11 research outputs found

    Iz časopisa

    Get PDF
    From the field of cartography and geoinformation, there are journal’s article extracts given which are not cartographic first and whose complete texts are on the Internet, accessible to the members of Croatian academic and research community. Most journals can be accessed through the PERO browser (http://knjiznica.irb.hr/pero/index.php). For the journals not found through this browser, the complete texts of the mentioned articles are available for free on the given web-address. Next to every jo­urnal headline, in the brackets, it is noted which prominent bibliographic and quotation bases it is placed in: CC (Current Contents), SCIE (Science Citati­­on Index Expanded), and SSCI (Social Sc­­­i­ence Citation Index). It should be noted that, for some journals accessible through PERO browser, there is a delay of 6, 12 and even 18 months in accessing the newest issues. This number is given in the brackets next to the journal’s headline.Dan je izbor članaka iz područja kartografije i geoinformacija iz časopisa, koji nisu u prvom redu kartografski, a kojima su cjeloviti tekstovi dostupni na internetu članovima hrvatske akademske i istraživačke zajednice. Većina časopisa dostupna je preko pretraživača PERO (http:// knjiznica.irb.hr/pero/index.php). Za časopise koji nisu dostupni preko tog pretraživača cjeloviti tekstovi navedenih članaka slobodno su pristupačni na upisanoj web-adresi. Uz svaki je časopis u zagradi naznačeno u koje je ugledne bibliografske i citatne baze uvršten: CC (Current Contents), SCIE (Science Citation Index Expanded), SSCI (Social Science Citation Index). Treba naglasiti da za neke časopise, dostupne preko pretraživača PERO, postoji odgoda pristupa najnovijim brojevima od 6, 12, a ponekad i 18 mjeseci. Taj broj je naveden u zagradi uz naslov časopisa

    Automatic semantic and geometric enrichment of CityGML building models using HoG-based template matching

    Get PDF
    Semantically rich 3D building models give the potential for a wealth of rich geo-spatially-enabled applications such as cultural heritage augmented reality, urban planning, radio network planning and personal navigation. However, the majority of existing building models lack much if any semantic detail. This work demonstrates a novel method for automatically locating subclasses of windows and doors, using computer vision techniques including the histogram of oriented gradient (HoG) template matching, and automatically creating enriched CityGML content for the matched windows and doors. Good results were achieved for class identification with potential for further refinement of subclasses of windows and doors and other architectural features. It is part of a wider project to bring even richer semantic content to 3D geo-spatial building models

    Collaborative 3D Modeling: Conceptual and Technical Issues

    Full text link
    peer reviewedThe need of 3D city models increases day by day. However, 3D modeling still faces some impediments to be generalized. Therefore, new solutions such as collaboration should be investigated. The paper presents a new vision of collaboration applied on 3D modeling through the definition of the concept of a 3D collaborative model. The paper highlights basic questions to be considered for the definition and the development of that model then argues the importance of reuse of 2D data as a promising solution to reconstruct 3D data and to upgrade to integrated 3D solutions in the future. This idea is supported by a case study, to demonstrate how 2D/2.5D data collected from different providers in Walloon region in Belgium can be integrated and reengineered to match the specifications of a 3D building model compatible with the CityGML standard

    STATE-OF-THE-ART OF 3D NATIONAL MAPPING IN 2016

    Get PDF

    CityGML in the Integration of BIM and the GIS: Challenges and Opportunities

    Get PDF
    CityGML (City Geography Markup Language) is the most investigated standard in the integration of building information modeling (BIM) and the geographic information system (GIS), and it is essential for digital twin and smart city applications. The new CityGML 3.0 has been released for a while, but it is still not clear whether its new features bring new challenges or opportunities to this research topic. Therefore, the aim of this study is to understand the state of the art of CityGML in BIM/GIS integration and to investigate the potential influence of CityGML3.0 on BIM/GIS integration. To achieve this aim, this study used a systematic literature review approach. In total, 136 papers from Web of Science (WoS) and Scopus were collected, reviewed, and analyzed. The main findings of this review are as follows: (1) There are several challenging problems in the IFC-to-CityGML conversion, including LoD (Level of Detail) mapping, solid-to-surface conversion, and semantic mapping. (2) The ‘space’ concept and the new LoD concept in CityGML 3.0 can bring new opportunities to LoD mapping and solid-to-surface conversion. (3) The Versioning module and the Dynamizer module can add dynamic semantics to the CityGML. (4) Graph techniques and scan-to-BIM offer new perspectives for facilitating the use of CityG

    Samredovisning av BIM- och GIS-data

    Get PDF
    Combined presentations of BIM- and GIS-data Throughout the process of creating and maintaining our built environment, from planning to building to facility management, large amounts of data are produced and consumed. Much of these are geographic data, processed in some form of GIS (Geographical Information System). Others are building data, increasingly handled in different BIM (Building Information Model) software packages. To be able to integrate data from these two different worlds can be seen as a crucial step in improving communication, avoiding resource waste and creating new possibilities. This master’s thesis contains an investigation on ways of combining data from BIM and GIS sources, and displaying the combined models online. The study is conducted in two parts, the first using literature, interviews and technical documentation to provide a theoretical background, and the second using a case study to investigate the technical feasibility of the techniques described. The background contains sections on possible application domains and an overview of representations of 3D geometry. It further details some of the most important 3D data formats currently in use, known issues with integration of BIM and GIS data, and options for visualizing 3D data online. The study goes on to describe possible system architectures for combining BIM and GIS data, and to define criteria against which these can be evaluated. The case study uses data from the ongoing reconstruction of a Swedish pulp mill. A 3D model of the mill and a digital elevation model from the national land survey (Lantmäteriet) are combined. Four different system architectures are investigated, one using an online GIS platform (ArcGIS Online and the CityEngine Web Viewer), one using a BIM distribution tool (Maint3D), one where a viewer is developed using a JavaScript library (three.js), and one where the data is transformed to 2D (using WMS and ArcGIS Server). Results show that there are still several issues that need to be resolved to achieve combined 3D visualizations. There are problems on a technical level, with geometric representations and format translations; on a data level, with differing information models and content handling; and on an organizational level, where data and data producers still seem divided into separate worlds. The study concludes that co-operation and standardization are necessary, as well as continued technical development, to make combinations of 3D data plausible in the future.Att realisera outnyttjad potential – Om webbaserad samredovisning av BIM- och GIS-data En arkitekt placerar in sitt ännu bara tänkta hus i en realistisk 3D-modell av den omgivande staden för att visa allmänhet och beställare hur det kommer bli. En projektör lägger sin tunnel genom en tredimensionell geologisk karta och hittar snabbt och lätt tänkbara problemområden. Kart-appen på mobilen kan inte bara visa dig till ett sjukhus eller köpcenter, utan också guida dig rätt där inne. I en värld av 3D-spelvärldar och animerade långfilmer låter det inte som att det borde vara omöjligt. Under vägen från plan till bygge till förvaltning använder vi i samhällsbyggnadsprocessen idag ofantliga mängder data. Mycket av denna data skapas och redovisas i 3D, i form av byggnads-, anläggnings-, eller landskapsmodeller, geologiska modeller och 3D-kartor. Det visar sig dock att det i dagsläget ofta är mycket svårt att återanvända och kombinera data från olika källor. Detta försvårar kommunikation mellan aktörer, fördyrar processen och gör att möjliga insikter och möjligheter helt enkelt missas. En del av bakgrunden till den här problematiken ligger i att data produceras inom två i stor utsträckning skilda världar, med olika ursprung, historisk framväxt och prioriteringar. Landskaps- och geologi-modeller bearbetas oftast med olika GIS-program, där GIS står för geografiska informationssystem, d.v.s. datorsystem byggda för att hantera information bunden till ett visst läge. Byggnads- och anläggningsdata hanteras istället normalt sett som BIM (byggnadsinformationsmodeller), eller i andra specialiserade 3D-designverktyg. Dessa två världar hanterar data olika på flera grundläggande plan, vad gäller t.ex. koordinatsystem, detaljnivå, och hur geometri och attribut hänger ihop med varandra och lagras i datorn. För att ytterligare försvåra finns det också stor spridning inom både GIS- och BIM-världen mellan de olika 3D-format som används. Det kan röra sig om allt från enkla listor av trianglar, till avancerade klassificerade dataformat med stora attributmängder och matematiskt beskrivna geometrier. Många dataformat är också knutna till en specifik programvara och saknar offentligt tillgängliga beskrivningar. Allt detta gör att det är svårt att skapa översättningar mellan format utan att tappa eller förvanska information. För att visa upp och sprida 3D-data över internet har det under de senaste åren dykt upp en hel rad lösningar som bygger på nya möjligheter att visa 3D-grafik direkt i en webbläsare. En del är helt generella, andra specialiserade på specifika områden eller datamängder. Både på GIS- och BIM-sidan går utvecklingen snabbt framåt, och nya eller förbättrade verktyg dyker upp hela tiden. Principiellt kan man urskilja tre möjliga huvudspår för att hitta en lösning på de här problemen: att föra in BIM-data i GIS-verktyg, att föra in GIS-data i BIM-verktyg, och att översätta både BIM- och GIS-data till en mer generell 3D-miljö. Alla alternativ har för- och nackdelar. Både GIS- och BIM-miljöerna är ganska specialiserade, och har ofta svårt att hantera indata de inte är tänkta att hantera. De generella 3D-verktygen är från början uppbyggda för spel och animeringar, och är därför mer fokuserade på utseende och rörelse än på attributhantering och spatiala analyser. För att komma vidare och hitta bra lösningar kommer det att krävas en hel del arbete med standardisering och kanske framförallt samordning mellan olika aktörer inom de olika världarna. Sannolikheten för att ett enda dataformat någonsin blir så heltäckande och lätthanterligt att det helt kan ta över känns väldigt liten, och därför kommer smidiga dataflyttar och översättningar mellan format vara av stor vikt under all överskådlig framtid. Potentialen i att kunna frigöra 3D-information från sin ursprungsmiljö och låta den återvinnas och samordnas med andra data är enorm, och sannolikheten är stor att den snabba utvecklingen av 3D på internet kommer att vara en pådrivande faktor framöver. Det gäller att både tekniken, formaten och människorna hänger med

    Gestión colaborativa de modelos 3D de ciudades en citygml durante su ciclo de vida basada en servicios en la nube

    Get PDF
    El objetivo de esta tesis es facilitar la gestión colaborativa de modelos 3D urbanos durante su ciclo de vida, incluyendo desde la generación hasta el uso de los mismos. Para ello se han diseñado y desarrollado una serie de servicios web que permiten generar el modelo con diferentes niveles de detalle y requisitos, validar el modelo 3D urbano a medida que se actualiza de forma colaborativa y proporcionar mecanismos para el despliegue automático de los mismos.El primer problema a resolver sobre los modelos 3D urbanos es que la generación de los mismos es compleja y costosa. Aunque la generación de la información geométrica de modelos 3D urbanos ha avanzado muchos en los últimos años, la semantización, que es el proceso de asignar información semántica a los objetos urbanos, sigue siendo uno de los aspectos críticos. Una vez existen, el siguiente problema a resolver es el mantenimiento, ya que normalmente los modelos se generan en un momento concreto, pero o no se actualizan o solo se actualizan cada mucho tiempo.Otro de los problemas que han sido identificados después de años trabajando con modelos 3D urbanos y desarrollando aplicaciones basadas en los mismos, es la necesidad de validarlos. Cada vez que se realizan cambios en el modelo, más aún si estos cambios los realizan diferentes personas, es necesario comprobar que el modelo sigue siendo válido. Normalmente la validación es un proceso semimanual que conlleva un gran coste en tiempo, y aun así no se tiene la certeza de que el modelo sea totalmente válido.Ante esta situación es necesario, por un lado, diseñar y desarrollar metodologías para facilitar y agilizar la creación y mantenimiento de modelos 3D urbanos. Y, por otro lado, ofrecer soluciones que permitan trabajar conjuntamente de forma colaborativa en el mantenimiento de un modelo 3D urbano y ofrecer mecanismos para la validación automática de los mismos una vez actualizados. Con estas soluciones será más fácil disponer de modelos 3D urbanos actualizados, validados y puestos a disposición de sus usuarios fácilmente.El objetivo de esta investigación es también avanzar en la correcta adopción de los modelos 3D urbanos con el fin de aumentar su uso en diferentes herramientas y por diferentes tipos de usuarios y organizaciones, tales como administraciones, empresas, universidades o ciudadanos.<br /

    Architecture and the Built Environment:

    Get PDF
    This publication provides an overview of TU Delft’s most significant research achievements in the field of architecture and the built environment during the years 2010–2012. It is the first presentation of the joint research portfolio of the Faculty of Architecture and OTB Research Institute since their integration into the Faculty of Architecture and the Built Environment. As such the portfolio holds a strong promise for the future. In a time when the economy seems to be finally picking up and in which such societal issues as energy, climate and ageing are more prominent than ever before, there are plenty of fields for us to explore in the next three years

    Automatic reconstruction of three-dimensional building models from dense image matching datasets

    Get PDF
    PhD ThesisThe generation of three-dimensional (3D) building models without roof geometry is currently easily automated using a building footprint and single height value. The automatic reconstruction of roof structures, however, remains challenging because of the complexity and variability in building geometry. Attempts from imagery have utilised high spatial resolution but have only reconstructed simple geometry. This research addresses the complexity of roof geometry reconstruction by developing an approach, which focuses on the extraction of corners to reconstruct 3D buildings as boundary representation models, to try overcome the limitations of planar fitting procedures, which are currently favoured. Roof geometry information was extracted from surface models, true orthophotos and photogrammetric point clouds; reconstructed at the same spatial resolution of the captured aerial imagery, with developments in pixel-to-pixel matching. Edges of roof planes were extracted by the Canny edge detector, and then refined with a workflow based on the principles of scan-line segmentation to remove false positive detection. Line tracing procedures defined the corner positions of the extracted edges. A connectivity ruleset was developed, which searches around the endpoints of unconnected lines, testing for potential connecting corners. All unconnected lines were then removed reconstruct 3D models as a closed network of connecting roof corners. Building models have been reconstructed both as block models and also with roof structures. The methodology was tested on data of Newcastle upon Tyne, United Kingdom, with results showing corner extraction success at 75% and to within a planimetric accuracy of ±0.5 m. The methodology was then tested on data of Vaihingen, Germany, which forms part of the ISPRS 3D reconstruction benchmark. This allowed direct comparisons to be made with other methods. The results from both study areas showed similar planimetric accuracy of extracted corners. However, both sites were not as successful in the reconstruction of roof planes.Ordnance Surve
    corecore