
A Model for Predicting the Likelihood of Successful Exploitation

Hannes Holm
Swedish Defence Research Agency (FOI),

Olaus Magnus väg 42,
Linköping, Sweden
hannes.holm@foi.se

Ioana Rodhe
Swedish Defence Research Agency (FOI),

Olaus Magnus väg 42,
Linköping, Sweden
ioana.rodhe@foi.se

Abstract

This paper presents a model that estimates the
likelihood that a detected vulnerability can be exploited.
The data used to produce the model was obtained
by carrying out an experiment that involved exploit
attempts against 1179 different machines within a cyber
range. Three machine learning algorithms were tested:
support vector machines, random forests and neural
networks. The best results were provided by a random
forest model. This model has a mean cross-validation
accuracy of 98.2% and an F1 score of 0.73.

1. Introduction

Cyber security vulnerabilities are common and
problematic, and there are various tools available for
detecting them. A commonly used type of tool is the
automated network vulnerability scanner, for example,
OpenVAS, Nessus and Nexpose. This type of tool
analyzes responses to carefully chosen network queries
thought to expose security vulnerabilities. The validity
of each vulnerability reported by such a tool is, however,
uncertain [1]. Many existing vulnerabilities are missed
(false negatives) and non-existent vulnerabilities are
erroneously reported (false positives). To many
network administrators, false positives are arguably
as bad as false negatives as vulnerability mitigation
can be costly and resources are scarce. Various
models have been created to aid decision makers
regarding which vulnerability to mitigate first. The
most renown vulnerability severity model is the
Common Vulnerability Scoring System (CVSS). All
vulnerabilities within the US National Vulnerability
Database (NVD1) are scored with the CVSS, and most
tools that concern known vulnerabilities reference it.
Many researchers even convert the CVSS score into a
probability and include it in their models (e.g., [2]).

Unfortunately, while the CVSS is widely used, it

1https://nvd.nist.gov

is largely unknown whether its estimates (or those of
alternative models) are valid or reliable [3]. Experts
believe that one of the four most important aspects that
the CVSS fail to properly address concern exploitation
reliability [3], i.e., the likelihood of successful
vulnerability exploitation. Exploit reliability is an
important factor as, from a threat agent’s perspective,
an exploit attempt generate activity that can alert the
victim. Additionally, a failed exploit attempt sometimes
causes the targeted software or system to crash. For
these reasons, threat agents generally avoid unreliable
exploits. Furthermore, if a vulnerability that can be
reliably exploited is located in a server software, it is
typically wormable [4] (i.e., exploitation is possible to
completely automate). The cost of a zero-day network
worm outbreak has been estimated to US$2.6 billion
[5]. In other words, exploit reliability is an important
predictor of both the occurrence and success rate of
cyber attacks. Knowledge on the reliability of different
exploits would thus be of great value to the community.
Unfortunately, no such public knowledge is available in
neither the industry nor academia. This is likely due to
the lack of publicly available reliable empirical data of
actual exploit attempts.

Obtaining reliable empirical data on exploit attempts
is certainly not a simple matter, as exemplified by
network intrusion detection research, where a dataset
from 1999 [6], that was subjected to severe criticism
within a year of its release [7], still is used by
researchers to train and test their models (e.g., [8,
9]). Other researchers have been able to obtain data
concerning real-world attacks on operational systems
(e.g., [10, 11]). Models created based on such data are
unfortunately also flawed as there is no ground-truth
available concerning which attacks that have been
attempted, how attacks were configured, or which
attacks that were successful.

A method for obtaining data that negates the
reliability issues concerning real-world attacks is to
carry out controlled experiments in cyber ranges [12, 13,
14], where all events are known and technical events

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 6438
URI: https://hdl.handle.net/10125/64531
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

can be monitored in-depth. This paper describes a
controlled experiment within a cyber range that was
carried out to develop machine learning (ML) classifiers
that can be used to estimate the likelihood that a detected
vulnerability is exploitable.

The remainder of the paper is structured as follows:
Section 2 presents related work. Section 3 presents
the methodology of the study and section 4 its results.
Finally, section 5 critically discusses these results and
presents future work.

2. Related work

There are few published empirical efforts to
determine exploit reliability. The closest related work
is that of Holm and Sommested [14], who analyzed
the success rates of 45 different server-side exploit
modules that were tested across 1223 configurations.
The study found that a mere eight exploit attempts were
successful. The present paper extends and improves
upon the methodology described in [14] by also testing
remote client exploits, file exploits and local exploits.
Furthermore, it analyzes exploit reliability through a set
of carefully chosen features and ML models.

The second closest identified related work is that by
Bozorgi et al. [15], who propose a method for predicting
the mere occurrence of published exploits based on
vulnerability information available within the CVE
and Open Source Vulnerability Database (OSVDB2).
The authors employed linear support vector machines
(SVM) trained with approximately 14 000 samples
and approximately 94 000 features, most being bag of
word-vectors. Their best model had an error rate of 14%.
They also found that all parts of a vulnerability report
contained useful features. The present work differs from
the work by Bozorgi et al. [15] in the sense that it
analyzes vulnerability exploitability through execution
of real attacks.

A marginally relevant work is that by Allodi
and Massacci [16], who use a case-control study
methodology to quantify the risk reduction achievable
by acting on a risk factor, where the risk factor is
computed by using the CVSS (v2) Base Score and other
metrics such as existence of a proof-of-concept exploit
or exploit presence in black markets. The analysis
is based on four datasets: The NVD (vulnerability
and CVSS data), Exploit-DB3 (proof-of-concept
exploits), EKITS (a database created by the authors
that contain information regarding exploit kits) and
SYM (Symantec’s AttackSignature and ThreatExplorer
datasets). The paper concludes that a patching policy

2The OSVDB was discontinued during 2016.
3https://www.exploit-db.com/

based on Base Score provides a risk reduction of
about 4% (which is equivalent to randomly picking
vulnerabilities to fix). A patching policy based on the
presence of a proof-of-concept exploits (Exploit-DB)
can provide risk reductions up to 45%, and the presence
of an exploit in an exploit kit (EKITS) can increase the
risk reduction with up to 80%. Here, risk reduction
concerns the portion of detected vulnerabilities that
have entries in SYM that would be mitigated given a
certain patching policy.

Another marginally relevant work is that by Holm
et al. [17], who examine whether system-level
vulnerability metrics based on the CVSS (v2) correlate
with the actual time required to compromise systems.
The dataset used for analysis was collected during an
international cyber defence exercise with more than 100
participants and includes 34 actual system compromises.
The results of the study show no strong correlation
between the time to compromise and any of the studied
metrics.

3. Methodology

This chapter describes the methodology for creating
the ML classifiers that measure the likelihood that a
detected vulnerability can be successfully exploited.

3.1. Cyber range and used tools

The Cyber Range And Training Environment
(CRATE) is a cyber range built and maintained by
the Swedish Defence Research Agency (FOI) that has
been used for a number of research studies related
to vulnerability assessments and situational awareness
[13, 14, 18, 17]. Physically, CRATE consists of
approximately 500 servers, a number of switches and
various auxiliary equipment (e.g., for remote access).
During an experiment these servers are instrumented
with VirtualBox machines of various kinds connected
through VxLAN and other communication technologies
to form a “mini-internet“ of sorts. Instrumentation is
straightforward for any type of operating system and
application software that VirtualBox can handle.

Scanning, Vulnerabilities, Exploits and Detection
(SVED) is a tool developed by FOI for planning and
executing actions within CRATE [13, 14]. Two central
resources in the SVED framework are managers and
injectors. These form a traditional master (manager) and
slave (injector) relationship. The manager orchestrates
which actions that are to be executed based on graph
dependencies set by the user. Executing an action means
notifying the responsible injector, which has the actual
logic and necessary tools for running the action. The
injector then updates the manager regarding the progress

Page 6439

of the action during its execution. This architecture
enables carrying out high-fidelity and low-effort tests of
next to arbitrary scale.

The present study employed CRATE as a testbed for
safely testing exploits, and SVED for running all attacks
as well as their auxiliary requirements (e.g., file copying,
restoring virtual machine snapshots and simulating users
browsing the web).

3.2. Generation of samples

This section describes how CRATE and SVED were
used to generate a selection of samples concerning
success rates of exploits. An overview of this process
is illustrated by Figure 1 and described in the remainder
of this section. In short, this process ensured that each
exploit was tested under valid conditions.

3.2.1. Vulnerability identification. Authenticated
vulnerability scans were performed using the tool
OpenVAS to identify vulnerabilities in the machines
deployed in CRATE. Authenticated scans were chosen
as system credentials generally are available to IT
administrators and this kind of scan provides more
in-depth and accurate results (e.g., local tests such as
analyzing the registry of a Windows machine compared
to only probing open sockets). OpenVAS was chosen as
it is open-source and freely available. Previous research
indicate that the results likely would have been similar
if other tools such as Nessus and Nexpose were used
[1]. An in-house developed tool called AutoVAS was
used to enable swiftly scanning the cyber range through
multiple parallel instances of OpenVAS.

A total of 1179 machines were operational in
CRATE during the present study. These contained
a total of 719 132 vulnerabilities, i.e., on average
199 vulnerabilities per machine. The number of
vulnerabilities in a vulnerable machine varied greatly,
from a few to several thousand.

3.2.2. Exploit selection and execution. The
detected vulnerabilities were matched with exploits in
Metasploit that referenced them. The use of Metasploit
is motivated by its popularity and accessibility.
Examined exploit attack vectors include server exploits,
remote client exploits, local exploits and file format
exploits. All employed exploits provided or escalated
privileges. I.e., no gathering- or denial of service-type
attacks were used. The rational is that vulnerabilities
are frequent, and vulnerabilities that do not provide
attackers with privileges thus tend to have a low priority
for network administrators. Each exploit category

required different preparation and execution steps in
SVED to enable reliable tests. These steps are described
in the remainder of this section.

Server exploits were tested in the same fashion as
in [14]. In summary, this methodology involved running
three preparation steps before running the actual exploit.
First, the victim virtual machine (VM) was restored to
a snapshot corresponding to a known vulnerable state
scanned by OpenVAS. Then, if necessary, the VxLAN
of the injector was changed so that it could communicate
with the victim. An ICMP Echo request was then
sent to ensure that the victim was reachable. Finally,
the exploit itself was attempted. If any of these steps
were unsuccessful, and the victim had untested network
interfaces, these steps were repeated until all available
network interfaces had been explored. This was done as
a server could have been setup to listen only to traffic
incoming to a specific network interface.

The remaining exploit categories shared the same
three preparation steps of server-side exploits, but
required more effort to automatically test in a reliable
manner as they all required end-user interaction.
The SVED class TriggerExploit was built to
enable automatically running the necessary end-user
commands to fulfill such interaction requirements.

Remote client exploits in general require victim
interaction in terms of running an application with
specific arguments that facilitate communication with a
malicious server. A typical example is a web browser
exploit. This kind of exploit requires starting a web
server with malicious content on the injector. Then, the
victim needs to browse the content of this web server
with a designated vulnerable web browser. Finally, the
victim might need to press some buttons to run scripts
provided by the web server. For a general remote
client-side exploit, TriggerExploit first logs into
the victim in the context of an administrator user.
This step first required extending VirtualBox as it did
not support graphical login for most operating system
graphical environments used in the experiment.

When the designated user has been logged in, a
series of events related to application execution and
mouse/keyboard inputs are triggered. Which events
that are run depend on the vulnerable software and the
victim’s operating system. Needless to say, extensive
manual labor was spent to build profiles corresponding
to different exploits and applications. Support was
built for all exploits that corresponded to vulnerabilities
identified by OpenVAS for this experiment.

Local exploits involved copying and executing
a specially crafted malware on the victim through
the VirtualBox API, yielding a back door compatible
to the Metasploit framework. Then, a Metasploit

Page 6440

Extract machine
configurations from CRATE

Set the vulnerability
scanner on the VxLAN of

the machine

Scan the machine with
with OpenVAS

Save a snapshot of the
machine state

[Else]
[Else]

Select all exploits in
Metasploit that reference

the vulnerability

[While identified
vulnerabilities remain]

[Else]

[While there are
exploits left to test]

[While unscanned
machines remain]

1. Vulnerability identification 2. Exploit selection 3. Exploit execution

Restore machine snapshot

Change VxLAN of the
injector to the target

network interface VxLAN

Check reachability of
target from injector

Execute exploit

Execute exploit
(start server)

[If remote
client exploit]

Execute exploit
(generate file(s))

Copy file(s) to
target

Interaction by
victim machine

Start exploit
listener

[If file exploit]

Start backdoor on
victim

Execute exploit
(using backdoor)

[If local
exploit]

Interaction by
victim machine

[If server
exploit]

[If reachable] [Else]

Select desired
configurations of each
exploit for each target

Figure 1. Experiment design.

multi/handler was used to obtain a session to
the victim machine. Finally, if all these steps were
successful, the designated local exploit was run in the
context of the obtained session.

File format exploits involved creating one or more
malicious files, copying them to the victim, and then
executing them through specially crafted application
commands, keypresses and mouseclicks (similarly to
remote client-side exploits).

Exploits were configured through the same
methodology that has been employed by popular
automated attack tools such as DeepExploit [19],
APT2 [20] and AutoSploit [21]. This methodology is
described next.

Each exploit and payload in the Metasploit
framework has a list of settings that can be used to tune
it, and changing a setting sometimes requires extensive
domain knowledge. For instance, the exploit module
lsa transnames heap has 52 settings that can be
altered. To specify most settings, such as which SMB
pipe name to use, deep technical understanding of the

exploit as well as the target application is required. This
experiment only altered settings that were required to
test each exploit (e.g., RHOST, SRVHOST, UNCPATH
and URIPATH), and left non-obvious settings to their
default states.

One important setting that should be mentioned is
TARGET, which concerns a configuration within an
exploit that corresponds to a certain application version
or environment. For instance, ms08 067 netapi
has 73 targets for Microsoft Windows 2000, Windows
Server 2003 and Windows XP (e.g., Microsoft Windows
XP SP2 with a Greek language pack and NX enabled).
Choosing the correct target is important as an incorrect
target renders a valid exploit unsuccessful in most
cases. Some exploits in Metasploit have an option
to automatically choose the correct target depending
on a run-time check. The present research employed
automated targeting for exploits that supported it. In
other cases, each TARGET configuration was tested. The
default payload for each target was chosen.

Page 6441

3.2.3. Overview of conducted attacks. The
experiment was carried out over a period of eight
calendar days using 40 SVED injectors and produced a
total of 1 013 691 log entries. All data are available for
download4. On overall, a mere 185 out of 5839 (3.2%)
exploit attempts were successful. Here, an exploit
attempt means that all necessary conditions for a reliable
exploitation test were fulfilled. Some exploits could
not be properly triggered due to errors in VirtualBox
or victim machines. For example, some file format
exploits could not be copied to victims due to corrupt
VirtualBox machine states. Such tests were disregarded
from analysis.

A total of 194 unique exploit modules were tested.
An overview of the 37 exploits types that succeeded is
presented by exploit type in Table 1. The three most
successful exploit types that were tested ten or more
times were ms08 067 netapi (75% of all attempts
successful), firefox webidl injection
(74% of all attempts successful) and
ms07 017 ani loadimage chunksize (52%
of all attempts successful).

Table 1. Successful exploit attempts.

Exploit Vector Attempts Success

ms08 067 netapi Server 53 40
ms17 010 eternalblue Server 236 33
firefox webidl injection Client 19 14
ms07 017 ani loadimage chunksize Client 23 12
java verifier field access Client 32 6
ms03 026 dcom Server 29 6
ms10 002 aurora Client 21 6
ms10 018 ie behaviors Client 20 6
ms06 040 netapi Server 232 5
msvidctl mpeg2 Client 26 5
ms09 072 style object Client 21 5
adobe flash otf font Client 10 5
java storeimagearray Client 25 4
ms10 090 ie css clip Client 8 4
ms12 037 ie colspan Client 14 3
java atomicreferencearray Client 3 3
ms10 025 wmss connect funnel Server 3 3
java setdifficm bof Client 27 2
ms13 053 schlamperei Local 12 2
ppr flatten rec Local 12 2
java trusted chain Client 5 2
java rhino Client 3 2
ms01 033 idq Server 22 1
ms13 055 canchor Client 15 1
ms11 081 option Client 13 1
adobe media newplayer Client 12 1
ie execcommand uaf Client 12 1
ie setmousecapture uaf Client 11 1
ms12 037 same id Client 11 1
ms13 037 svg dashstyle Client 11 1
ms13 081 track popup menu Local 11 1
ms11 003 ie css import Client 10 1
adobe collectemailinfo File 10 1
firefox proto crmfrequest Client 6 1
java rmi connection impl Client 3 1
ms13 022 silverlight script object Client 1 1
ms10 092 schelevator Local 1 1

4ftp://download.iwlab.foi.se/sved/

3.2.4. Sample selection. Samples for machine
learning were generated from the 5839 exploit attempts
as follows. Each sample concerns an exploit module run
against a specific machine. If any tested configuration
of the exploit worked against the machine, the outcome
of the sample was set as 1; in other cases the outcome
was set as -1. This process amounted into 4945 samples.
Each sample was then provided with a set of features as
is described in section 3.3.

3.3. Feature selection

Features were selected based on the information
that can be extracted from authenticated network
vulnerability scans, i.e., an important subset of the
information that typically is available to network
administrators. Four categories of features were tested
(see Table 2): features related to the vulnerable machine,
features related to the vulnerable software, features
related to the vulnerability itself, and features related to
the exploit that was tested in different configurations to
validate the vulnerability.

All categorical variables were encoded through
standard one-hot-encoding, yielding a number of
features corresponding to the dimensionality of each
variable plus one (to account for missing values and
new entries not covered by the encoding). The CVSS
v2 was applied in front of CVSS v3 as only a small
fraction of all CVE entries currently are scored by
the CVSS v3. The machine and software concerns
the CVSS Environmental Metrics, the vulnerability the
CVSS Base Metrics, and the exploit the CVSS Temporal
Metrics. Thus, aspects from each metric group within
the CVSS was taken into account. The variables in
Table 2 concern a total of 742 features.

Each of the 4945 samples were provided states of
these 742 features, enabling supervised ML learning.

3.3.1. Employed features. A machine that has not
been hardened, i.e, a machine that has a high
overall vulnerability (Machine:Sum of Base Scores),
many installed applications (Machine:CPE count), or
multiple exposed common sockets (Machine:Open
ports), is hypothesized to be less likely to have security
protections and software fixes configured that would
prevent successful exploitation. The installed operating
system (Machine:CPE) is of importance as an exploit
might not support it. For example, ms08 067 netapi
does not support Windows Embedded targets, even
though Windows Embedded is based on Windows XP,
and thus also is vulnerable to CVE-2008-4250 (i.e., the

Page 6442

target vulnerability).
Similarly, a more vulnerable application is

hypothesized to be less likely to be configured
with fixes that prevent exploitation (Application:Sum
of Base Scores, Application:CPE, Application:Exposed
port).

The CVSS Base Score of the vulnerability could
impact successful exploitation in various ways
(Vulnerability:Base Score). For example, vulnerabilities
that are easier for an attacker to utilize (e.g., exploits
that do not require any user interaction) might receive
more development effort from exploit authors. CVSS
Access Complexity (Vulnerability:Access Complexity)
and Authentication (Vulnerability:Authentication) were
specifically selected as they concern the difficulty
of triggering a vulnerability. CVSS impact metrics
were disregarded as all tested exploits concern
privilege escalation, and the exploitability metric
Access Vector was disregarded as all exploits were
run in their designated scopes (see Section 3.2.2).
CVSS environmental metrics and temporal metrics
were disregarded as their states are undefined for
vulnerabilities in the NVD. Older vulnerabilities are
hypothesized to be easier to exploit as they often
concern less hardened software (Vulnerability:Time
since disclosure). Threat intelligence information
(Vulnerability:Snort IDS rules5, Vulnerability:Symantec
threats6 and Vulnerability:VERIS incidents7) could
indicate exploit reliability as a more reliable exploit
likely sees more usage in the wild. The type of
vulnerability that is concerned (Vulnerability:CWE8)
could influence exploit reliability as different types of
vulnerabilities have received different developer focus
in terms of protection mechanisms.

Each exploit in Metasploit has been assigned
a reliability rank based on its potential impact to
the target system9, which goes from manual to
excellent (Exploit:Metasploit reliability). Exploit size
(Exploit:Lines of code), target count (Exploit:Number
of targets) and availability of automated targeting
(Exploit:Has autotarget) should affect an exploit’s
ability to handle different victim configurations. A more
complex exploit in terms of customization could also
influence likelihood of exploitation (Exploit:Settings,
Exploit:Required settings). If the target port in a
server exploit differs from the port that the application
has exposed, it is possible that the application’s

5https://rules.emergingthreats.net/
6https://www.symantec.com/security-center/

a-z
7http://veriscommunity.net/
8https://cwe.mitre.org/
9https://github.com/rapid7/

metasploit-framework/wiki/Exploit-Ranking

configuration has been altered in other means that affects
the likelihood of exploit success (Exploit:Default port is
open). An older exploit has had greater opportunity to
be refined and is also more likely to concern an older
software with less protection mechanisms (Exploit:Time
since publishing).

3.3.2. Feature scaling methods. Four different
scaling methods were tested: none, manual min-max
scaling to a 0-1 domain, standard min-max scaling to a
0-1 domain, and scaling based on means and standard
deviation. Manual scaling means that each feature
was manually scaled to a 0-1 domain through domain
knowledge. This was done as standard ML scaling
methods do not account for future changes to variable
states. For example, a standard scaling of the lines of
code variable would only account for the lines of code
observed in the samples. This would produce issues
if the model is applied to a future exploit code that is
significantly larger than the previous maximum. The
manual scaling is thus not custom-fit to the observed
samples and more robust to future state changes.

3.3.3. SMOTE ENN. Due to the large imbalance in
the dataset, SMOTE ENN10 [22] was used to generate
a second balanced dataset by artificially over-sampling
the minority class (i.e., successful exploits) through
SMOTE and then cleaning the space resulting from
over-sampling through Edited Nearest Neighbours.
SMOTE ENN was chosen as it produced the best results
for imbalanced datasets in previous studies [23] and
have been used in the cyber security domain, e.g.,
regarding intrusion detection [24].

3.4. Creation of classifiers

Three kinds of classifiers were trained through
supervised learning: support vector machines (SVM),
random forests (RF) and neural networks (NN). These
were chosen as they are standard algorithms that have
been used with success on various previous occasions
[25]. A standard ML library, scikit-learn, was used for
training the classifiers. Parameter tuning was performed
based on k-fold cross-validation with a k of 3 on the two
datasets (the original dataset and the dataset revised by
SMOTE ENN). The F1 metric was used for evaluating
model fit in front of the standard accuracy metric due
to the imbalance in the dataset. After training, the
best SVM, RF and NN model were subjected to the

10https://imbalanced-learn.readthedocs.io/
en/stable/generated/imblearn.combine.SMOTEENN.
html

Page 6443

Table 2. Employed features.

Sc
op

e
Va

ri
ab

le
D

at
a

ty
pe

D
es

cr
ip

tio
n

M
ac

hi
ne

Su
m

of
B

as
e

Sc
or

es
Fl

oa
t

T
he

su
m

of
al

lC
V

SS
v2

B
as

e
Sc

or
es

fo
ra

ll
vu

ln
er

ab
ili

tie
s

in
th

e
m

ac
hi

ne
C

PE
co

un
t

In
te

ge
r

T
he

to
ta

ln
um

be
ro

fi
de

nt
ifi

ed
C

om
m

on
Pl

at
fo

rm
E

nu
m

er
at

io
n

en
tr

ie
s

in
th

e
m

ac
hi

ne
O

pe
n

po
rt

s
C

at
eg

or
ic

al
(2

1
fe

at
ur

es
)

T
he

op
en

po
rt

s
in

th
e

m
ac

hi
ne

ac
co

rd
in

g
to

th
e

to
p

20
po

rt
s

gi
ve

n
by

N
m

ap

C
PE

C
at

eg
or

ic
al

(6
4

fe
at

ur
es

)
C

om
m

on
Pl

at
fo

rm
E

nu
m

er
at

io
n

en
tr

y
of

th
e

op
er

at
in

g
sy

st
em

A
pp

lic
at

io
n

Su
m

of
B

as
e

Sc
or

es
Fl

oa
t

T
he

su
m

of
al

lC
V

SS
v2

B
as

e
Sc

or
es

fo
ra

ll
vu

ln
er

ab
ili

tie
s

in
th

e
ap

pl
ic

at
io

n
C

PE
C

at
eg

or
ic

al
(4

80
fe

at
ur

es
)

C
om

m
on

Pl
at

fo
rm

E
nu

m
er

at
io

n
en

tr
y

of
th

e
vu

ln
er

ab
le

ap
pl

ic
at

io
n

E
xp

os
ed

po
rt

C
at

eg
or

ic
al

(2
1

fe
at

ur
es

)
T

he
po

rt
ex

po
se

d
by

th
e

so
ft

w
ar

e
m

ap
pe

d
to

th
e

to
p

20
po

rt
s

gi
ve

n
by

N
m

ap

V
ul

ne
ra

bi
lit

y

B
as

e
Sc

or
e

Fl
oa

t
T

he
C

V
SS

v2
B

as
e

Sc
or

e
of

th
e

vu
ln

er
ab

ili
ty

A
cc

es
s

C
om

pl
ex

ity
C

at
eg

or
ic

al
(4

fe
at

ur
es

)
T

he
C

V
SS

v2
A

cc
es

s
C

om
pl

ex
ity

st
at

e
of

th
e

vu
ln

er
ab

ili
ty

A
ut

he
nt

ic
at

io
n

C
at

eg
or

ic
al

(4
fe

at
ur

es
)

T
he

C
V

SS
v2

A
ut

he
nt

ic
at

io
n

st
at

e
of

th
e

vu
ln

er
ab

ili
ty

Ti
m

e
si

nc
e

di
sc

lo
su

re
Fl

oa
t

T
he

el
ap

se
d

tim
e

si
nc

e
th

e
vu

ln
er

ab
ili

ty
w

as
di

sc
lo

se
d

Sn
or

tr
ul

es
In

te
ge

r
E

nt
ri

es
in

Sn
or

tn
et

w
or

k
in

tr
us

io
n

de
te

ct
io

n
sy

st
em

E
m

er
gi

ng
T

hr
ea

ts
ru

le
se

ts
V

E
R

IS
in

ci
de

nt
s

In
te

ge
r

E
nt

ri
es

in
V

E
R

IS
in

ci
de

nt
s

Sy
m

an
te

c
th

re
at

s
In

te
ge

r
E

nt
ri

es
in

Sy
m

an
te

c
th

re
at

s
C

W
E

C
at

eg
or

ic
al

C
om

m
on

W
ea

kn
es

s
E

nu
m

er
at

io
n

en
tr

y
fo

rt
he

vu
ln

er
ab

ili
ty

E
xp

lo
it

M
et

as
pl

oi
tr

el
ia

bi
lit

y
C

at
eg

or
ic

al
(8

fe
at

ur
es

)
T

he
M

et
as

pl
oi

tr
el

ia
bi

lit
y

in
de

x
of

th
e

ex
pl

oi
t

N
um

be
ro

ft
ar

ge
ts

In
te

ge
r

T
he

nu
m

be
ro

ft
ar

ge
ts

fo
rt

he
ex

pl
oi

t
H

as
au

to
ta

rg
et

B
oo

le
an

If
th

e
ex

pl
oi

th
as

an
”a

ut
o”

op
tio

n
fo

rT
A

R
G

E
T

L
in

es
of

co
de

In
te

ge
r

T
he

nu
m

be
ro

fl
in

es
of

co
de

in
th

e
ex

pl
oi

t
D

ef
au

lt
po

rt
is

op
en

B
oo

le
an

If
th

e
de

fa
ul

tp
or

tf
or

th
e

ex
pl

oi
ti

s
op

en
in

th
e

vi
ct

im
m

ac
hi

ne
Se

tti
ng

s
In

te
ge

r
T

he
nu

m
be

ro
fs

et
tin

gs
of

di
ff

er
en

tk
in

ds
(e

.g
.,

bo
ol

ea
n,

in
te

ge
r,

flo
at

,s
tr

in
g)

R
eq

ui
re

d
se

tti
ng

s
In

te
ge

r
T

he
nu

m
be

ro
fr

eq
ui

re
d

se
tti

ng
s

of
di

ff
er

en
tk

in
ds

(e
.g

.,
bo

ol
ea

n,
in

te
ge

r,
flo

at
,s

tr
in

g)
Ti

m
e

si
nc

e
pu

bl
is

hi
ng

Fl
oa

t
T

he
el

ap
se

d
tim

e
si

nc
e

th
e

ex
pl

oi
tw

as
pu

bl
is

he
d

Page 6444

same tests. These tests involved estimating model fit
over 50 datasets that were generated by ten runs of
k-fold validation with a k of 5 on the overall dataset.
Evaluations of models based on SMOTE ENN were
made by usage of pre-computed SMOTE ENN revised
versions of the training-parts of these 50 datasets.

The SVM model was trained according to the
guidelines in [26, 27]. In summary, this meant training
a C-SVM with an rbf kernel through a grid search
for the optimal values of the parameters C, gamma
and class weight. A total of 8100 different parameter
combinations were tested.

The RF model was trained according to the
guidelines in [28, 29]. Six parameters were used to
tune the model: n estimators, max features, max depth,
min samples split, mean samples leaf and bootstrap.
Due to time constraints, instead of evaluating all 8640
relevant parameter combinations, a random grid search
model was used to test 100 of these combinations. As
RF algorithms are known to perform well even with
their default parameters [28], 100 combinations was
considered sufficient.

The NN model that is implemented in scikit-learn
is a multi-layer perceptron algorithm that employs
backpropagation. Three parameters were selected
for tuning it: learning rate, hidden layer sizes and
activation. This resulted in 45 combinations that were
tested through a grid search.

4. Results

An overview of the results for the examined
classifiers is presented in Table 3. The numbers
described in Table 3 concern the overall mean values as
well as the lowest and highest values observed across
the 50 tests. The highest mean F1 score (0.734) as
well as the lowest error rate (1.8%) were observed
for the RF model. This model had 400 trees in the
forest, a minimum of 2 splits per node, a minimum of
1 sample to be a leaf, a max tree depth of 30, used
bootstrap samples when building trees, and employed
feature scaling according to mean values and standard
deviation. The best SVM model had a C of 1, a
gamma of 0.5, class weights according to the sample
sizes, and employed standard min-max scaling to the 0-1
domain. The best NN model employed a rectified linear
unit (relu) activation function, two hidden layers (with
50 and 30 neurons), inverse scaling exponent-based
learning rate, and used standard min-max scaling to the
0-1 domain.

The models were best at correctly classifying
non-exploitable vulnerabilities. When a detected
vulnerability was not exploitable, the RF model

correctly classified it 99.3% of the time; when a
detected vulnerability actually was exploitable, the
RF model correctly classified it 68.4% of the time.
The best NN model had a similar distribution, albeit
lower scores. The results differed a bit for the
best SVM model, which correctly classified 78.7%
of all exploitable vulnerabilities and 98.3% of the
non-exploitable vulnerabilities.

SMOTE ENN did not increase the performance of
any tested model. The best models when applying
SMOTE ENN had mean F1 scores of 0.706 (RF, 4%
worse), 0.622 (SVM, 12% worse) and 0.592 (NN, 14%
worse).

The relative importance of different features was
analyzed through the best model (RF). Out of the
30 most significant features, 9 concern the exploit,
8 the vulnerability, 8 the application, and 5 the
machine. Thus, while there are valuable features in
all categories, the results suggest that aspects related to
the environment are less important than the employed
exploit and the targeted vulnerability. This observation
is enforced by the fact that the two by far most
significant features concern the exploit (Lines of code
and the Number of targets).

Metasploit’s reliability index occur five times in the
top 30 features: Excellent (rank 18), Good (rank 20),
Average (rank 22), Medium (rank 27) and Low (rank
30). It is reasonable that these are important features,
and that their relative rank reflect their influence on
exploit reliability as hypothesized by their authors.
It is, however, interesting that there are 17 features
which are more important than these manually defined
reliability ranks - including simply counting exploit’s
lines of code. The CWE standard provides some
insight into this question. Nine CWE entries account
for 82% of all samples, and seven of these (66% of
all samples) concern memory corruption vulnerabilities.
As even a minor alteration in the target could affect the
memory layout of a vulnerable function, an exploit for
this kind of vulnerability typically needs many built-in
configurations to be reliable.

The fact that features related to different kinds of
exploit settings are important (boolean at rank 7, string
at rank 15 and list at rank 21) suggest that exploits that
are more complex in terms of configuration could affect
the likelihood of success.

5. Discussion, conclusions and future
work

This paper presented a model for measuring the
likelihood that a detected vulnerability can be exploited.
ML models were trained based on data collected during

Page 6445

Table 3. Overview of results for best models, presented as mean (min, max).

Model F1 Precision Recall Accuracy

RF 0.734 (0.567, 0.853) 0.796 (0.619, 0.974) 0.686 (0.452, 0.857) 0.982 (0.969, 0.991)
SVM 0.706 (0.577, 0.842) 0.644 (0.484, 0.800) 0.789 (0.643, 0.971) 0.976 (0.957, 0.988)
NN 0.690 (0.522, 0.800) 0.721 (0.480, 0.875) 0.670 (0.533, 0.857) 0.978 (0.969, 0.986)

a cyber security experiment involving more than 5000
exploit attempts. The best results were found for a
RF model, which had a mean cross-validation accuracy
of 98.2% and an F1 score of 0.73. This result is
significantly better than the most similar related work
[15], which merely estimates the availability of exploits,
and has an accuracy of 86%.

There are other use-cases for the data and tools
presented in this paper. For example, the results can
be used for more realistic game theoretical [30] or
attack graph [31] simulations, which often are based
on completely fictitious data. Furthermore, as each
activity that is carried out by SVED (e.g., an exploit or
a user browsing the web) has a ground truth established
with a millisecond precision through a combination of
structured logs and raw system/network events (e.g.,
network captures), the results of an experiment enable
standardized and reliable training and evaluation of
intrusion detection tools and rulesets. While validity
issues certainly would remain, it would arguably be
significantly better than any variant of the twenty year
old DARPA dataset.

The remainder of this chapter critically discusses the
obtained results along with some key topics and presents
future work regarding these issues.

Automated network vulnerability scanners produce
false positives. Some exploits likely failed due to
false positives by OpenVAS. The results should be
viewed in this light: they are valid to vulnerabilities
detected by authenticated network vulnerability scans,
but not necessarily valid to other vulnerability detection
methods.

The machines and configurations in the employed
cyber range do not accurately reflect real-world
operational systems. While this is true, the included
machines and configurations were set up for a plethora
of purposes, by a variety of personnel during the course
of more than a decade. Thus, they have a high
variability. Furthermore, aspects that are difficult to
simulate well within a cyber range, but are of importance
to security audits in the real world (e.g., the information
stored in machines) are irrelevant for the experiment
described in this paper. Thus, the experiment scenario
should provide sufficiently reliable results.

Only exploits in Metasploit were considered. There

are a plethora of exploits in the public domain that
have not been implemented in Metasploit that attackers
with some technical knowledge obviously can utilize.
For example, there are more than 40 000 entries
within the Exploit-DB. We plan to develop automated
methods for translating such exploits into working
Metasploit-compatible modules in future work.

Alternative features. As for any ML task, there are
various alternative features that can be considered. For
example, this research employed one-hot-encoding for
converting categorical variables into features. While
this is a standard method for this purpose, an
alternate method called entity embeddings [32] is
gaining popularity. Entity embeddings loosely means
mapping each dimension of a categorical variable to
a fixed-dimension space. This enables reducing the
dimensionality of a categorical variable from N to P
dimensions and furthermore enables mapping values
that are similar in terms of output. We will explore
additional features such as entity embeddings in future
work.

More samples. While the dataset analyzed in this
paper is larger than previous studies of the same topic,
it is small in comparison to general ML tasks that
typically includes millions of samples. In particular,
neural networks are not very robust to low samples sizes
compared to RF and SVM models. We are researching
methods for enabling scaled up experiments. One
promising such method is to deploy machines with
configurations provided by packet managers such
as Chocolatey11 and Puppet12 according to statistics
observed from operational systems.

References

[1] H. Holm, T. Sommestad, J. Almroth, and M. Persson,
“A quantitative evaluation of vulnerability scanning,”
Information Management & Computer Security, vol. 19,
no. 4, pp. 231–247, 2011.

[2] M. Frigault, L. Wang, S. Jajodia, and A. Singhal,
“Measuring the overall network security by combining
cvss scores based on attack graphs and bayesian
networks,” in Network Security Metrics, pp. 1–23,
Springer, 2017.

[3] H. Holm and K. K. Afridi, “An expert-based
investigation of the common vulnerability scoring

11https://chocolatey.org/
12https://puppet.com/

Page 6446

system,” Computers & Security, vol. 53, pp. 18–30,
2015.

[4] J. Nazario, T. Ptacek, and D. Song, “Wormability:
A description for vulnerabilities,” Arbor Networks
(October 2004), 2004.

[5] L. Tidy, K. Shahzad, M. A. Ahmad, and S. Woodhead,
“An assessment of the contemporary threat posed by
network worm malware,” 2014.

[6] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba,
and K. Das, “The 1999 darpa off-line intrusion
detection evaluation,” Computer networks, vol. 34, no. 4,
pp. 579–595, 2000.

[7] J. McHugh, “Testing intrusion detection systems: a
critique of the 1998 and 1999 darpa intrusion detection
system evaluations as performed by lincoln laboratory,”
ACM Transactions on Information and System Security
(TISSEC), vol. 3, no. 4, pp. 262–294, 2000.

[8] L. Su, Y. Yao, N. Li, J. Liu, Z. Lu, and B. Liu,
“Hierarchical clustering based network traffic data
reduction for improving suspicious flow detection,”
in 2018 17th IEEE International Conference
On Trust, Security And Privacy In Computing
And Communications/ 12th IEEE International
Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), pp. 744–753, Aug 2018.

[9] J. Yan, D. Jin, C. W. Lee, and P. Liu, “A comparative
study of off-line deep learning based network intrusion
detection,” in 2018 Tenth International Conference on
Ubiquitous and Future Networks (ICUFN), pp. 299–304,
IEEE, 2018.

[10] K. A. Farris, A. Shah, G. Cybenko, R. Ganesan,
and S. Jajodia, “Vulcon: A system for vulnerability
prioritization, mitigation, and management,” ACM
Transactions on Privacy and Security (TOPS), vol. 21,
no. 4, p. 16, 2018.

[11] T. Dumitraş and P. Efstathopoulos, “Ask wine: are
we safer today? evaluating operating system security
through big data analysis,” in Proceedings of the
5th USENIX conference on Large-Scale Exploits and
Emergent Threats, pp. 11–11, USENIX Association,
2012.

[12] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph,
K. Sklower, R. Ostrenga, and S. Schwab, “Experience
with deter: a testbed for security research,” in Testbeds
and Research Infrastructures for the Development of
Networks and Communities, 2006. TRIDENTCOM 2006.
2nd International Conference on, pp. 10–pp, IEEE,
2006.

[13] H. Holm and T. Sommestad, “Sved: Scanning,
vulnerabilities, exploits and detection,” in Military
Communications Conference, MILCOM 2016-2016
IEEE, pp. 976–981, IEEE, 2016.

[14] H. Holm and T. Sommestad, “So long, and thanks
for only using readily available scripts,” Information &
Computer Security, vol. 25, no. 1, pp. 47–61, 2017.

[15] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker,
“Beyond heuristics: learning to classify vulnerabilities
and predict exploits,” in Proceedings of the 16th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 105–114, ACM, 2010.

[16] L. Allodi and F. Massacci, “Comparing vulnerability
severity and exploits using case-control studies,” ACM
Transactions on Information and System Security
(TISSEC), vol. 17, no. 1, p. 1, 2014.

[17] H. Holm, M. Ekstedt, and D. Andersson, “Empirical
Analysis of System-Level Vulnerability Metrics through
Actual Attacks,” IEEE Transactions on Dependable and
Secure Computing, vol. 9, pp. 825–837, nov 2012.

[18] M. Granåsen and D. Andersson, “Measuring
team effectiveness in cyber-defense exercises: a
cross-disciplinary case study,” Cognition, Technology &
Work, vol. 18, no. 1, pp. 121–143, 2016.

[19] I. Takaesu, “Deep Exploit.” https://github.
com/13o-bbr-bbq/machine_learning_
security/tree/master/DeepExploit, 2018.
[Online; accessed 14-June-2019].

[20] A. Compton and A. Lane, “APT2 - An Automated
Penetration Testing Toolkit.” https://github.
com/MooseDojo/apt2, 2018. [Online; accessed
14-June-2019].

[21] Vectorsec, “AutoSploit.” https://github.com/
NullArray/AutoSploit, 2018. [Online; accessed
14-June-2019].

[22] H. He and E. A. Garcia, “Learning from imbalanced
data,” IEEE Transactions on Knowledge & Data
Engineering, no. 9, pp. 1263–1284, 2008.

[23] D. S. Sisodia, N. K. Reddy, and S. Bhandari,
“Performance evaluation of class balancing techniques
for credit card fraud detection,” in 2017 IEEE
International Conference on Power, Control, Signals and
Instrumentation Engineering (ICPCSI), pp. 2747–2752,
IEEE, 2017.

[24] H. H. Pajouh, G. Dastghaibyfard, and S. Hashemi,
“Two-tier network anomaly detection model: a machine
learning approach,” Journal of Intelligent Information
Systems, vol. 48, no. 1, pp. 61–74, 2017.

[25] M. Fernández-Delgado, E. Cernadas, S. Barro, and
D. Amorim, “Do we need hundreds of classifiers
to solve real world classification problems?,” The
Journal of Machine Learning Research, vol. 15, no. 1,
pp. 3133–3181, 2014.

[26] C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al., “A practical
guide to support vector classification,” 2003.

[27] A. Ben-Hur and J. Weston, “A user’s guide to support
vector machines,” in Data mining techniques for the life
sciences, pp. 223–239, Springer, 2010.

[28] T. Hastie, R. Tibshirani, and J. Friedman, The elements
of statistical learning: data mining, inference and
prediction. Springer, 2 ed., 2009.

[29] A. Boulesteix, S. Janitza, J. Kruppa, and I. R. König,
“Overview of random forest methodology and practical
guidance with emphasis on computational biology
and bioinformatics,” Wiley Interdiscip. Rev. Data Min.
Knowl. Discov., vol. 2, no. 6, pp. 493–507, 2012.

[30] S. Roy, C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya, and
Q. Wu, “A survey of game theory as applied to network
security,” in 2010 43rd Hawaii International Conference
on System Sciences, pp. 1–10, IEEE, 2010.

[31] B. Kordy, L. Piètre-Cambacédès, and P. Schweitzer,
“Dag-based attack and defense modeling: Don’t miss
the forest for the attack trees,” Computer science review,
vol. 13, pp. 1–38, 2014.

[32] C. Guo and F. Berkhahn, “Entity embeddings of
categorical variables,” arXiv preprint arXiv:1604.06737,
2016.

Page 6447

