169 research outputs found

    Enhancing Trip Distribution Using Twitter Data: Comparison of Gravity and Neural Networks

    Get PDF
    Predicting human mobility within cities is an important task in urban and transportation planning. With the vast amount of digital traces available through social media platforms, we investigate the potential application of such data in predicting commuter trip distribution at small spatial scale. We develop back propagation (BP) neural network and gravity models using both traditional and Twitter data in New York City to explore their performance and compare the results. Our results suggest the potential of using social media data in transportation modeling to improve the prediction accuracy. Adding Twitter data to both models improved the performance with a slight decrease in root mean square error (RMSE) and an increase in R-squared (R2) value. The findings indicate that the traditional gravity models outperform neural networks in terms of having lower RMSE. However, the R2 results show higher values for neural networks suggesting a better fit between the real and predicted outputs. Given the complex nature of transportation networks and different reasons for limited performance of neural networks with the data, we conclude that more research is needed to explore the performance of such models with additional inputs

    Cross-Checking Different Sources of Mobility Information

    Get PDF
    The pervasive use of new mobile devices has allowed a better characterization in space and time of human concentrations and mobility in general. Besides its theoretical interest, describing mobility is of great importance for a number of practical applications ranging from the forecast of disease spreading to the design of new spaces in urban environments. While classical data sources, such as surveys or census, have a limited level of geographical resolution (e.g., districts, municipalities, counties are typically used) or are restricted to generic workdays or weekends, the data coming from mobile devices can be precisely located both in time and space. Most previous works have used a single data source to study human mobility patterns. Here we perform instead a cross-check analysis by comparing results obtained with data collected from three different sources: Twitter, census, and cell phones. The analysis is focused on the urban areas of Barcelona and Madrid, for which data of the three types is available. We assess the correlation between the datasets on different aspects: the spatial distribution of people concentration, the temporal evolution of people density, and the mobility patterns of individuals. Our results show that the three data sources are providing comparable information. Even though the representativeness of Twitter geolocated data is lower than that of mobile phone and census data, the correlations between the population density profiles and mobility patterns detected by the three datasets are close to one in a grid with cells of 2Ă—2 and 1Ă—1 square kilometers. This level of correlation supports the feasibility of interchanging the three data sources at the spatio-temporal scales considered.Partial financial support has been received from the Spanish Ministry of Economy (MINECO) and FEDER (EU) under projects MODASS (FIS2011-24785) and INTENSE@COSYP (FIS2012-30634), and from the EU Commission through projects EUNOIA, LASAGNE and INSIGHT. ML acknowledges funding from the Conselleria d'EducaciĂł, Cultura i Universitats of the Government of the Balearic Islands, and JJR from the RamĂłn y Cajal program of MINECO.Peer Reviewe

    Commuter Mobility Patterns in Social Media: Correlating Twitter and LODES Data

    Get PDF
    The Longitudinal Employer-Household Dynamics Origin-Destination Employment Statistics (LODES) are an important city planning resource in the USA. However, curating these statistics is resource-intensive, and their accuracy deteriorates when changes in population and urban structures lead to shifts in commuter patterns. Our study area is the San Francisco Bay area, and it has seen rapid population growth over the past years, which makes frequent updates to LODES or the availability of an appropriate substitute desirable. In this paper, we derive mobility flows from a set of over 40 million georeferenced tweets of the study area and compare them with LODES data. These tweets are publicly available and offer fine spatial and temporal resolution. Based on an exploratory analysis of the Twitter data, we pose research questions addressing different aspects of the integration of LODES and Twitter data. Furthermore, we develop methods for their comparative analysis on different spatial scales: at the county, census tract, census block, and individual street segment level. We thereby show that Twitter data can be used to approximate LODES on the county level and on the street segment level, but it also contains information about non-commuting-related regular travel. Leveraging Twitter’s high temporal resolution, we also show how factors like rush hour times and weekends impact mobility. We discuss the merits and shortcomings of the different methods for use in urban planning and close with directions for future research avenues

    An Analysis on the Spatial Characteristics of Satisfaction on the Residential Environment Using Tweets

    Get PDF
    The purpose of this study is to analyze the regional difference of spatial distribution of residential satisfaction by extracting the elements of residential satisfaction in the text of tweet data. We determined three themes such as “safety”, “amenity” and “convenience”, base search terms by theme. And we detailed the search terms by base search term in order to retrieve the tweets related to the satisfaction of residential environments. We analyzed the selected tweets and visualized the results of analysis on the map and then investigated the satisfaction of residential environments through the index analysis which was a proportion of tweet ratio of theme to whole tweet ratio by region This study shows that it may replace the offline survey method by the analysis of tweets on SNS in investigating the satisfaction of residential environments by regions in South Korea

    Scaling of city attractiveness for foreign visitors through big data of human economical and social media activity

    Full text link
    Scientific studies investigating laws and regularities of human behavior are nowadays increasingly relying on the wealth of widely available digital information produced by human social activity. In this paper we leverage big data created by three different aspects of human activity (i.e., bank card transactions, geotagged photographs and tweets) in Spain for quantifying city attractiveness for the foreign visitors. An important finding of this papers is a strong superlinear scaling of city attractiveness with its population size. The observed scaling exponent stays nearly the same for different ways of defining cities and for different data sources, emphasizing the robustness of our finding. Temporal variation of the scaling exponent is also considered in order to reveal seasonal patterns in the attractivenessComment: 8 pages, 3 figures, 1 tabl

    Human dynamics in the age of big data: a theory-data-driven approach

    Get PDF
    The revolution of information and communication technology (ICT) in the past two decades have transformed the world and people’s lives with the ways that knowledge is produced. With the advancements in location-aware technologies, a large volume of data so-called “big data” is now available through various sources to explore the world. This dissertation examines the potential use of such data in understanding human dynamics by focusing on both theory- and data-driven approaches. Specifically, human dynamics represented by communication and activities is linked to geographic concepts of space and place through social media data to set a research platform for effective use of social media as an information system. Three case studies covering these conceptual linkages are presented to (1) identify communication patterns on social media; (2) identify spatial patterns of activities in urban areas and detect events; and (3) explore urban mobility patterns. The first case study examines the use of and communication dynamics on Twitter during Hurricane Sandy utilizing survey and data analytics techniques. Twitter was identified as a valuable source of disaster-related information. Additionally, the results shed lights on the most significant information that can be derived from Twitter during disasters and the need for establishing bi-directional communications during such events to achieve an effective communication. The second case study examines the potential of Twitter in identifying activities and events and exploring movements during Hurricane Sandy utilizing both time-geographic information and qualitative social media text data. The study provides insights for enhancing situational awareness during natural disasters. The third case study examines the potential of Twitter in modeling commuting trip distribution in New York City. By integrating both traditional and social media data and utilizing machine learning techniques, the study identified Twitter as a valuable source for transportation modeling. Despite the limitations of social media such as the accuracy issue, there is tremendous opportunity for geographers to enrich their understanding of human dynamics in the world. However, we will need new research frameworks, which integrate geographic concepts with information systems theories to theorize the process. Furthermore, integrating various data sources is the key to future research and will need new computational approaches. Addressing these computational challenges, therefore, will be a crucial step to extend the frontier of big data knowledge from a geographic perspective. KEYWORDS: Big data, social media, Twitter, human dynamics, VGI, natural disasters, Hurricane Sandy, transportation modeling, machine learning, situational awareness, NYC, GI
    • …
    corecore