91,718 research outputs found

    Dynamic Trust-Based Device Legitimacy Assessment Towards Secure IoT Interactions

    Get PDF
    Establishing trust-based interactions in heterogeneously connected devices appears to be the prominent mechanism in addressing the prevailing concerns of confidence, reliability and privacy relevant in establishing secure interactions among connected devices in the network. Trust-based assessment of device legitimacy is evolving given IoT devices’ dynamic and heterogeneous nature and emerging adversaries. However, computation and application of trust level in establishing secure communications, access control and privacy domain are rarely discussed in the literature. To compute trust, based on the quality of service, direct interactions, and the relationship between devices, we introduce a multi-factor trust computation model that considers the multiple attributes of interactions in an IoT network of heterogeneous devices providing a wide range of data and services. Direct trust is estimated for quality of service considering the response time, reliability, consistency, and integrity attributes of devices. The time decay factor influences the credibility of computed trust over time. The policy-driven mechanism is employed to sift the devices and isolate the malicious ones. Extensive simulations validate the proposed model’s effectiveness using Contiki’s Cooja simulator for IoT networks

    Managed ecosystems of networked objects

    Get PDF
    Small embedded devices such as sensors and actuators will become the cornerstone of the Future Internet. To this end, generic, open and secure communication and service platforms are needed in order to be able to exploit the new business opportunities these devices bring. In this paper, we evaluate the current efforts to integrate sensors and actuators into the Internet and identify the limitations at the level of cooperation of these Internet-connected objects and the possible intelligence at the end points. As a solution, we propose the concept of Managed Ecosystem of Networked Objects, which aims to create a smart network architecture for groups of Internet-connected objects by combining network virtualization and clean-slate end-to-end protocol design. The concept maps to many real-life scenarios and should empower application developers to use sensor data in an easy and natural way. At the same time, the concept introduces many new challenging research problems, but their realization could offer a meaningful contribution to the realization of the Internet of Things

    A personal networking solution

    Get PDF
    This paper presents an overview of research being conducted on Personal Networking Solutions within the Mobile VCE Personal Distributed Environment Work Area. In particular it attempts to highlight areas of commonality with the MAGNET initiative. These areas include trust of foreign devices and service providers, dynamic real-time service negotiation to permit context-aware service delivery, an automated controller algorithm for wireless ad hoc networks, and routing protocols for ad hoc networking environments. Where possible references are provided to Mobile VCE publications to enable further reading

    Service re-routing for service network graph: efficiency, scalability and implementation

    Get PDF
    The key to success in Next Generation Network is service routing in which service requests may need to be redirected as in the case of the INVITE request in Session Initiation Protocol. Service Path (SPath) holds the authentication and server paths along side with service information. As the number of hops in a redirection increases, the length of SPath increases. The overhead for service routing protocols which uses SPath increases with the length of SPath. Hence it is desirable to optimize SPath to ensure efficiency and scalability of protocols involving service routing. In this paper, we propose a re-routing strategy to optimize service routing, and demonstrate how this strategy can be implemented using SPath to enhance the efficiency and scalability of Service Network Graph (SNG)

    Game Theoretic Formation of a Centrality Based Network

    Full text link
    We model the formation of networks as a game where players aspire to maximize their own centrality by increasing the number of other players to which they are path-wise connected, while simultaneously incurring a cost for each added adjacent edge. We simulate the interactions between players using an algorithm that factors in rational strategic behavior based on a common objective function. The resulting networks exhibit pairwise stability, from which we derive necessary stable conditions for specific graph topologies. We then expand the model to simulate non-trivial games with large numbers of players. We show that using conditions necessary for the stability of star topologies we can induce the formation of hub players that positively impact the total welfare of the network.Comment: Submitted to 2012 ASE Social Informatics Conferenc

    A Resource-Based View Of International Human Resources: Toward A Framework of Integrative and Creative Capabilities

    Get PDF
    Drawing on organizational learning and MNC perspectives, we extend the resource-based view to address how international human resource management provides sustainable competitive advantage. We develop a framework that emphasizes and extends traditional assumptions of the resource-based view by identifying the learning capabilities necessary for a complex and changing global environment. These capabilities address how MNCs might both create new HR practices in response to local environments and integrate existing HR practices from other parts of the firm (affiliates, regional headquarters, and global headquarters). In an effort to understand the nature of such capabilities, we discuss aspects of human capital, social capital, and organizational capital that might be linked to their development. Page
    • 

    corecore