15,740 research outputs found

    AN OVERVIEW OF VARIOUS SCALES USED IN CAUSALITY ASSESSMENT OF ADVERSE DRUG REACTIONS

    Get PDF
    Establishing a relationship of causality between the medications received and the events occurred utilizing causality assessment scale is much needed to reduce the occurrence of Adverse Drug Reactions (ADRs) and to prevent exposure of patients towards additional drug hazards. Causality assessment can be defined as the determination of chance, whether a selected intervention is the root cause of the adverse event observed. The causality assessment is the responsibility of either a single expert or an established committee. As it is a common phenomenon of variable perception of knowledge and experience by each expert, there is a high possibility of disagreement and inter-individual variability on assessment. Many of the causality assessment methods have their advantages and disadvantages. However, no single scale has been adopted as standardized and considered for uniform acceptance

    Data Mining Techniques in Pharmacovigilance: Analysis of the Publicly Accessible FDA Adverse Event Reporting System (AERS)

    Get PDF
    Pharmacovigilance is a clinically oriented discipline, which may guide appropriate drug use through a balanced assessment of drug safety. Although much has been done in recent years, efforts are needed to expand the border of pharmacovigilance. We have provided insight into the FDA_Adverse Events Reporting Systems (FDA_AERS), a worldwide publicly available pharmacovigilance archive, to exemplify how to address major methodological issues. We believe that fostering discussion among researchers will increase transparency and facilitate definition of the most reliable approaches. By virtue of its large population coverage and free availability, the FDA_AERS has the potential to pave the way to a new way of looking to signal detection in PhV. Our key messages are: (1) before applying statistical tools (i.e., Data Mining Approaches - DMAs) to pharmacovigilance database for signal detection, all aspects related to data quality should be considered (e.g., drug mapping, missing data and duplicates); (2) at present, the choice of a given DMA mostly relies on local habits, expertise and attitude and there is room for improvement in this area; (3) DMA performance may be highly situation dependent; (4) over-reliance on these methods may have deleterious consequences, especially with the so-called "designated medical events", for which a case-by-case analysis is mandatory and complements disproportionality; and (5) the most appropriate selection of pharmacovigilance tools needs to be tailored to each situation, being mindful of the numerous biases and confounders that may influence performance and incremental utility of DMAs

    Machine learning liver-injuring drug interactions with non-steroidal anti-inflammatory drugs (NSAIDs) from a retrospective electronic health record (EHR) cohort

    Get PDF
    Drug-drug interactions account for up to 30% of adverse drug reactions. Increasing prevalence of electronic health records (EHRs) offers a unique opportunity to build machine learning algorithms to identify drug-drug interactions that drive adverse events. In this study, we investigated hospitalizations\u27 data to study drug interactions with non-steroidal anti-inflammatory drugs (NSAIDS) that result in drug-induced liver injury (DILI). We propose a logistic regression based machine learning algorithm that unearths several known interactions from an EHR dataset of about 400,000 hospitalization. Our proposed modeling framework is successful in detecting 87.5% of the positive controls, which are defined by drugs known to interact with diclofenac causing an increased risk of DILI, and correctly ranks aggregate risk of DILI for eight commonly prescribed NSAIDs. We found that our modeling framework is particularly successful in inferring associations of drug-drug interactions from relatively small EHR datasets. Furthermore, we have identified a novel and potentially hepatotoxic interaction that might occur during concomitant use of meloxicam and esomeprazole, which are commonly prescribed together to allay NSAID-induced gastrointestinal (GI) bleeding. Empirically, we validate our approach against prior methods for signal detection on EHR datasets, in which our proposed approach outperforms all the compared methods across most metrics, such as area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC)

    Using the Literature to Identify Confounders

    Get PDF
    Prior work in causal modeling has focused primarily on learning graph structures and parameters to model data generating processes from observational or experimental data, while the focus of the literature-based discovery paradigm was to identify novel therapeutic hypotheses in publicly available knowledge. The critical contribution of this dissertation is to refashion the literature-based discovery paradigm as a means to populate causal models with relevant covariates to abet causal inference. In particular, this dissertation describes a generalizable framework for mapping from causal propositions in the literature to subgraphs populated by instantiated variables that reflect observational data. The observational data are those derived from electronic health records. The purpose of causal inference is to detect adverse drug event signals. The Principle of the Common Cause is exploited as a heuristic for a defeasible practical logic. The fundamental intuition is that improbable co-occurrences can be “explained away” with reference to a common cause, or confounder. Semantic constraints in literature-based discovery can be leveraged to identify such covariates. Further, the asymmetric semantic constraints of causal propositions map directly to the topology of causal graphs as directed edges. The hypothesis is that causal models conditioned on sets of such covariates will improve upon the performance of purely statistical techniques for detecting adverse drug event signals. By improving upon previous work in purely EHR-based pharmacovigilance, these results establish the utility of this scalable approach to automated causal inference

    Interpretable Subgroup Discovery in Treatment Effect Estimation with Application to Opioid Prescribing Guidelines

    Full text link
    The dearth of prescribing guidelines for physicians is one key driver of the current opioid epidemic in the United States. In this work, we analyze medical and pharmaceutical claims data to draw insights on characteristics of patients who are more prone to adverse outcomes after an initial synthetic opioid prescription. Toward this end, we propose a generative model that allows discovery from observational data of subgroups that demonstrate an enhanced or diminished causal effect due to treatment. Our approach models these sub-populations as a mixture distribution, using sparsity to enhance interpretability, while jointly learning nonlinear predictors of the potential outcomes to better adjust for confounding. The approach leads to human-interpretable insights on discovered subgroups, improving the practical utility for decision suppor

    Drug Off-Target Effects Predicted Using Structural Analysis in the Context of a Metabolic Network Model

    Get PDF
    Recent advances in structural bioinformatics have enabled the prediction of protein-drug off-targets based on their ligand binding sites. Concurrent developments in systems biology allow for prediction of the functional effects of system perturbations using large-scale network models. Integration of these two capabilities provides a framework for evaluating metabolic drug response phenotypes in silico. This combined approach was applied to investigate the hypertensive side effect of the cholesteryl ester transfer protein inhibitor torcetrapib in the context of human renal function. A metabolic kidney model was generated in which to simulate drug treatment. Causal drug off-targets were predicted that have previously been observed to impact renal function in gene-deficient patients and may play a role in the adverse side effects observed in clinical trials. Genetic risk factors for drug treatment were also predicted that correspond to both characterized and unknown renal metabolic disorders as well as cryptic genetic deficiencies that are not expected to exhibit a renal disorder phenotype except under drug treatment. This study represents a novel integration of structural and systems biology and a first step towards computational systems medicine. The methodology introduced herein has important implications for drug development and personalized medicine

    Shift-Robust Molecular Relational Learning with Causal Substructure

    Full text link
    Recently, molecular relational learning, whose goal is to predict the interaction behavior between molecular pairs, got a surge of interest in molecular sciences due to its wide range of applications. In this work, we propose CMRL that is robust to the distributional shift in molecular relational learning by detecting the core substructure that is causally related to chemical reactions. To do so, we first assume a causal relationship based on the domain knowledge of molecular sciences and construct a structural causal model (SCM) that reveals the relationship between variables. Based on the SCM, we introduce a novel conditional intervention framework whose intervention is conditioned on the paired molecule. With the conditional intervention framework, our model successfully learns from the causal substructure and alleviates the confounding effect of shortcut substructures that are spuriously correlated to chemical reactions. Extensive experiments on various tasks with real-world and synthetic datasets demonstrate the superiority of CMRL over state-of-the-art baseline models. Our code is available at https://github.com/Namkyeong/CMRL.Comment: KDD 202

    Leveraging 3D chemical similarity, target and phenotypic data in the identification of drug-protein and drug-adverse effect associations

    Get PDF
    Additional file 5: Figure S4. Number of side effects and targets for each drug in the target-phenotype model
    corecore