total of 4.6 s. The hazard generating function (22) was called about 280, 000 times
in total, as each of the allocators uses it in the optimisation process (see note 9) : the cost was 88 s. An
additional 3 min was spent in merging and re-sorting hazard vectors, to evaluate the hazard of the
portfolio. The total runtime of the portfolio alone on the problem sequence would have been about
24 min. These figures would obviously change passing to a C implementation. Simple optimizations,
like preserving order when merging two hazard vectors, would further improve the situation. The
fact that the data is sorted would allow for more advanced optimizations, based for example on
balanced trees, with a cost O(log n), n being the number of samples, both for search and insertion.
Regarding memory requirements, the model would collect K samples for each solved task. On a
modern machine, this amount of data would not cause any problem, even with long task sequences,
but once there is enough data one can start to reduce the number of stored samples, for example
merging neighboring hazards.
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To underline the improvement during the problem sequence, we will also report
separate statistics for the first and second halves of the two problem sequences.

7.1 Satisfiability problems

Satisfiability (SAT) problems [22] constitute a standard benchmark in AI. A con-
junctive normal form CNF(k,n,m) problem consists in finding an instantiation of a
set of n Boolean variables that simultaneously satisfies a set of m clauses, each being
the logical OR of k literals, chosen from the set of variables and their negations.
A problem instance is termed satisfiable (SAT) is there exists at least one of such
instantiations, otherwise it is unsatisfiable (UNSAT). An instance is considered
solved if a single solution is found, or if unsatisfiability is proved. With k = 3 the
problem is NP-complete. Satisfiability of an instance depends in probability on the
clauses to variables ratio: a phase transition [52] can be observed at m/n ≈ 4.3, at
which an instance is satisfiable with probability 0.5. This probability quickly goes to
0 for m/n above the threshold, and to 1 below.

SAT solvers can be broadly classified in two categories: complete solvers, that
execute a backtrack search on the tree of possible variable instantiations, and are
guaranteed to determine the satisfiability of a problem in a finite, but possibly
unfeasibly high, amount of time; and local search (LS) solvers, that cannot prove
unsatisfiability, but are usually faster than complete solvers on satisfiable problems.
In other words, a local search solver can only be applied to satisfiable instances: at
the threshold, there is a 0.5 probability that the solver will run forever. The RTD
of a complete solver will have F(∞) = 1 with a finite 1 quantile, for any value of
m/n; while a local search solver has a F(∞) = 0.5 on instances at the 4.3 threshold.
Users of LS interested in such benchmarks have then to first filter out unsatisfiable
instances by running a complete solver, in order to test the local search algorithm on
SAT instances only. This means that, at the phase transition, local search implies an
additional cost, equal to the performance of a complete solver, which obviously does
not make it competitive for such problem instances.

Our first experiment was performed using a portfolio of two SAT solvers from
the two categories above. As a benchmark, we used the complete set of uf-n-m
and uuf-n-m instances from SATLIB [30]. These are randomly generated instances
at the phase transition, with n ranging from 20 (resp. 50 for the unsat) to 250, 100
instances for each size, and m varying accordingly. The instances are subdivided in
groups of satisfiable (uf*) and unsatisfiable (uuf*) instances. We merged all groups
in a single sequence, of 1, 899 problems12 in total, that was randomly re-ordered for
each run of the experiment.

As a complete solver we picked Satz–Rand [25], a version of Satz [47] in which
random noise influences the choice of the branching variable. Satz is a modified
version of the complete DPLL procedure, in which the choice of the variable on
which to branch next follows an heuristic ordering, based on first and second level
unit propagation. Satz–Rand differs in that, after the list is formed, the next variable
to branch on is randomly picked among the top h fraction of the list. We present

12This odd number is due to the fact that instance uuf-200-860 number 100 is missing in the online
archive. Note also that the smallest n for the unsatisfiable instances is 50, so there are 1, 000 SAT and
899 UNSAT instances in total, making the SAT probability for the whole set slightly higher than 0.5.
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Fig. 1 SAT-UNSAT problems. These plots illustrate the functioning of the Contract (2) and
Quantile (3) time allocators (Section 4), and are not generated from a run of GambleTA, but from a
RTD estimate on problems of size n = 250 only. Left column: situation at t = 0. Right column: after
t = 107 of uniform parallel run (5 × 106 for each algorithm). Top: RTD of the single algorithms,
and of the uniform share. Middle: survival probability SA,s(tu) (vertical axis) at a time contract tu,
for different values of the share s1 assigned to Satz–Rand (horizontal axis), and different values of
the time contract tu (different lines). Bottom: quantiles of runtime for different values of α (different
lines), and different values of time share allocated to Satz–Rand (horizontal axis). The minimum of
each line in (b, c, e, f) is the share allocation decided by the corresponding TA
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results with the heuristic starting from the most constrained variables, as suggested
also in [47], noise parameter set to 0.4, and the restart mechanism disabled, as the
RTD of the algorithm does not display heavy-tailed behavior [25] for this n/m ratio.
As a local search solver we used G2-WSAT [48]: for this algorithm, we set a high
noise parameter (0.5), as advisable for problems at the phase threshold, and the
diversification probability at the default 0.05. As both solvers are randomized, we
also used a different random seed for each run.

As we needed a common measure of time, and the CPU runtime measures are
quite inaccurate (see also [29], p. 169), we modified the original code of the two
algorithms adding a counter, that is incremented at every loop in the code. The
resulting time measure was consistent with the number of backtracks, for Satz–Rand,
and the number of flips, for G2-WSAT. All runtimes reported for this benchmark are
expressed in these loop cycles: on a 2.4 GHz machine, 109 cycles take about 1 min.

The only feature used for the model WW was n, the number of variables in the
SAT problem, as the clauses-to-variable ratio m/n is practically constant. �t0 and
tmin where both set to 104, the order of magnitude of the initialization cost of both
algorithms on the smallest problem size.

This algorithm set/problem set combination is quite interesting. G2-WSAT almost
always dominates the performance of Satz–Rand on satisfiable instances, while the
latter is obviously the winner on all unsatisfiable ones, on which the runtime of G2-
WSAT is infinite.

This situation is visualized in Fig. 1a, which plots the empirical CDF of the
runtimes for the two solvers, resulting from an estimate for a single random seed,
on the two sets of larger instances (uf-250, uuf-250). One can clearly notice
the advantage of G2-WSAT on satisfiable instances, represented by the small lower
quantiles (below 106). From quantile 0.5 on, the RTD remains flat, reflecting the fact
that half of the instances are unsatisfiable. Satz–Rand starts solving problems later,
and is competitive with G2-WSAT only on a small number of satisfiable instances,
but is able to solve also all the unsatisfiable ones, as indicated by the fact that
the RTD reaches 1, i.e., the quantile t1 is finite. The third line in the plot, labeled
“uniform,” represents the RTD of the uniform portfolio sU = (0.5, 0.5).

Algorithm selection would be easy in this case, if not for the fact that the satis-
fiability of an instance cannot be predicted in any way, before attempting solution.
As G2-WSAT is incomplete, any sensible single algorithm selection technique would
select Satz–Rand on all problems. The performance of this algorithm alone is better
than the one of the uniform share, but obviously worse than the performance of
the oracle, as this latter can profit from its foresight, and solve SAT instances with
G2-WSAT.

Figure 2a displays the evolution of the cumulative time during the task sequence,
comparing for each task i the cumulative performance of GambleTA

∑
j<i tG( j ) to

the cumulative performance of the oracle
∑

j<i tO( j ), and of the uniform share sU
(K

∑
j<i tO( j )). The performance of Satz–Rand is also plotted, as this algorithm can

solve all the problems. Lines represent upper confidence bounds, evaluated on 50
runs.

Figure 2b plots the cumulative overhead (23) of GambleTA, during the problem
sequence. Here the dotted lines represent upper and lower 95% confidence bounds.
GambleTA is quite quick in converging to the final performance, and then seems
to oscillate; averaged on 50 runs, it ends the problem sequence with a cumulative
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Fig. 2 SAT-UNSAT problems. a Cumulative time on the SAT-UNSAT problem set. Upper 95%
confidence bounds on 50 runs, with random reordering of the problems. GambleTA is our time
allocator. Oracle is the lower bound on performance. Uniform is the (0.5,0.5) share. Satz–Rand is
the single algorithm. b Cumulative overhead (23) on the SAT-UNSAT problem set. Upper and lower
confidence limits. Right column: Performance of GambleTA compared to the oracle, on all problems
and for all runs. 50 × 1, 899/2 = 47, 475 points per plot. c First half of the sequence. d Second half.
The diagonal (not marked) is the performance of Oracle. The continuous line above the diagonal
is the performance of Uniform. Note that this line is crossed by many runs, especially for runtimes
around 106. The biggest improvements in the second part of the sequence can be seen on very easy
and very hard problems. See also Fig. 3, and Table 1

overhead of about 14%. Note that this figure includes the performance at the
beginning of the sequence, when the model is still poorly trained.

Examining a single run, it can be observed that most of the allocators quickly
learn to start solving each problem using the local search algorithm, and later switch
to Satz–Rand if no solution is found by G2-WSAT.

As there are only two algorithms in the set, we can easily visualize the time
allocators (see Section 4). Using the same data from Fig. 1a, in Fig. 1b, we plot the
survival probability SA,s(tu) (vertical axis) at a time contract tu, for different values of
the share s1 assigned to Satz–Rand (horizontal axis), and different values of the time
contract tu (different lines). Figure 1c displays an analogous plot for the quantile
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Fig. 3 SAT-UNSAT problems. Performance of GambleTA compared to the oracle, on all problems
and for all runs, separated for SAT (left column: 50 × 1, 000/2 = 25, 000 points per plot) and UNSAT
(right column: 50 × 899/2 = 22, 475 points per plot) problems. Top: first half of the sequence.
Bottom: second half. Note that this distinction is unavailable to the algorithm: the data was filtered
a posteriori from the data of Fig. 2c,d, and refers to the same experiment, with SAT and UNSAT
instances randomly mixed. The order of problem instances is different for every run, so the same
instance might be met at different stages of the learning process. The diagonal (not marked) is the
performance of Oracle. The continuous line above the diagonal is the performance of Uniform.
Note that this line is crossed by many runs, especially for SAT instances, for runtimes above 106

minimization method: this time the ordinates report the logarithm of the quantile
tA,s(α) for the portfolio, and different lines correspond to different values of the
required solution probability α.

You can notice that the optimum of s varies according to the parameter of the
time allocator (see Section 4): for low values of the contract tu, and the quantile α,
the optimum is at s1 = 0, which means that only G2-WSAT is run, notwithstanding
the 0.5 survival probability at ∞.

If both algorithms are run in parallel, for 107 loops in total, without solving the
problem, we get the situation depicted in the right column of Fig. 1. The RTD of the
two algorithms have been shifted and scaled, as in (9), and the one of G2-WSAT
has almost disappeared. Given the time already spent, there is only a very small
probability that G2-WSAT will solve the problem. This situation is reflected in the
plots of the contract (Fig. 1e) and quantile (Fig. 1f) allocators: now the optimum of
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Table 1 Various performance indicators for GambleTA, evaluated over the first and second halves
of each problem sequence, averaging over 50 runs

First half Second half

SU GTA 1.46 × 1010 ± 2.14 × 108 1.42 × 1010 ± 2.11 × 108

OR 1.27 × 1010 ± 2.06 × 108 1.26 × 1010 ± 1.92 × 108

OVH 0.153 ± 0.0058 0.124 ± 0.0034

WTU 0.0739 ± 0.00296 0.0576 ± 0.00269

S GTA 8.07 × 108 ± 4.64 × 107 8.47 × 108 ± 4.58 × 107

OR 3.05 × 108 ± 1.47 × 107 2.99 × 108 ± 1.32 × 107

OVH 1.66 ± 0.127 1.86 ± 0.143

WTU 0.119 ± 0.0044 0.109 ± 0.0050

U GTA 1.37 × 1010 ± 2.01 × 108 1.35 × 1010 ± 2.15 × 108

OR 1.23 × 1010 ± 2.01 × 108 1.24 × 1010 ± 1.88 × 108

OVH 0.117 ± 0.00481 0.0822 ± 0.0029

WTU 0.024 ± 0.0037 0.0003 ± 0.0002

WDP GTA 5.72 × 107 ± 6.48 × 105 5.51 × 107 ± 6.57 × 105

OR 5.45 × 107 ± 6.44 × 105 5.37 × 107 ± 6.44 × 105

OVH 0.0502 ± 0.0022 0.026 ± 0.0016

WTU 0.176 ± 0.0014 0.148 ± 0.0025

Ninety-five percent confidence intervals. SU: SAT-UNSAT benchmark. S: SAT instances, filtered
from SU. U: UNSAT instances, filtered from SU. Note that these two do not refer to separate
experiments, but are extracted from the results on the SAT-UNSAT problem sequence. WDP:
Winner Determination Problem. Indicators: GTA: cumulative performance of GambleTA. OR:
cumulative performance of the Oracle. OVH: cumulative overhead of GambleTA, with respect to
the Oracle (23). WTU: fraction of problems on which GambleTA is worse than Uniform (tU = KtO)

the lines is at s1 = 1 for all values of the parameters, except the smallest, which means
that most allocators would only run Satz–Rand.

During the course of a run, Exp4 gradually selects a mixture of three quantile
allocators, with small values for α (0.2, 0.3, 0.4). Note that the predictions of the WW
model, and thus the decisions of the time allocators, are solely based on previously
observed runs. The view of the time allocators is similar to the one in Fig. 1: only,
there 200 samples for each algorithm are available, for the same covariate (n = 250),
and this results in a much smoother model than the one typically available during
the initial part of the task sequence. The surfaces (in this case lines) optimised by the
time allocators look smooth anyway, especially for low values of the parameters, but
the contract allocator tends to look flat for large intervals of s1 values.

The simple tactic found by GambleTA is not always effective, and can actually
result in a performance much worse than the uniform share, on a single instance. We
show this in Fig. 2c,d, where the runtimes of GambleTA are scatter-plotted against
the one of the oracle, for all the 1, 899 instances, and all the 50 runs. The two plots
only distinguish among instances met during the first half of the sequence, and the
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second: all other order information is lost. Note that, as the order of instances is
picked randomly for each run, a same instance can figure in both plots: but it would
represent two different runs, with different random seeds for the ak, and would
likely map to different points. We did not plot the diagonal, which would be the
performance of the oracle, as it would interfere with the data. The continuous line
above the diagonal represents the performance of the uniform share tU = KtO. There
are many points above this line, which indicates a performance worse than uniform
(WTU). The biggest improvement, from the first half (Fig. 2c) to the second (Fig. 2d),
seems to be on really easy and really hard instances, with low and high runtimes
respectively.

In order to further analyze this situation, in Fig. 3 we repeat the same scatter-plots
using the same data, but distinguishing among satisfiable and unsatisfiable instances.
It is now clear that the cloud of poor performance still visible in Fig. 2d is entirely
represented by satisfiable instances, on which the runtime of the fastest algorithm
(probably G2-WSAT) is between 106 and 107 loops. We can now make an hypothesis:
looking back at Fig. 1a,d, we see that this is the time range on which the runtime
distributions of the two algorithms overlap (at least for n = 250 variables). In other
words, the longest successful runs of G2-WSAT and the shortest ones of Satz–Rand
are in this range. The surfaces of the time allocators will be similar to the ones in
Fig. 1e,f.

In Table 1 we display a few performance statistics, separately for the two halves
of the task sequence. GTA labels the cumulative time of GambleTA, OR the one
of the oracle. OVH represents the cumulative overhead (23), evaluated only on the
respective half. WTU stands for “worse than uniform.” It measures the fraction of
task instances on which the performance is worse than the uniform tU = KtO.

The first block in the table (SU) refers to the full set of instances, as solved by
GambleTA. The second (S) and third (U) respectively refer to the satisfiable and
unsatisfiable instances alone. We can see that, in terms of the number of instances,
only on 11% of satisfiable instances a WTU performance is observed, but this is
enough to give a very high overhead value: the overhead is actually slightly worse
in the second half of the sequence. But we have to bear in mind that this situation
results from a 6% of the total number of problems, on which the runtime of G2-
WSAT is unusually long. GambleTA is willing to pay this price, in order to avoid
running G2-WSAT for too long on a potentially unsatisfiable instance.

The performance is much better on the unsatisfiable instances, as they are
characterized by much longer runtime values, and the overhead of trying G2-WSAT
first is low. Here the WTU instances go down to less than one on a thousand, and the
overhead at less than 9%. On the whole set, the performance for the second half is
a 13% overhead, and less than 7% WTU. Due to the difficulty of the task, we do not
expect more than a marginal improvement in the performance from the use of more
sophisticated modeling techniques, or more features.

7.2 Winner determination problem

The Auction Winner Determination Problem (WDP) [45] is an interesting combina-
torial optimisation problem, where a set of agents allocate money on n bids over m
goods, and the winning subset of bids, that maximizes the sum of the amounts bidden,
must be determined. The agents have limited amounts of money, and are allowed to
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specify XOR constraints over the bidden goods, and the selected winning subset has
also to satisfy these constraints. The problem is NP-hard.

In [45], to which we refer for more details and references, the hardness of
randomly generated WDP instances is modeled, describing the performance of a
Linear Programming software (CPLEX), and an ad-hoc solver (CASS). The runtime
of these solvers is related to 28 instance features, including the size (n,m), and
serves as an input for a regression routine aimed at learning a predictive model of
runtime value, conditioned on instance features. The performance of the models
is assessed using mean squared error on the logarithm of predicted values, which
suggests a parametric assumption of the run-time distribution being log-normal.
Censored runtimes (“capped” runs in the terminology of the paper) are treated as the
uncensored, and it is argued that the impact of this approximation on model precision
is low. The resulting models are actually quite precise in terms of the proposed error
measure. The performance of CPLEX dominates CASS, but on about 1/4 of the
instances this situation is inverted. In such a case, a per set selection technique would
always select CPLEX. As an interesting example application of these models, the
authors propose a per instance algorithm selection technique, in which the expected
fastest algorithm is picked based on the model’s predictions. In the original paper,
the model is trained on runtime data obtained by solving a large number of instances,
censoring runs that exceed a predetermined threshold of 12 h for CASS. On a test set
of unseen instances, the model performs efficient selection, detecting the instances on
which CASS is faster, and allowing the portfolio to improve on the performance of
CPLEX alone. The overhead (23), compared to the performance of the oracle, is
reported to be 8%, excluding a small additional factor due to the cost of computing
features.

The runtime data for the two algorithms were obtained online.13 The data
consists of various small fixed size problem sets, and one large variable size set.
After discarding a few instances, for which the time values were censored for both
algorithms, the variable size set has 7, 145 instances, and the fixed size sets sum to
3, 519, for a total of 10, 664 problems. On these, CASS dominates on 2, 278, while
CPLEX is faster on the remaining 8, 386. None of the two algorithms could solve all
the problems before capping. The runtimes of the whole data set sum to almost nine
years.

We repeated the experiment with GambleTA, solving the whole set of instances.
As the solvers are not randomized, here the only difference among runs is the
random ordering of problem instances. The runtimes in the data set are reported
in seconds. Some runs were indicated with a 0 runtime, which means that they were
too fast for the granularity of the clock (0.01). In these cases, we replaced the 0 value
with 0.001. We then set tmin to 0.001, and left tmax at 1010, which is oversized in this
case, as the maximum runtime value in the set is 5 × 105. The initial time interval was
set as �t0 = 0.01. The model was allowed only two covariate values, the number of
bids and the number of goods, representing the size of the problems.

Figure 4a,b report the cumulative time during the task sequence, and the cu-
mulative overhead, again comparing with the ideal performance of the oracle (23).
The last block of Table 1 reports the same performance indicators described in the

13http://www.cs.ubc.ca/~kevinlb/downloads/db-data.zip.

http://www.cs.ubc.ca/~kevinlb/downloads/db-data.zip
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Fig. 4 WDP problems. a Cumulative time on the problem set. Upper 95% confidence bounds on
50 runs, with random reordering of the problems. GambleTA is our time allocator. Oracle is the
lower bound on performance. Uniform is the (0.5,0.5) share. b Cumulative overhead (23) on the
WDP problem set. Upper and lower confidence bounds. The overall final performance is 4%: in the
second part only, the cumulative overhead is less than 3% (see Table 1). Right column: Performance
of GambleTA compared to the oracle, on all problems and for all runs. 50 × 10, 664/2 = 266, 600
points per plot. c First half of the sequence. d Second half. The vertical lines reflect the fact that the
algorithms are deterministic: runs differ only in the random order of the instances. The diagonal (not
marked) would be the performance of Oracle. The continuous line above the diagonal would be the
performance of Uniform. Note that this line is crossed by many runs. See also Table 1

previous subsection. The cumulative overhead during the second part of the problem
sequence was less than 3%, while WTU performance was observed for about 15% of
the problem instances. Figure 4c,d display a scatter-plot of the runtime of GambleTA
against the one of the oracle, on all runs, again distinguishing among the first and
second half of the problem sequence. Examining the latter, one can notice that the
instances for which the runtime of GambleTA was worse than Uniform (represented
by points above the line) can mostly be solved in less than 10 s. In other words,
GambleTA is less precise for instances that have a minor impact on the cumulative
runtime, which in this case is very close to the one of the Oracle. For this benchmark,
Exp4 favored a mixture of two quantile allocators (α = 0.2, 0.3), and the greedy
contract allocator, which was discarded on the previous benchmark.
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8 Discussion

The experiments gave quite impressive results. In the first case, the dynamic time
allocator GambleTA managed to solve an algorithm selection problem that cannot
be solved in a similar way by any static technique. In the second case, performance
was competitive with the one of a static offline selection technique, built based on
advanced knowledge of the problem domain, including dozens of problem-specific
features, and which required quite a long training time. On this latter point we have
to remark that in [45] no attempt was made at reducing the training cost, the interest
of the authors being more focused on the precision of the estimated models.

The idea of performing algorithm selection based on runtime interaction with the
algorithms is not at all new (see Section 2). Most fully dynamic methods are oblivious,
i. e., with no knowledge transfer from one problem to the next; in most non-oblivious
methods, the model is trained off-line, at a prohibitively high computational cost, as
there is no principled method to decide when to stop the training phase. GambleTA
takes the best of both worlds: the model allows to retain knowledge from past
experiments, but is trained online, with a negligible overhead. The bandit problem
solver Exp4 guarantees the optimal amount of exploration: the model is exploited
as soon as it allows to improve on the uniform share. At this stage, the model
is visibly rough, but can already serve the purpose of algorithm selection. Time
allocation is fully dynamic, and shares can be updated an arbitrary number of times.
To our knowledge, the most closely related approaches are [44, 59]. In the former,
reinforcement learning, which can be seen as a generalization of bandit problems, is
used, but at the algorithm level. The resulting method shares many of the positive
features of GambleTA, as it is also online, and dynamic. In the dynamic method
described in [58, 59], the algorithm priorities are updated repeatedly, but the dynamic
sharing schedule is decided per set, and offline. In [40], the dynamic selection is
only based on the initial evolution of the state, and the probability distributions are
assumed to belong to a finite set, known a priori: also in this case the model is learned
offline. In [10], an oblivious technique is presented, based on a contract on execution
time, but with no knowledge transfer across problem instances. In [11, 12, 73], a
bandit problem solver is used, but at a lower level, to perform oblivious per-instance
algorithm selection. Compared to our previous work [17, 18], this article replaced
the heuristic aspects, both in mapping model predictions to time allocation shares
(Section 4), and in controlling the exploration-exploitation balance (Section 6).

At its upper level, the method is practically parameter-less. The bandit problem
solver can set its only parameter optimally, based on the length of the task sequence.
If the latter is not known, an initial estimate can be used, and periodically updated
[1, 2]. In this case the optimal regret (20) is guaranteed with respect to the actual
cumulative reward of the best expert. This modification was already tested, with
analogous results. Different values of �t0 can only affect the performance with a
logarithmic factor. The use of a logarithm for rewarding the algorithms allows to set
tmin and tmax, respectively, to a very small and a very large value, such that only the
knowledge of a very loose bound on execution time is required. Design decisions,
including the choice of the time allocators, and model(s) to use, as well as the
relative parameters, can be taken with a redundant approach, and their refinement
can be left to Exp4. In the presented experiments we used a non-parametric model,
which is slower to converge than a parametric one, but can converge to an arbitrary
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distribution, so it does not require any a priori hypothesis about the runtime distri-
butions of the algorithms. If such hypothesis are available, but unsure, an additional
copy of each time allocator, based on the parametric model, can be added, and Exp4
will decide which model to use, with a

√
ln 2 impact on its regret. At the lowest level,

the choice of the algorithms composing A, as well as the relative parameters, is still
left to the user.

The amount of prior knowledge required by the experiments was quite low: the
only inputs used for the model where one or two features, representing the size of
the problems, and time. GambleTA has a black-box view of the algorithms, and can
be applied to any decision problem solver. Optimisation problems can be treated, if
a target on performance can be set in advance.

With respect to the previous parametric model [17, 18], the nonparametric method
used here also allows to greatly reduce the modeling overhead, which is now
negligible. According to [77], WW suffers from the curse of dimensionality, so it
should be replaced in order to profit from a larger set of features. Including time-
varying covariates, to condition the prediction also on the dynamic state of the
algorithms, will also require more advanced models [43, 49, 55]: the approximation
used in [17, 18] was abandoned. The regret of Exp4 will scale well with the number of
algorithms K, and the number of time allocators N, with order O(

√
K ln N). The time

allocators perform an optimisation in [0, 1]K, constrained to a space of size K − 1, as s
has to sum to one. As there are no guarantees of unimodality, they will all suffer from
the curse of dimensionality, so, for much larger algorithm sets, some approximations
should be introduced.

GambleTA is highly modular. On the higher level, different bandit problem
solvers could be compared, possibly starting from the variations described in [2]. On
a level below, the model based time allocators could be replaced, or combined, with
any other algorithm selection technique. It would be enough to express its decision
as a share vector s. In the simplest case, one could add an additional fixed allocator
for each algorithm in the set, to quickly detect situations in which a single algorithm
dominates the others. Also oblivious techniques, as the ones in [10, 21], could be
easily integrated.

Section 4 is based on a single machine. In future research we plan to address
a more realistic scenario, in which a cluster of machines has to be allocated, one
algorithm per machine. Another alternative implementation could be based on
setting the priorities of the algorithms through the operating system.

If we go back to the initial section, and look at the list of issues of a typical model-
based algorithm selection technique, we realize that at least two of them do not
hold for GambleTA. It never solves the same problem twice. And the simple fact of
looking at the runtime of the algorithms allows it to improve its initial time allocation
decisions. The first problem remains open: one feature that is still lacking is that the
method cannot react to a misprediction of the model during a single task, which could
be caused by an “outlier” problem instance, on which the behavior of the algorithms
is radically different from what seen so far in the problem sequence. We will focus
on this issue in our future research.
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