7 research outputs found

    Integration of breast cancer gene signatures based on graph centrality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Various gene-expression signatures for breast cancer are available for the prediction of clinical outcome. However due to small overlap between different signatures, it is challenging to integrate existing disjoint signatures to provide a unified insight on the association between gene expression and clinical outcome.</p> <p>Results</p> <p>In this paper, we propose a method to integrate different breast cancer gene signatures by using graph centrality in a context-constrained protein interaction network (PIN). The context-constrained PIN for breast cancer is built by integrating complete PIN and various gene signatures reported in literatures. Then, we use graph centralities to quantify the importance of genes to breast cancer. Finally, we get reliable gene signatures that are consisted by the genes with high graph centrality. The genes which are well-known breast cancer genes, such as TP53 and BRCA1, are ranked extremely high in our results. Compared with previous results by functional enrichment analysis, graph centralities, especially the eigenvector centrality and subgraph centrality, based gene signatures are more tightly related to breast cancer. We validate these signatures on genome-wide microarray dataset and found strong association between the expression of these signature genes and pathologic parameters.</p> <p>Conclusions</p> <p>In summary, graph centralities provide a novel way to connect different cancer signatures and to understand the mechanism of relationship between gene expression and clinical outcome of breast cancer. Moreover, this method is not only can be used on breast cancer, but also can be used on other gene expression related diseases and drug studies.</p

    A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identification of essential proteins is always a challenging task since it requires experimental approaches that are time-consuming and laborious. With the advances in high throughput technologies, a large number of protein-protein interactions are available, which have produced unprecedented opportunities for detecting proteins' essentialities from the network level. There have been a series of computational approaches proposed for predicting essential proteins based on network topologies. However, the network topology-based centrality measures are very sensitive to the robustness of network. Therefore, a new robust essential protein discovery method would be of great value.</p> <p>Results</p> <p>In this paper, we propose a new centrality measure, named PeC, based on the integration of protein-protein interaction and gene expression data. The performance of PeC is validated based on the protein-protein interaction network of <it>Saccharomyces cerevisiae</it>. The experimental results show that the predicted precision of PeC clearly exceeds that of the other fifteen previously proposed centrality measures: Degree Centrality (DC), Betweenness Centrality (BC), Closeness Centrality (CC), Subgraph Centrality (SC), Eigenvector Centrality (EC), Information Centrality (IC), Bottle Neck (BN), Density of Maximum Neighborhood Component (DMNC), Local Average Connectivity-based method (LAC), Sum of ECC (SoECC), Range-Limited Centrality (RL), L-index (LI), Leader Rank (LR), Normalized <it>Îą</it>-Centrality (NC), and Moduland-Centrality (MC). Especially, the improvement of PeC over the classic centrality measures (BC, CC, SC, EC, and BN) is more than 50% when predicting no more than 500 proteins.</p> <p>Conclusions</p> <p>We demonstrate that the integration of protein-protein interaction network and gene expression data can help improve the precision of predicting essential proteins. The new centrality measure, PeC, is an effective essential protein discovery method.</p

    The Physics of Communicability in Complex Networks

    Full text link
    A fundamental problem in the study of complex networks is to provide quantitative measures of correlation and information flow between different parts of a system. To this end, several notions of communicability have been introduced and applied to a wide variety of real-world networks in recent years. Several such communicability functions are reviewed in this paper. It is emphasized that communication and correlation in networks can take place through many more routes than the shortest paths, a fact that may not have been sufficiently appreciated in previously proposed correlation measures. In contrast to these, the communicability measures reviewed in this paper are defined by taking into account all possible routes between two nodes, assigning smaller weights to longer ones. This point of view naturally leads to the definition of communicability in terms of matrix functions, such as the exponential, resolvent, and hyperbolic functions, in which the matrix argument is either the adjacency matrix or the graph Laplacian associated with the network. Considerable insight on communicability can be gained by modeling a network as a system of oscillators and deriving physical interpretations, both classical and quantum-mechanical, of various communicability functions. Applications of communicability measures to the analysis of complex systems are illustrated on a variety of biological, physical and social networks. The last part of the paper is devoted to a review of the notion of locality in complex networks and to computational aspects that by exploiting sparsity can greatly reduce the computational efforts for the calculation of communicability functions for large networks.Comment: Review Article. 90 pages, 14 figures. Contents: Introduction; Communicability in Networks; Physical Analogies; Comparing Communicability Functions; Communicability and the Analysis of Networks; Communicability and Localization in Complex Networks; Computability of Communicability Functions; Conclusions and Prespective

    A Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks

    Get PDF
    Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed to identify a new method for more accurate identification of complexes. Method: In this study, Yeast and Human PPINs were investigated. The Yeast datasets, called DIP, MIPS, and Krogan, contain 4930 nodes and 17201 interactions, 4564 nodes and 15175 interactions, and 2675 nodes and 7084 interactions, respectively. The Human dataset contains 37437 interactions. The proposed and well-known methods have been implemented on datasets to identify protein complexes. Predicted complexes were compared with the CYC2008 and CORUM benchmark datasets. The evaluation criteria showed that the proposed method predicts PPINs with higher efficiency. Results: In this study, a new method of the core-attachment methods was used to detect protein complexes enjoying high efficiency in the detection. The more precise the detection method is, the more correct we can identify the proteins involved in biological process. According to the evaluation criteria, the proposed method showed a significant improvement in the detection method compared to the other methods. Conclusion: According to the results, the proposed method can identify a sufficient number of protein complexes, among the highest biological significance in functional cooperation with proteins

    An Outranking Approach for Gene Prioritization Using Multinetworks

    Get PDF
    High-throughput experimental techniques such as genome-wide association studies have been instrumental in the identification of disease-associated genes. These methods often produce large lists of disease candidate genes which are time-consuming and expensive to experimentally validate. Computational gene prioritization methods are required to identify relevant genes from a larger pool of candidates. Research has shown that the integration of diverse “omic” evidence can reduce the candidate-gene search space. In this paper we present a general framework that integrates “omic” data using a multinetwork approach and topological analysis to prioritize disease-candidate genes. Specifically, we propose a data integration method within a multicriteria decision analysis context using aggregation mechanisms based on decision rules identifying positive and negative criteria for judging gene-candidates ranks. The proposed multinetwork disease gene prioritization method is applied to the prioritization of disease genes in ovarian cancer progression. Using this approach we uncovered known ovarian cancer genes GSTA1, ERBB2, IL1A, MAGEB2, along with significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways ErbB signaling and pathways in cancer. Relatively high predictive performance (area under Receiver Operating Characteristic [ROC] curve 0.704) was observed when classifying epithelial ovarian high-grade serous carcinoma cancer early and late stage RNA-Seq expression profiles from individuals using 10-fold cross-validation
    corecore