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ABSTRACT
High-throughput experimental techniques such as genome-wide association studies have been instrumental in the identifica-
tion of disease-associated genes. These methods often produce large lists of disease candidate genes which are time-consuming
and expensive to experimentally validate. Computational gene prioritization methods are required to identify relevant genes
from a larger pool of candidates. Research has shown that the integration of diverse “omic” evidence can reduce the candidate-
gene search space. In this paper we present a general framework that integrates “omic” data using a multinetwork approach and
topological analysis to prioritize disease-candidate genes. Specifically, we propose a data integration method within a multicri-
teria decision analysis context using aggregation mechanisms based on decision rules identifying positive and negative criteria
for judging gene-candidates ranks. The proposed multinetwork disease gene prioritization method is applied to the prioritiza-
tion of disease genes in ovarian cancer progression. Using this approach we uncovered known ovarian cancer genes GSTA1,
ERBB2, IL1A, MAGEB2, along with significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways ErbB
signaling and pathways in cancer. Relatively high predictive performance (area under Receiver Operating Characteristic [ROC]
curve 0.704) was observed when classifying epithelial ovarian high-grade serous carcinoma cancer early and late stage RNA-Seq
expression profiles from individuals using 10-fold cross-validation.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

The identification of genes associated with disease development
and progression is an important and complex challenge. Discov-
ery of disease-associated genes has resulted in an improved under-
standing of gene functions, their interactions and pathways and
application in medical treatments. However, diseases are rarely the
result of an abnormality in a single gene. Instead they involve inter-
actions between cellular and molecular processes [1]. Relationships
between these processes can be encoded in a comprehensive net-
work known as the interactome which is the collection of all physi-
cal interactions within a cell. These interactions include regulatory
and metabolic interactions [2].

The advances in large-scale high-throughput technologies such as
linkage analysis and Genomic-Wide Association Studies (GWAS)
have aided in our understanding of genes and their roles in complex
diseases [3]. Such approaches have been instrumental in the gen-
eration of candidate disease genes. A recent meta-analysis GWAS
study on Parkinson’s disease by Nalls et al. [4] used a set of 7,893,274
variants across 13,708 cases and 95,282 controls and identified 6
new loci involved in Parkinson’s disease. Genome-wide linkage
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analysis for congenital heart defects was performed by Flaquer et
al. [5] using MOD-score analysis resulting in the identification of
4 novel candidate genes. A common problem with these methods
is the resulting large lists of disease-candidate genes. Due to lim-
ited resources, scientists can only select a subset of genes to investi-
gate further in the preclinical setting. To address these limitations,
computational gene prioritization methods need to be developed
to aid in the identification of relevant genes from a larger pool of
candidates.

Networks have been for gene prioritization [6,7] whereby a set of
seed genes (such as known disease genes) are used by an algorithm
to rank potential candidate genes in a network. This is based on
the premise that genes in close proximity to seed genes in a net-
work are more likely to be associated with a disease [8]. A num-
ber of methods to measure proximity include PageRank, HITS [9],
random walk with restart [10] and diffusion [11]. A comprehen-
sive comparison of state-of-the-art gene prioritization methods can
be found in [12]. Gene prioritization tools include ENDEAVOUR
[13] and ToppGene [14] which rank candidate genes by applying
algorithms to a network based on annotation similarity scores cal-
culated from enrichment values based on a training data set of seed
genes. AlignPI proposed by Wu et al. [15] uses a network alignment
approach to predict disease genes. GeneProspector [16] prioritizes
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potential disease candidates using a curated literature database of
genetic association studies. A review of computational tools can be
found in [17].

Use of biological networks such as Protein–Protein Interaction net-
work (PPIN) and network analysis is a commonly used approach
for the uncovering of disease genes [18]. The PPIN is an impor-
tant biological network widely used in areas from drug target pre-
diction, predication of protein complexes, functions, identification
of essential genes and network motif discovery [19]. Studies such
as [20] have applied graph centrality measures to PPINs integrat-
ing breast cancer signatures to understand the relationship between
gene expression and clinical outcome of breast cancer. Li et al. [21]
applied centrality measures to a weighted PPIN for essential gene
prediction. Taylor et al. [22] indicated that the alterations in the
physical interaction network may be an indicator of breast cancer
prognosis [23]. A study by Lui et al. [24] used GWAS studies, genetic
variants, gene coexpression data and PPIN to identify significant
interaction among Alzheimer and Parkinson Disease susceptibility
genes.

Data integration is another approach which collates “omic” data
from different sources such as the Gene Ontology (GO) and tis-
sue and pathway along with PPIN data for disease gene priori-
tization. For example, Chen et al. [25] proposed a prioritization
approach that integrated multiple data sources such as gene coex-
pression and PPIN along with a unified graphic representation of
information. The study by Li et al. [26] constructed a weighted
tissue-specific network by integrating DNA methylation and PPIN
data, a pagerank algorithm was applied to rank candidate disease
genes. This approach outperformed the ranking on the original
PPIN. The study by Cantini et al. [27] applied a community detec-
tion consensus clustering algorithm to a multinetwork of layers

including mRNA cotargeting and gene coexpression to identify dis-
ease genes in cancers including lung and colorectal. Enrichment
analysis confirmed candidate genes involvement in cancer related
regulatory pathways. Bennett et al. [28] recently proposed a mixed
integer nonlinear programming model, SimMod that optimizes
modularity across layers of a multilayer network resulting in a sin-
gle partition of composite communities. When applied to yeast net-
works of physical, genetic and coexpression interactions strongly
enriched composite modules in terms of the GO were identi-
fied. Current multinetwork analysis methods consider the pri-
oritized lists of disease-candidate genes obtained from different
networks as a total ordered set of disease-candidate genes. In this
paper we propose a novel outranking-based gene ranking method
to prioritize disease-candidate genes. We present our generalized
framework (Figure 1) which integrates multiple omic data sources
including: (1) human PPIN, (2) RNA-Seq coexpression, (3) Tran-
scription Factor (TF) CoTargeting and (4) tissue-specific data. We
apply this framework to prioritize disease genes involved in high-
grade serous carcinoma (HGSC) ovarian cancer progression. Ovar-
ian HGSC is associated with substantial mortality and morbid-
ity but, can be difficult to detect at its earliest stage due to its
molecular complexity and clinical behavior [29]. Therefore, iden-
tification of key gene signatures at an early stage will be highly
helpful. A list of significant disease-related genes derived from the
integrative framework using RNA-Seq, protein interaction, tissue
and TF cotargeting network data are ranked by our outranking
method in decreasing order of preference. The method is based on
ELECTRE III [30] to create a fuzzy outranking relation and then,
it uses a multiobjective evolutionary algorithm [31] to exploit the
outranking relation and to derive a prioritized list of candidate dis-
ease genes. The approach takes into consideration criteria includ-
ing network centralities. The proposed framework is advantageous

Figure 1 Proposed framework integrating diverse networks using novel outranking
approach. This framework consists of a number of steps including data selection and
preprocessing (stage A and B), diverse network construction (stage C) analysis and
ranking (stage D, E and F) and evaluation of prioritized lists (stage G and H).
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as data from diverse “omic” networks can be combined using
the proposed fuzzy outranking and multiobjective evolutionary
algorithm to produce a prioritized list of disease-candidate genes.
Furthermore, this generalized framework can be applied to other
diseases and multinetwork problem domains. The remainder of the
paper is outlined as follows. In Section 2 the Methods are detailed
including an overview of the framework and data sets applied.
Section 3 highlights key results in terms of both classification pre-
dictive power and biological relevance. Conclusions and future
work are presented in Section 4.

2. METHODS

To identify the key genes whose expression may discriminate
between early and late stage ovarian HGSC (OV) samples, we
developed the following methodology illustrated in Figure 1. This
approach consists of a number of steps: (A) extracting RNA-Seq
OV gene expression and clinical information, (B) identification of
differentially expressed genes (DEG) between early stage and late
stage tumor samples, (C) construction of DEG specific networks,
(D) analysis of the DEG specific networks to identify stage asso-
ciated hub genes and their interactors, (E) novel fuzzy outranking
algorithm to combine lists of key hub genes across the networks
providing a prioritized gene list, (F) evaluation of hub genes includ-
ing the development of a hub gene-based classifier model to distin-
guish OV stages.

2.1. Datasets

Transcriptome and clinical ovarian OV data from the TCGA
data portal (https://portal.gdc.cancer.gov/) were applied in
this analysis. Batch corrected TCGA OV data was down-
loaded from the MD Anderson TCGA Batch Effects website
(http://bioinformatics.mdanderson.org/tcgambatch/) using the
category UNC (IlluminaHiSeqRNASeqV2) which we refer to as
RNA-Seq in this paper, EB-parametric priors and the PCA assess-
ment algorithm. The data set consists of 20,531 genes across 262
samples.

2.2. Differential Expression Analysis of
Individual Genes

DEG analysis of individual genes from the RNA-Seq dataset was
carried out using the edgeR Bioconductor package [32]. Construc-
tion of DEG specific networks was performed using each of the four
networks described in the following section.

2.3. Networks

2.3.1. Protein–protein interaction network

High-quality human protein interactions were obtained from
InWeb_IM [33]. PPIs were derived from eight sources including
BioGRID [34] and IntAct [35]. This experimental interaction data
came from human and model organisms and is scored against a gold
standard [33]. PPI confidence scores of 0.10 and above were selected

in this paper as they are considered highly reliable [33] resulting in
625,641 pairs.

2.3.2. Coexpression network

Using the TCGA OV dataset we calculate absolute correlation coef-
ficients between 0 and 1 using the Spearman method for gene
expression levels among genes. Binary pairs were filtered to include
expression values >= 0.5 (a similar approach used by Zhang et al.
[36] when using coexpression networks in predicting gene func-
tions and disease biomarkers) resulting in 145,198 pairs.

2.3.3. Tissue-specific functional interaction network

An ovarian tissue-specific functional interaction network was
retrieved from the GIANT interface [37]. Greene et al. [37] con-
structed functional interaction networks of human tissues using a
data-driven Bayesian approach. Integration of a large volume of
experiments was performed using data from more than 14,000 pub-
lications. The tissue-specific network was filtered to only include
edges with evidence supporting a tissue-specific functional interac-
tion resulting in 64,594,988 pairs.

2.3.4. TF cotargeting network

The TF cotargeting network was obtained from the study by Can-
tini et al. [27]. A weighted network was constructed in this study
using experimentally validated TF-target interactions using ChIP-
seq from ENCODE [38]. The weight of the network links represent
TFs shared by gene pairs. The weight of the link is the count of TFs
targeting both the genes.

Construction of DEG specific networks was performed using each
of the networks described. The set of DEG were mapped to the net-
work nodes via NCBI gene IDs for each network. Each network was
filtered based on these DEG and their interactors.

2.4. Topological Analysis

Studies including [39] and [40] have shown how network topolog-
ical metrics can detect key biological processes. The study by Yu
et al. [41] showed how nodes with high betweeness values con-
trol most of the information flow in a protein interaction network.
Topology-based analysis of metabolic networks has been important
in studying their impact on modularity [42] and function and regu-
lation [43]. These networks are represented as an undirected graph,
G = (V,E), whereby V represents a set of nodes (proteins) and
E = {(u, v)|u, v𝜖V}, the set of edges connecting the nodes. In this
study Bonacich Power Centrality and PageRank topological met-
rics were applied to the four DEG specific networks to identify key
players in biological processes using the iGraph, plyr and influence
R libraries in R [44] .

2.4.1. PageRank

PageRank ranks genes according to importance, that is, connection
to other genes. This metric was recently applied to associate gene
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connectivity with different subtypes of ovarian cancer tumors [45].
PageRank can be described as:

PRvn =
1 − d
N

+ d
∑

vj∈(vn)

PR
(
vj
)

L
(
vj
) (1)

where d represents the damping factor, n the index of node of inter-
est, vn the node, M

(
vi
)

the set of nodes linking to vn and L
(
vj
)

the
out-link counts from node vj.

2.4.2. Bonacich power centrality

This metric is used to measure the power of the given node in the
network. The Bonacich power of gene i, ci(𝛼, 𝛽) can be described as:

ci(𝛼, 𝛽) =
∑
j
(𝛼 + 𝛽cj)Aij (2)

where Aij is the element of row i and column j of the adjacency
matrix. Parameter 𝛼 is used to normalize the measure. Parameter 𝛽
sets the dependence of each nodes centrality to the adjacent nodes.

2.5. Outranking Approach for Multinetwork
Disease Gene Prioritization

Topological analysis for each of the four networks described in the
Networks section was performed and genes from the networks were
ranked in terms of their PageRank and their Bonacich Power Cen-
trality values from high to low. This resulted in 8 lists of ranked
genes across the four networks. These lists were combined to pro-
duce a final list of ranked genes using our proposed outranking
algorithm described below.

2.5.1. Preliminaries

For ease of description, some basic multicriteria elements are first
defined. Let A =

{
a1, a2,… , amd

}
be a set of amd

genes of interest.
A priority list or a ranking ≻k is an ordering defined on Ak ⊆ A,
k = 1, 2,… , n. Thus ai ≻k aj means ai is ranked better than aj in ≻k.
When Ak = A, ≻k is said to be a full list. Otherwise, it is a partial
list. If ai ∈ Ak, rki denotes the rank or position of ai in ≻k. We assume
that the best gene is assigned the position 1 and the worst one is
assigned the position |Ak|. Let PA be the set of all permutations on
A. A profile is a n − tuple of rankings o priority lists G = (≻1, ≻2
,… , ≻n). Restricting G to the rankings containing gene ai defines
Gi.

The Multinetwork Disease Gene Prioritization problem consists of
finding a ranking function or procedure Ψ defined by:

Ψ ∶ Pn → P (3)

G = (≻1, ≻2,… , ≻n) → 𝜎 = Ψ(G) (4)

where 𝜎 is called a consensus ranking.

We consider, in the following, cases in which only ordinal infor-
mation is available and no other additional information is provided
such as the relevance scores.

2.5.2. Specificities of the multinetwork disease gene
prioritization problem

Limited Significance of the Prioritization List of
Disease-Candidate Genes

The exact positions of genes in one prioritization list of disease-
candidate genes have limited significance and should not be
overemphasized. For instance, having three potential disease-
candidate genes in the first three positions, any perturbation of
these three pieces will have the same value. Indeed, in the disease
gene prioritization context, the complete order provided by a gene
prioritization method may hide ties. In this case, we call such rank-
ings pre orders. Moreover, some genes ai and aj could be incompa-
rable when there is no clear evidence in favor of some type of pref-
erence or indifference. In this case, we call such rankings partial
(pre)orders. It is therefore important to build the consensus ranking
based on robust information:

∙ Genes with near positions in ≻k are more likely to have similar
interest or relevance. Thus a slight perturbation of the initial
ranking is meaningless.

∙ Assuming that gene ai is better ranked than gene aj in a ranking
≻k, ai is likely to be more relevant than aj in ≻k when the
number of intermediate positions between ai and aj increases.

Partial Priority Lists
Disease gene prioritized lists obtained from each of the “omic” net-
works are often partial lists. Integration of partial lists raises four
major difficulties which we state hereafter, proposing for each of
them various working assumptions:

1. Partial lists can have various lengths, which can favor long lists.
We thus consider the following two working hypotheses:

∙ H1
k%: We only consider the top k% best genes from each

prioritization list of disease-candidate genes.

∙ H1
all: We consider all the genes from each prioritization list

of disease-candidate genes.

2. Since there are different genes in the prioritization lists of
disease-candidate genes, we must decide which genes should
be kept in the consensus ranking. Two working hypotheses
are therefore considered:

∙ H2
k: We only consider genes which are present in at least k

prioritization lists of disease-candidate genes (k > 1) .

∙ H2
all: We consider all the genes which are ranked in at least

one prioritization list of disease-candidate genes.

Hereafter, we call genes which will be retained in the consensus
ranking, candidate genes, and genes that will be excluded from
the consensus ranking, excluded genes. We also call a candidate
gene which is missing in one or more rankings, a missing gene.
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3. Some candidate genes are missing genes in some prioritized
list. Main reasons for a missing gene are that it was not ranked
or it was indexed but deemed irrelevant; usually this informa-
tion is not available. We consider the following two working
hypotheses:

∙ H3
yes: Each missing gene in each ≻k is assigned a position.

∙ H3
no: No assumption is made, that is each missing gene is

considered neither better nor worse than any other gene.

4. When assumption H2
k holds, each prioritized list may contain

genes which will not be considered in the consensus ranking.
Regarding the positions of the candidate genes, we can consider
the following working hypotheses:

∙ H4
init: The initial positions of candidate genes are kept in

each prioritized list.

∙ H4
new: Candidate genes receive new positions in each

prioritized list, after discarding excluded ones.

2.5.3. Outranking approach for multi-network
disease gene prioritization

Positional methods like Borda count [46], linear combination
methods [47], Footrule optimal aggregation [48,49] and Probabilis-
tic methods [50], consider implicitly that the positions of the genes
in the prioritized lists are scores giving thus a cardinal meaning to
an ordinal information. This constitutes a strong assumption that
is questionable, especially when the prioritized lists have different
lengths. Moreover, for positional methods, assumptions H3 and H4,
which are often arbitrary, have a strong impact on the results. For
instance, let us consider a prioritized list of 120 genes out of 250
disease-candidate genes. Whether we assign to each of the missing
genes the position 3, 34, 76 or 180—corresponding to variations of
H3

yes, it will give rise to very contrasted results, especially regarding
the top of the consensus ranking.

Majoritarian methods like Condorcet procedure [51], Kemeny opti-
mal aggregation, and Markov chain methods [52] do not suffer
from the above-mentioned drawbacks of the positional methods
since they build consensus rankings exploiting only ordinal infor-
mation contained in the gene prioritized lists. Nevertheless, they
suppose that such rankings are complete orders, ignoring that they
may hide ties or incompatibilities. Therefore, majoritarian meth-
ods base consensus rankings on illusory discriminant information
rather than less discriminant but more robust information. Trying
to overcome the limits of current integration methods, we found
that outranking approaches, which were initially used for multi-
criteria aggregation problems [30], can also be used for the data
integration purpose, where each prioritized list plays the role of
a criterion. A representative method of the outranking approach
is the ELECTRE III method [53,54]. The ELECTRE III method is
based on a pairwise comparison of the genes, leading to fuzzy pref-
erence degrees. It is a variation of the Condorcet procedure. A com-
prehensive literature review on methodologies and applications on
ELECTRE can be found in [55]. In this paper, we adapt the ELEC-
TRE III method to the Multinetwork Disease Gene Prioritization
problem.

ELECTRE III method starts by a pairwise comparison of each gene
to the remaining ones with the aim of accepting, rejecting, or, more
generally, assessing the credibility of the assertion gene ai is ranked
at least at the same position (rank) than gene aj, usually called ai
outranks aj (denoted aiSaj) taking into account the following three
aspects:

∙ the indifference (q) and preference (p) thresholds defined for
each gene prioritized list.

∙ the coefficients of importance attached to each gene prioritized
list.

∙ the possible difficulties of relative comparison of two genes
when one is significantly better than the other on a subset of
gene prioritized lists, but much worst on at least one gene
prioritized list from a complementary subset (veto
threshold (v)).

The ELECTRE III model allows, with the use of thresholds, to take
into account the ill-determination, imprecision, and uncertainty
that may affect positions. For instance:

∙ a gene aj such that rkj is smaller than rki but greater than rki − q
will be considered indifferent to ai.

∙ a gene aj such that rkj is smaller than rki − p will be considered as
strictly preferred to ai.

∙ a gene aj such that rkj is smaller than rki −q but greater than rki −p,
the preference will be considered as not significantly established.

where rki is the position or rank of ai in the kth prioritized list,
k = 1, 2, ...n.

The comparison of genes in the way that has just been described
before leads to the construction of a concordance index for each
ordered pair of genes (ai, aj) , which expresses to what extent the
gene prioritized list is in harmony with the assertion ai is ranked at
least at the same position (rank) than aj.

The three thresholds can be defined as follows [56]:

∙ the indifference threshold (q) corresponds to the largest
difference of positions between two genes, compatible with an
indifference situation;

∙ the preference threshold (p) corresponds to the smallest
difference of positions between two genes from which the
decision-maker strictly prefers the gene presenting the best
position;

∙ the veto threshold (v) is the smallest difference of the positions
between two genes from which the decision-maker considers
that it is not possible to support the idea that the worst of the
two genes under consideration on a certain gene prioritization
list may be comprehensively considered as good as the better
one, even if its positions on all the other gene prioritized lists
are better.

The choice of thresholds intimately affects whether a particular
binary relation holds. While the choice of appropriate threshold is
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not easy, in disease gene prioritization decision-making situations,
there are good reasons for choosing nonzero values for p and q.

Using thresholds, the ELECTRE method seeks to build an outrank-
ing relation S. aiSaj means that, according to the global model of
DM preferences, there are good reasons to consider that “ai gene is
ranked at least at the same position than gene aj”. Each ordered pair
of genes (ai, aj) is then tested to check if assertion aiSaj is valid or
not.

The test to accept assertion aiSaj is implemented using two princi-
ples:

1) A concordance principle, which requires that a majority of pri-
oritized lists, after considering their relative importance, are in
favor of the assertion (the majority principle), and

2) A nondiscordance principle, which requires that within the
minority of prioritized lists, which do not support the asser-
tion, none of them is strongly against the assertion (the respect
of minorities’ principle).

The operational implementation of these two principles is now dis-
cussed. We first consider the outranking relation defined for each
of the n prioritized lists, that is, aiSaj means that “gene ai is ranked
at least at the same position than gene aj” with respect to the kth
prioritized list, k = 1, 2,… , n.

The kth prioritized list is in concordance with assertion aiSkaj if and
only if aiSkaj, that is, if rki −qk ≤ rkj . Thus, even if rki is greater than rkj
by an amount up to qk, it does not contravene assertion aiSkaj and
therefore is in concordance.

The kth criterion is in discordance with assertion aiSkaj if and only
if ajPkai, that is, if rkj ≤ rki − pk. That is, if aj is strictly preferred
to ai for criterion k, then it is clearly not in concordance with the
assertion aiSkaj.

With these concepts, it is now possible to measure the strength of
assertion aiSkaj. The first step is to develop a measure of concor-
dance, as contained in the concordance index C(ai, aj), for every
pair of genes (ai, aj) ∈ A × A. Let wk be the importance coeffi-
cient or weight for criterion k. We define a concordance measure as
follows:

C
(
ai, aj

)
= 1

w

n∑
k=1

wkck
(
ai, aj

)
,w =

n∑
k=1

wk (5)

In which

ck(ai, aj) =

⎧⎪⎪⎨⎪⎪⎩
1, if rki − rkj ≤ qk
0, if rki − rkj > pk
pk−[rki −r

k
j ]

pk−qk
, otherwise

(6)

where k = 1, 2,… , n.

Thresholds and weights represent subjective input provided by the
decision maker. Weights in ELECTRE are coefficients of impor-
tance and, as [56] notes, are like votes given to each of the gene pri-
oritized list candidates. Criteria weights are crucial factors in any

multicriteria decision analysis (MCDA) method as they affect the
final solution derived from the aggregation procedure. In this pro-
posal, we set the same importance to each of the eight lists, however,
it could be used any MCDA method to set the relative importance
for each list such as the one presented in [57].

In the concordance index, we have, in a manner of speaking, a mea-
sure of the extent to which we are in harmony with the assertion
that ai is ranked at least at the same position than aj, aiSaj. How-
ever, what disconfirming or disharmonious evidence do we have?
In other words, is there any discordance associated with assertion
aiSkaj? To calculate discordance, a further threshold called the veto
threshold is defined. The veto threshold vk allows for the possibility
of aiSaj to be refused totally if, for any one criterion k, rkj < rki − vk.
The discordance index for each criterion k, dk(ai, aj) is calculated
as follows:

dk(ai, aj) =

⎧⎪⎪⎨⎪⎪⎩
0, if rki − pk ≤ rkj
1, if rki − vk ≥ rkj
rkj −[r

k
i −pk]

pk−vk
, otherwise

(7)

where k = 1, 2,… , n.

For each pair of genes (ai, aj) ∈ A×A, there are now a concordance
and a discordance measure. The final step in the model building
phase is to combine these two measures to produce a measure of
the degree of outranking, that is, a credibility index 𝜎(ai, aj), (0 ≤
𝜎(ai, aj) ≤ 1) which assesses the strength of the assertion that ai is
ranked at least at the same position than aj. The credibility degree
for each pair (ai, aj) ∈ A × A is defined as follows:

𝜎(ai, aj) =
⎧⎪⎨⎪⎩
C(ai, aj) , ifK(ai, aj) = 𝜙

C(ai, aj) ∙
∏

k∈K(ai,aj)

1 − dk(ai, aj)
1 − C(ai, aj)

, ifK(ai, aj) ≠ 𝜙

(8)

where K(ai, aj) is the set of criteria such that dk(ai, aj) > C(ai, aj).

This formula assumes that if the strength of the concordance
exceeds that of the discordance, then the concordance value should
not be modified. Otherwise, we are forced to question the assertion
that aiSaj and modify C(ai, aj) according to the above equation. If
the discordance is 1.0 for any (ai, aj) ∈ A × A and any criterion k,
then we have no confidence that aiSaj; therefore, 𝜎(ai, aj) = 0.0.
Hence, we have constructed a fuzzy outranking relation S𝜎A defined
on A × A; this means that we associate each ordered pair (ai, aj) ∈
A × A a real number 𝜎(ai, aj), (0 ≤ 𝜎(ai, aj) ≤ 1) that reflects the
degree of strength of the arguments favouring the crisp outranking
aiSaj. This concludes the construction of the outranking model. The
next step in the outranking approach is to exploit the model and
produce a ranking of genes from the fuzzy outranking relation S𝜎A.

Outranking relations are not necessarily transitive and do not nec-
essarily correspond to rankings since directed cycles may exist.
Therefore, we need specific procedures in order to derive a con-
sensus ranking. We propose the procedure which finds its roots
in [31,58,59]. Our approach for exploitation a fuzzy outranking
relation to derive a ranking is to use a multiobjective evolution-
ary algorithm-based heuristic method. It consists in partitioning
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the set of genes into r classes. Each class contains genes with the
same relevance. Then, based solely on the initially provided infor-
mation, we elicit a reflexive and antisymmetric crisp outranking
relation between the determined classes. After that, with the above
as background, we propose a partial order of classes of genes as a
recommendation for the Multinetwork Disease Gene Prioritization
problem. This approach integrates partitions and relations between
classes into the optimization process that the multiobjective evolu-
tionary algorithm performs. Because of space limitations, we omit-
ted the presentation of the ranking procedure. In order to address
this gap, the reader can consult the paper [31].

3. RESULTS

In this section we present the results obtained from applying the
generalized framework illustrated in Figure 1 to identify OV dis-
ease progression genes. We show how the proposed outranking
approach was used to prioritize disease candidate genes obtained
from multiple diverse networks. Enrichment analysis including
GO, Pathway and literature analysis were then performed to
demonstrate the effectiveness of the proposed approach. Fur-
thermore, we performed ovarian cancer stage classification using
the prioritized gene list obtained from our proposed integrative
approach and compare with ToppNet [60].

3.1. RNA-Seq Differential Expression
Analysis and Network Construction

We firstly performed differential expression gene (DEG) analysis
using the OV RNA-Seq data to identify DEG genes in the data set.
DEG analysis was conducted using edgeR [32]. The OV RNA-Seq
samples described in the Methods section were divided into two
phenotypic groups using the associated clinical data and labeled as
either early stage (stage I and II) or late stage (stage III or IV). Raw
counts were extracted for these samples and significantly DEG were
identified using the paired data with the edgeR package in R using
Fisher’s exact test, False Discovery Rate (FDR) adjusted p-value <
0.01 and Fold Change > 2. A total of 283 DEGs were identified
among 20,531 genes.

These DEGs were selected for subsequent network analyses as their
expression profiles between early and late state OV cancer indicated
possible involvement in disease progression. Each of the four net-
works described in the Networks section were subsequently filtered
to include only the identified DE genes a summary of the networks
and their properties are described in Table 1.

3.2. Topological Analysis of DEG Networks

Topological analysis of the four different networks based on DEGs
was performed. These are (i) protein–protein interaction network
(NPPI), (ii) transcription factor network (NTF), (iii) gene coexpres-
sion network (NCOE) and (iv) tissue-specific functional network
(NTissue). These networks are selected as they capture different
interaction types between genes. Furthermore, the biological rela-
tionships modeled are not independent. For example, regulatory
pathways are controlled in the cell at transcriptional and posttran-
scriptional (microRNA) levels, alterations at these levels involve

Table 1 Global properties of the DE networks.

NPPI NCOE NTF NTissue

Nodes 3286 242 229 315
Edges 4860 871 307 325
Clustering coefficient 0.114 0.223 0.196 0.022
Centralization 0.107 0.162 0.621 0.346
Heterogeneity 4.890 1.279 4.149 3.985
DE, Differential Expression; NPPI, protein–protein interaction network;
NCOE, gene coexpression network; NTF, transcription factor network;
NTissue, tissue-specific functional network.

modification in gene expression levels [27]. All networks are based
on DEGs of OV RNA-Seq data. A summary of the global topologi-
cal features of the networks are presented in Table 1.

Each network was represented as a graph G = (V,E) where V rep-
resents the set of nodes (genes) and E the edges (link types) where
E = {(u, v)|u, v𝜖V}. The connectivity (degree) is a measure of
the number of edges that connects a node. Genes with a high
degree of connectivity within a network have large numbers of
interacting partners. For a node v ⊆ V, the set of edges on v is
denoted as Nv where Nv = {(u|u) ⊆ V, (u, v) ⊆ E}. The cardinality
of Nv is the connectivity of v in G. Node betweenness is obtained
through a count of the shortest paths that pass through a node.
Betweenness centrality of a node n, Cb(n), is calculated as Cb(n) =∑
s≠n≠t

(𝜃st(n)∕𝜃st) where s and t are nodes in the network different to

n, 𝜃st represents the number of shortest paths from s to t and 𝜃st(n)
is the number of shortest paths from s to t where n occurs.

A list of nodes from all four networks were extracted based the
measures PageRank and Bonacich Power Centrality. Similar to the
approach applied by Taylor et al. [22], for each of the four networks
the top 150 were selected for ranking. This resulted in eight lists
containing 1071 distinct genes to be prioritized using the proposed
outranking algorithm detailed in Section 2.5.

3.3. Application of Outranking Approach

Using the eight lists of ranked genes as input, our outranking algo-
rithm was applied to prioritize disease genes across the different
networks. The outcome from the applied algorithm is the list of
ranked prioritized genes described in Table 2. A total of 23 priori-
tized genes were identified from the 1071 distinct genes across the
eight lists.

3.4. Functional Enrichment Analysis

GO, pathway, and disease analysis was applied to investigate the
biological implications of the integrated prioritized disease gene-
candidate list. Using the GO Biological Process, KEGG and OMIN
using Enrichr [61] a statistical over representation test was per-
formed using the prioritized genes (p < 0.05 fisher exact test and
adjusted p-value) presented in Tables 3 and 4 below. We applied this
approach to measure if the prioritized genes are more enriched in
GO terms or involved in pathways than what would be expected by
chance.
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Table 2 The list of the 23 prioritized genes identified across the eight
lists using the proposed Outranking approach.
Gene ID Gene Symbol Description
84107 ZIC4 Zic family member 4
22839 DLGAP4 DLG associated protein 4
1410 CRYAB crystallin alpha B
2938 GSTA1 glutathione S-transferase alpha
12064 ERBB2 erb-b2 receptor tyrosine kinase 2
1264 CNN1 calponin 1
23704 KCNE4 potassium voltage-gated channel

subfamily E
2167 FABP4 fatty acid binding protein 4
5709 PSMD3 proteasome 26S subunit, non-

ATPase 3
3552 IL1A interleukin 1 alpha
727851 RGPD8 RANBP2-like and GRIP domain

containing 8
4438 MSH4 mutS homolog 4
654 BMP6 bone morphogenetic protein 6
27295 PDLIM3 PDZ and LIM domain 3
7431 VIM vimentin
6927 HNF1A HNF1 homeobox A
4113 MAGEB2 MAGE family member B2
6876 TAGLN transgelin
4958 OMD osteomodulin
4060 LUM lumican
11128 POLR3A RNA polymerase III subunit A
1440 CSF3 colony stimulating factor 3
23314 SATB2 SATB homeobox 2

Table 3 Significant KEGG pathways.

Pathway P Value Adjusted P-value
Epstein-Barr virus infection 0.002 0.085
Hematopoietic cell lineage 0.005 0.125
Proteoglycans in cancer 0.023 0.155
Cytokine–cytokine receptor interaction 0.037 0.155
Maturity onset diabetes of the young 0.029 0.155
RNA polymerase 0.036 0.155
MicroRNAs in cancer 0.045 0.155
Prion diseases 0.040 0.155
Bladder cancer 0.046 0.155
Graft-versus-host disease 0.046 0.155
Type I diabetes mellitus 0.048 0.155
Proteasome 0.049 0.155
KEGG, Kyoto Encyclopedia of Genes and Genomes.

Table 3 highlights significant KEGG pathways such as the Epstein-
Barr virus infection. Studies including [62] and [63] provide some
support that Epstein-Barr virus may play a role in the etiology of
ovarian cancer. A recent study in [64] indicated that an association
between the expression of Hematopoietic lineage cell-specific pro-
tein 1 and an increased risk of poor overall survival in patients with
ovarian carcinoma.

From GO enrichment analysis highlighted in Table 4, it was
observed that processes including regulation of epithelial cell pro-
liferation, keratan sulfate processes and regulation of ERBB signal-
ing pathway where enriched. ErbB2 a major target of a number of
FDA-approved compounds for solid tumors [65]. GO enrichment
analysis for nontop prioritized genes using our integrative approach
mainly lay within GO metabolic and cellular processes. Further-
more, OMIN analysis showed the enrichment of the ranked genes
in ovarian cancer.

These results highlight the potential of applying our generalized
framework in integrating prioritized lists disease genes for the pre-
diction of ovarian cancer biomarkers.

3.5. Comparison to Gene Prioritization
Network Tools Using Predictive
Analysis

We compare our integrative approach for prioritization to the gene
prioritization tool ToppNet in the ToppGene suite [60] a state-
of-the-art gene prioritization approach. ToppNet uses an exten-
sion of the PageRank and HITS algorithms, and the K-Step Markov
method [14]. In order to perform this comparison we undertake
predictive analysis to determine if coexpression values of prioritized
genes can predict sample stage (i.e., early or late stage).

3.5.1. ToppGene training and test sets

ToppGene [60] ranks candidate genes based on their similarity to
known OV genes. We constructed a training set which is a list
of genes known to be involved in OV from the Cancer Genetics
Web [66]. This resulted in a list of 307 known OV genes. The test
sets were constructed using the same approach we applied as input
to the outranking algorithm. A total of eight lists were derived from
the top 150 genes from each of the four networks obtained from
the application of PageRank and Bonacich Power Centrality. Using
the training and test sets, gene prioritization was performed using
ToppGene. For each prioritization task, the top 23 prioritized genes
were selected for comparison to the proposed outranking approach.

3.5.2. Feature vector construction

Using the prioritized gene-candidate lists obtained from the novel
ranking approach, ToppGene’s feature vectors were constructed for
the classification task of predicting OV stage (early or late). The
vectors were constructed using the ranked genes along with their
gene expression values from the TCGA Transcriptome and clinical
ovarian serous carcinoma data set (referred to as OV). The vectors
consisted of 23 features each with 260 instances containing the
coexpression values of the prioritized genes across each sample in
the dataset. The OV data set has a total of 262 individual samples
consisting of 18 early stage and 242 late stage samples. These sam-
ples were used as labels when measuring the classification perfor-
mance.

3.5.3. Predictive analysis

We used the naive Bayesian classifier in the WEKA toolbox [67]
for the predictive task of sample stage classification. To evaluate the
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Table 4 Significant GO biological processes.

Term P Value Adjusted P-value
Keratan sulfate catabolic process 0.0001 0.0318
Glandular epithelial cell development 0.0080 0.0861
Keratan sulfate metabolic process 0.0007 0.0422
Type B pancreatic cell development 0.0080 0.0861
Regulation of aldosterone biosynthetic 0.0080 0.0861
Sulfur compound catabolic process 0.0008 0.0422
Regulation of cellular amide metabolic 0.0023 0.0678
Regulation of epithelial cell proliferation 0.0032 0.0857
Keratan sulfate biosynthetic 0.0005 0.0422
Regulation of interleukin-2 biosynthetic 0.0103 0.0861
GO, Gene Ontology.

Figure 2 Plotting of Receiver Operating Characteristic (ROC) curves comparing our
integrative ranking approach with ToppGene ranking across the individual networks
and topology measures to predict ovarian (OV) cancer stage.

performance, 10-fold cross-validation was carried out. To compare
the performance of the prioritized gene-candidate lists on predict-
ing sample stage, we selected the top ranked 23 genes from Topp-
Gene prioritized using the test sets developed from the network
topology analysis described above. Comparison of the outranking
approach to ToppGene was performed to determine if adding addi-
tional information from “omic” networks improves classification
obtained using transcription alone.

To evaluate the performance of the outranking approach we used
Receiver Operating Characteristic (ROC) curves which compares
our outranking approach with ToppGene detailed in Figure 2.

The outranking prioritization approach, which integrates priori-
tized gene lists from the four networks based on both PageRank
and Bonacich Power Centrality topological measures, obtained the

highest area under ROC curve (AUC) value presented in Figure 2
achieving an AUC of 0.704. To evaluate the statistical significance of
these results we performed the paired T-Test (corrected) with a sig-
nificance cut-off 0.05 in Weka comparing the outranking prioritiza-
tion approach to the individual network prioritization approaches
in Table 4. Statistical significance was observed between the out-
ranking approach and the individual prioritization approaches.
This analysis suggests that the integration of diverse data in the pri-
oritization of disease genes are indeed useful for sample stage pre-
diction. Interestingly, it is observed that lists from the TF individual
network achieved good predictive results using ToppGene obtain-
ing an AUC of 0.68 when the NTF to obtain a list ranked using
power centrality. The NTF has been constructed from weighted data
obtained from ENCODE [68]. However, the NTF is limited in terms
of interactome coverage.
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The results highlight how our integrative outranking approach has
identified 23 driver genes for classification compared to the 283
DEGs that were represented as features in the RNA-Seq Baseline
data set. Furthermore, we can see that the reduced gene list has
an improvement in AUC compared to ToppGene, which consid-
ers the networks individually. This is important in the context
for the development of prognostic assays where the measurement
of 23 genes compared to 283 genes is advantageous in terms of
the expense and resources required to test and validate additional
genes.

3.6. Literature Analysis

A list of genes involved in ovarian cancer was obtained from lit-
erature using the Cancer Genetics Web [66], which lists diseases
and gene associations from published studies. A total of 306 OV
genes were identified. From the outranking prioritized list 4 genes
were identified as OV literature genes including: GSTA1, ERBB2,
IL1A, MAGEB2 which have been implicated in the carcinogenesis
and prognosis of ovarian cancer [69–73]. To determine the statis-
tical significance of this result, we randomly selected 9 genes from
the set of genes in the OV dataset 1000 times and compared these
to the list of 306 literature obtained genes. Using equation below we
calculated the p value as:∑

outranking ≥ Rand
1000

where outranking represents the number of OV genes identified by
the outranking priortization process and Rand the randomly calcu-
lated genes sets OV genes identified. This resulted in p = 0 which
indicates the statistical significance of the list of genes obtained
using the outranking found in the 306 gene set identified in the lit-
erature search compared to the random selection of genes from the
OV dataset.

3.7. Biological Overview

The outranking list of genes was analyzed in terms of biological
relevance. The downstream effects of disease processes such as
mutation, methylation and copy number aberration are captured in
transcriptional profiling. The activity of PLAGL1 (inhibiting pro-
liferation and tumorigenicity) is altered through loss of heterozy-
gosity or methylation and it has been found to be down-regulated
in almost two-fifths of epithelial ovarian cancer (EOC) patients
[74,75]. KRAS mutations, with downstream transcriptional loss,
are more associated with low-grade or mucinous EOC, rather than
high-grade serous OV, which is the subject of this study. Pre-
vious research has suggested that most of the genetic alterations
associated with metastatic potential are already present in early-
stage EOCs, though our study suggests an accumulation of further
genetic changes [76,77].

4. CONCLUSION

Recent years have witnessed the systematic investigation of can-
cer through the application of high-throughput experimental
technologies and the development of centralized databases. These

experimental “omic” platforms target the comprehensive analysis of
genes, mRNA, proteins and metabolites. These developments have
been essential in (i) advancing the knowledge of biological systems;
(2) understanding, predicting, diagnosing and monitoring diseases;
(3) discovering biomarkers and (4) identifying drug targets. How-
ever, translation of relevant prognostic markers identified by such
experiments into clinical tools for personalized patient treatment
has been slow and unreliable [78].

Biological networks have proved to be effective in capturing the
complexity of human disease and discerning how complexity con-
trols disease manifestations, prognosis and therapy. In this study we
have demonstrated how the integration of multiple “omic” biologi-
cal networks can prioritize biologically relevant ovarian cancer pro-
gression genes. Prediction of a disease’s clinical stage is crucial for
the development of appropriate therapeutics that may delay the pro-
gression of the disease. Yet the genetic basis of disease progression
for many diseases are still unclear and in some cases unknown. In
this study we applied our general framework that integrates “omic”
data using a multinetwork approach framework and ranking to the
Use Case HGSC progression. HGSC is a malignant form of ovarian
cancer and accounts for up to 70% of all ovarian cancer cases [79].
Patients with HGSC are often diagnosed at the late stage of the dis-
ease. This is problematic as later stages generally result in a poor
prognosis [80]. Chemotherapeutic agents have improved the five-
year survival rate, however, the overall mortality of ovarian cancer
has not changed in over 50 years [79]. This is mainly due to the lack
of success in diagnosing ovarian cancer at an early stage and effec-
tive treatments for late stage of the disease [81].

In this research we have proposed an outranking data integration
method which combined information from multinetworks using
MCDA with aggregation mechanisms to prioritize lists of disease-
candidate genes. The outranking approach is based on ELECTRE
III and uses decision rules to identify positive and negative rank-
ing criteria along with a multiobjective evolutionary algorithm to
exploit the outranking relation and derive a prioritized list. The
advantage of this approach is the ability to combine information
from multiple heterogeneous data sources to produce ranked lists of
potential disease-candidate genes. The approach however is generic
in nature and can be applied to other problem domains such as
the prioritization of alternative transcripts and protein isoforms,
metabolites and drugs.

Using our proposed outranking approach, known ovarian cancer
genes GSTA1, ERBB2, IL1A, MAGEB2 were uncovered. KEGG
pathways including ErbB signalling and pathways in cancer along
with GO terms metalloendopeptidase and ErbB2 were signifi-
cantly enriched. Furthermore, relatively high predictive perfor-
mance (AUC: 0.704) was observed when classifying ovarian cancer
early and late stage RNA-Seq expression profiles from individuals
using 10-fold cross-validation.

In this work we have applied a case study to demonstrate the proof
of concept where we know (some of) the underpinning biology. In
future work we will apply our approach for discovery in diseases
such as chemotherapy-resistant and sensitive HGSC. Furthermore,
we will extend our current approach on the integration of multiple
“omic” network data using multilayer network theory. We aim to
model importance and reliability of layers in a biological multilayer
network for predictive task disease progression and apply to other
diseases such as lung carcinoma.
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