22,685 research outputs found

    Macro-element interpolation on tensor product meshes

    Full text link
    A general theory for obtaining anisotropic interpolation error estimates for macro-element interpolation is developed revealing general construction principles. We apply this theory to interpolation operators on a macro type of biquadratic C1C^1 finite elements on rectangle grids which can be viewed as a rectangular version of the C1C^1 Powell-Sabin element. This theory also shows how interpolation on the Bogner-Fox-Schmidt finite element space (or higher order generalizations) can be analyzed in a unified framework. Moreover we discuss a modification of Scott-Zhang type giving optimal error estimates under the regularity required without imposing quasi uniformity on the family of macro-element meshes used. We introduce and analyze an anisotropic macro-element interpolation operator, which is the tensor product of one-dimensional C1−P2C^1-P_2 macro interpolation and P2P_2 Lagrange interpolation. These results are used to approximate the solution of a singularly perturbed reaction-diffusion problem on a Shishkin mesh that features highly anisotropic elements. Hereby we obtain an approximation whose normal derivative is continuous along certain edges of the mesh, enabling a more sophisticated analysis of a continuous interior penalty method in another paper

    How a nonconvergent recovered Hessian works in mesh adaptation

    Get PDF
    Hessian recovery has been commonly used in mesh adaptation for obtaining the required magnitude and direction information of the solution error. Unfortunately, a recovered Hessian from a linear finite element approximation is nonconvergent in general as the mesh is refined. It has been observed numerically that adaptive meshes based on such a nonconvergent recovered Hessian can nevertheless lead to an optimal error in the finite element approximation. This also explains why Hessian recovery is still widely used despite its nonconvergence. In this paper we develop an error bound for the linear finite element solution of a general boundary value problem under a mild assumption on the closeness of the recovered Hessian to the exact one. Numerical results show that this closeness assumption is satisfied by the recovered Hessian obtained with commonly used Hessian recovery methods. Moreover, it is shown that the finite element error changes gradually with the closeness of the recovered Hessian. This provides an explanation on how a nonconvergent recovered Hessian works in mesh adaptation.Comment: Revised (improved proofs and a better example

    Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications

    Full text link
    We develop a constructive piecewise polynomial approximation theory in weighted Sobolev spaces with Muckenhoupt weights for any polynomial degree. The main ingredients to derive optimal error estimates for an averaged Taylor polynomial are a suitable weighted Poincare inequality, a cancellation property and a simple induction argument. We also construct a quasi-interpolation operator, built on local averages over stars, which is well defined for functions in L1L^1. We derive optimal error estimates for any polynomial degree on simplicial shape regular meshes. On rectangular meshes, these estimates are valid under the condition that neighboring elements have comparable size, which yields optimal anisotropic error estimates over nn-rectangular domains. The interpolation theory extends to cases when the error and function regularity require different weights. We conclude with three applications: nonuniform elliptic boundary value problems, elliptic problems with singular sources, and fractional powers of elliptic operators

    Analysis of moving least squares approximation revisited

    Full text link
    In this article the error estimation of the moving least squares approximation is provided for functions in fractional order Sobolev spaces. The analysis presented in this paper extends the previous estimations and explains some unnoticed mathematical details. An application to Galerkin method for partial differential equations is also supplied.Comment: Journal of Computational and Applied Mathematics, 2015 Journal of Computational and Applied Mathematic

    Analysis of Adjoint Error Correction for Superconvergent Functional Estimates

    Get PDF
    Earlier work introduced the notion of adjoint error correction for obtaining superconvergent estimates of functional outputs from approximate PDE solutions. This idea is based on a posteriori error analysis suggesting that the leading order error term in the functional estimate can be removed by using an adjoint PDE solution to reveal the sensitivity of the functional to the residual error in the original PDE solution. The present work provides a priori error analysis that correctly predicts the behaviour of the remaining leading order error term. Furthermore, the discussion is extended from the case of homogeneous boundary conditions and bulk functionals, to encompass the possibilities of inhomogeneous boundary conditions and boundary functionals. Numerical illustrations are provided for both linear and nonlinear problems.\ud \ud This research was supported by EPSRC under grant GR/K91149, and by NASA/Ames Cooperative Agreement No. NCC 2-5431

    C2 piecewise cubic quasi-interpolants on a 6-direction mesh

    Get PDF
    We study two kinds of quasi-interpolants (abbr. QI) in the space of C2 piecewise cubics in the plane, or in a rectangular domain, endowed with the highly symmetric triangulation generated by a uniform 6-direction mesh. It has been proved recently that this space is generated by the integer translates of two multi-box splines. One kind of QIs is of differential type and the other of discrete type. As those QIs are exact on the space of cubic polynomials, their approximation order is 4 for sufficiently smooth functions. In addition, they exhibit nice superconvergent properties at some specific points. Moreover, the infinite norms of the discrete QIs being small, they give excellent approximations of a smooth function and of its first order partial derivatives. The approximation properties of the QIs are illustrated by numerical examples
    • …
    corecore