9,704 research outputs found

    ProbeGuard:Mitigating Probing Attacks Through Reactive Program Transformations

    Get PDF
    Many modern defenses against code reuse rely on hiding sensitive data such as shadow stacks in a huge memory address space. While much more efficient than traditional integritybased defenses, these solutions are vulnerable to probing attacks which quickly locate the hidden data and compromise security. This has led researchers to question the value of information hiding in real-world software security. Instead, we argue that such a limitation is not fundamental and that information hiding and integrity-based defenses are two extremes of a continuous spectrum of solutions. We propose a solution, ProbeGuard, that automatically balances performance and security by deploying an existing information hiding based baseline defense and then incrementally moving to more powerful integrity-based defenses by hotpatching when probing attacks occur. ProbeGuard is efficient, provides strong security, and gracefully trades off performance upon encountering more probing primitives

    A Model for Predicting the Likelihood of Successful Exploitation

    Get PDF
    This paper presents a model that estimates the likelihood that a detected vulnerability can be exploited. The data used to produce the model was obtained by carrying out an experiment that involved exploit attempts against 1179 different machines within a cyber range. Three machine learning algorithms were tested: support vector machines, random forests and neural networks. The best results were provided by a random forest model. This model has a mean cross-validation accuracy of 98.2% and an F1 score of 0.73

    Analysis and Mitigation of Remote Side-Channel and Fault Attacks on the Electrical Level

    Get PDF
    In der fortlaufenden Miniaturisierung von integrierten Schaltungen werden physikalische Grenzen erreicht, wobei beispielsweise Einzelatomtransistoren eine mögliche untere Grenze für Strukturgrößen darstellen. Zudem ist die Herstellung der neuesten Generationen von Mikrochips heutzutage finanziell nur noch von großen, multinationalen Unternehmen zu stemmen. Aufgrund dieser Entwicklung ist Miniaturisierung nicht länger die treibende Kraft um die Leistung von elektronischen Komponenten weiter zu erhöhen. Stattdessen werden klassische Computerarchitekturen mit generischen Prozessoren weiterentwickelt zu heterogenen Systemen mit hoher Parallelität und speziellen Beschleunigern. Allerdings wird in diesen heterogenen Systemen auch der Schutz von privaten Daten gegen Angreifer zunehmend schwieriger. Neue Arten von Hardware-Komponenten, neue Arten von Anwendungen und eine allgemein erhöhte Komplexität sind einige der Faktoren, die die Sicherheit in solchen Systemen zur Herausforderung machen. Kryptografische Algorithmen sind oftmals nur unter bestimmten Annahmen über den Angreifer wirklich sicher. Es wird zum Beispiel oft angenommen, dass der Angreifer nur auf Eingaben und Ausgaben eines Moduls zugreifen kann, während interne Signale und Zwischenwerte verborgen sind. In echten Implementierungen zeigen jedoch Angriffe über Seitenkanäle und Faults die Grenzen dieses sogenannten Black-Box-Modells auf. Während bei Seitenkanalangriffen der Angreifer datenabhängige Messgrößen wie Stromverbrauch oder elektromagnetische Strahlung ausnutzt, wird bei Fault Angriffen aktiv in die Berechnungen eingegriffen, und die falschen Ausgabewerte zum Finden der geheimen Daten verwendet. Diese Art von Angriffen auf Implementierungen wurde ursprünglich nur im Kontext eines lokalen Angreifers mit Zugriff auf das Zielgerät behandelt. Jedoch haben bereits Angriffe, die auf der Messung der Zeit für bestimmte Speicherzugriffe basieren, gezeigt, dass die Bedrohung auch durch Angreifer mit Fernzugriff besteht. In dieser Arbeit wird die Bedrohung durch Seitenkanal- und Fault-Angriffe über Fernzugriff behandelt, welche eng mit der Entwicklung zu mehr heterogenen Systemen verknüpft sind. Ein Beispiel für neuartige Hardware im heterogenen Rechnen sind Field-Programmable Gate Arrays (FPGAs), mit welchen sich fast beliebige Schaltungen in programmierbarer Logik realisieren lassen. Diese Logik-Chips werden bereits jetzt als Beschleuniger sowohl in der Cloud als auch in Endgeräten eingesetzt. Allerdings wurde gezeigt, wie die Flexibilität dieser Beschleuniger zur Implementierung von Sensoren zur Abschätzung der Versorgungsspannung ausgenutzt werden kann. Zudem können durch eine spezielle Art der Aktivierung von großen Mengen an Logik Berechnungen in anderen Schaltungen für Fault Angriffe gestört werden. Diese Bedrohung wird hier beispielsweise durch die Erweiterung bestehender Angriffe weiter analysiert und es werden Strategien zur Absicherung dagegen entwickelt

    Command & Control: Understanding, Denying and Detecting - A review of malware C2 techniques, detection and defences

    Full text link
    In this survey, we first briefly review the current state of cyber attacks, highlighting significant recent changes in how and why such attacks are performed. We then investigate the mechanics of malware command and control (C2) establishment: we provide a comprehensive review of the techniques used by attackers to set up such a channel and to hide its presence from the attacked parties and the security tools they use. We then switch to the defensive side of the problem, and review approaches that have been proposed for the detection and disruption of C2 channels. We also map such techniques to widely-adopted security controls, emphasizing gaps or limitations (and success stories) in current best practices.Comment: Work commissioned by CPNI, available at c2report.org. 38 pages. Listing abstract compressed from version appearing in repor

    Supporting distributed computation over wide area gigabit networks

    Get PDF
    The advent of high bandwidth fibre optic links that may be used over very large distances has lead to much research and development in the field of wide area gigabit networking. One problem that needs to be addressed is how loosely coupled distributed systems may be built over these links, allowing many computers worldwide to take part in complex calculations in order to solve "Grand Challenge" problems. The research conducted as part of this PhD has looked at the practicality of implementing a communication mechanism proposed by Craig Partridge called Late-binding Remote Procedure Calls (LbRPC). LbRPC is intended to export both code and data over the network to remote machines for evaluation, as opposed to traditional RPC mechanisms that only send parameters to pre-existing remote procedures. The ability to send code as well as data means that LbRPC requests can overcome one of the biggest problems in Wide Area Distributed Computer Systems (WADCS): the fixed latency due to the speed of light. As machines get faster, the fixed multi-millisecond round trip delay equates to ever increasing numbers of CPU cycles. For a WADCS to be efficient, programs should minimise the number of network transits they incur. By allowing the application programmer to export arbitrary code to the remote machine, this may be achieved. This research has looked at the feasibility of supporting secure exportation of arbitrary code and data in heterogeneous, loosely coupled, distributed computing environments. It has investigated techniques for making placement decisions for the code in cases where there are a large number of widely dispersed remote servers that could be used. The latter has resulted in the development of a novel prototype LbRPC using multicast IP for implicit placement and a sequenced, multi-packet saturation multicast transport protocol. These prototypes show that it is possible to export code and data to multiple remote hosts, thereby removing the need to perform complex and error prone explicit process placement decisions
    corecore