1,108 research outputs found

    A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST), Pakistan, and the Higher Education Commission, Pakistan

    Sub-segment based transport layer protocol for wireless medium

    Get PDF
    This thesis discusses the techniques to improve the TCP over wireless. The loss-intensive wireless communication results in high retransmission rates to recover lost packets and bandwidth consumption. In addition, the retransmitted segments have significant chance of being dropped. To make the retransmission process more granular, large segments at the transport layer (540 bytes, by default) can be subdivided into smaller sub-segments. This document introduces a split TCP based solution and describes how to produce a series of smaller-sized segments that share the same transport layer header. A new header format is introduced to support the transmission of smaller segments and to conserve bandwidth during transmission. The NACK-based message exchange method is adopted with a special windowing protocol to achieve reliability, flow-control, and efficient buffer handling. The simulation results indicate that use of sub-segments improves latency, throughput, bandwidth, power and other measurements. In addition to that, an analytical model is developed to study the influence of sub-segmentation over latency and throughput

    Overcoming TCP Degradation in the Presence of Multiple Intermittent Link Failures Utilizing Intermediate Buffering

    Get PDF
    It is well documented that assumptions made in the popular Transmission Control Protocol\u27s (TCP) development, while essential in the highly reliable wired environment, are incompatible with today\u27s wireless network realities in what we refer to as a challenged environment. Challenged environments severely degrade the capability of TCP to establish and maintain a communication connection with reasonable throughput. This thesis proposes and implements an intermediate buffering scheme, implemented at the transport layer, which serves as a TCP helper protocol for use in network routing equipment to overcome short and bursty, but regular, link failures. Moreover, the implementation requires no modifications to existing TCP implementations at communicating nodes and integrates well with existing routing equipment. In a simulated six-hop network with five modified routers supporting four challenged links, each with only 60% availability, TCP connections are reliably established and maintained, despite the poor link availability, whereas 94% fail using standard routing equipment, i.e., without the TCP helper protocol

    Performance of TCP over UMTS common and dedicated channels

    Get PDF
    Universal Mobile Telecommunications System (UMTS) is a third-generation cellular network that enables high-speed wireless Internet access. This paper investigates the performance of Transmission Control Protocol (TCP) over UMTS utilizing a common and four dedicated transport channels with bit rates up to 2 Mb/s. The performance of TCP was examined under varying channel conditions. Bulk data transfer and interactive traffic was considered in the simulation. The simulation results show that the behaviour of TCP is closely coupled to the UMTS radio link control layer. A maximum TCP throughput is achievable for transport channels with bit rates up to 384 kb/s. The gain in request-response time for interactive traffic is relatively small for high bit rate channels because the UMTS radio interface is latency limited for small object sizes

    Improving TCP Performance by Estimating Errors in a Long Delay, High Error Rate Environment

    Get PDF
    Interest in finding methods of improving TCP performance over satellite and wireless networks is high. This has been an active area of research within the networking community. This research develops an algorithm, CETEN-R for TCP to determine if a particular packet is lost due to congestion or corruption and react accordingly. An analysis of the performance of CETEN-R under a variety of conditions is studied and then compared to TCP Reno and TCP New Reno. When delay is high and the error rate is high CETEN-R showed a 77.5% increase in goodput over TCP New Reno and a 33.8% increase in goodput over TCP Reno. When delay is low and the error rate is high, CETEN-R showed a 146% increase in goodput over TCP New Reno and a 77% increase in goodput over TCP Reno. At low error rates, CETEN-R provides no advantage over TCP Reno or TCP New Reno

    Priority Based Buffering over Multiple Lossy Links Using TCP Aware Layer Buffering

    Get PDF
    Wireless military information systems require high reliability, which is difficult to achieve in adverse conditions. To provide high reliability, one must overcome packet loss across multiple wireless hops. Buffering packets in a lossy environment is well explored; however, the ability to selectively buffer TCP traffic across multiple lossy links is a new area of research. This document seeks to explore the delivery of high priority traffic in a lossy environment and conclude that prioritized buffing can increase the probability that a high priority download will finish, where others will fail. It is shown that buffering provides six times the throughput in a network with each link experiencing 25% loss. Prioritizing TCP packet flows provides a varied outcome, as it cannot overcome the TCP mechanisms, when the packet loss recovery time is greater than the retransmission timeout event. However, the future work in chapter 6 may provide roadmap to gaining control authority of the challenged network

    Techniques for End-to-End Tcp Performance Enhancement Over Wireless Networks

    Get PDF
    Today’s wireless network complexity and the new applications from various user devices call for an in-depth understanding of the mutual performance impact of networks and applications. It includes understanding of the application traffic and network layer protocols to enable end-to-end application performance enhancements over wireless networks. Although Transport Control Protocol (TCP) behavior over wireless networks is well known, it remains as one of the main drivers which may significantly impact the user experience through application performance as well as the network resource utilization, since more than 90% of the internet traffic uses TCP in both wireless and wire-line networks. In this dissertation, we employ application traffic measurement and packet analysis over a commercial Long Term Evolution (LTE) network combined with an in-depth LTE protocol simulation to identify three critical problems that may negatively affect the application performance and wireless network resource utilization: (i) impact of the wireless MAC protocol on the TCP throughput performance, (ii) impact of applications on network resource utilization, and (iii) impact of TCP on throughput performance over wireless networks. We further propose four novel mechanisms to improve the end-to-end application and wireless system performance: (i) an enhanced LTE uplink resource allocation mechanism to reduce network delay and help prevent a TCP timeout, (ii) a new TCP snooping mechanism, which according to our experiments, can save about 20% of system resources by preventing unnecessary video packet transmission through the air interface, and (iii) two Split-TCP protocols: an Enhanced Split-TCP (ES-TCP) and an Advanced Split-TCP (AS-TCP), which significantly improve the application throughput without breaking the end-to-end TCP semantics. Experimental results show that the proposed ES-TCP and AS-TCP protocols can boost the TCP throughput by more than 60% in average, when exercised over a 4G LTE network. Furthermore, the TCP throughput performance improvement may be even superior to 200%, depending on network and usage conditions. We expect that these proposed Split-TCP protocol enhancements, together with the new uplink resource allocation enhancement and the new TCP snooping mechanism may provide even greater performance gains when more advanced radio technologies, such as 5G, are deployed. Thanks to their superior resource utilization efficiency, such advanced radio technologies will put to greater use the techniques and protocol enhancements disclosed through this dissertation

    Design techniques for low-power systems

    Get PDF
    Portable products are being used increasingly. Because these systems are battery powered, reducing power consumption is vital. In this report we give the properties of low-power design and techniques to exploit them on the architecture of the system. We focus on: minimizing capacitance, avoiding unnecessary and wasteful activity, and reducing voltage and frequency. We review energy reduction techniques in the architecture and design of a hand-held computer and the wireless communication system including error control, system decomposition, communication and MAC protocols, and low-power short range networks

    Web browsing optimization over 2.5G and 3G: end-to-end mechanisms vs. usage of performance enhancing proxies

    Get PDF
    Published version on Wiley's platform: https://onlinelibrary.wiley.com/doi/abs/10.1002/wcm.4562.5 Generation (2.5G) and Third Generation (3G) cellular wireless networks allow mobile Internet access withbearers specifically designed for data communications. However, Internet protocols under-utilize wireless widearea network (WWAN) link resources, mainly due to large round trip times (RTTs) and request–reply protocolpatterns. Web browsing is a popular service that suffers significant performance degradation over 2.5G and 3G. Inthis paper, we review and compare the two main approaches for improving web browsing performance over wirelesslinks: (i) using adequate end-to-end parameters and mechanisms and (ii) interposing a performance enhancingproxy (PEP) between the wireless and wired parts. We conclude that PEPs are currently the only feasible way forsignificantly optimizing web browsing behavior over 2.5G and 3G. In addition, we evaluate the two main currentcommercial PEPs over live general packet radio service (GPRS) and universal mobile telecommunications system(UMTS) networks. The results show that PEPs can lead to near-ideal web browsing performance in certain scenarios.Postprint (published version

    Application-specific reliable data transfer in wireless sensor networks

    Get PDF
    A wireless sensor network (WSN) is a collection of sensor nodes and base stations connected via wireless medium. It sends data collected from the nodes to the base stations for generating information. The size and low cost of the sensor nodes as well as the WSN\u27s ability to connect without wired links are its key advantages which enable it to be deployed in hostile or inaccessible environments at low cost. However, WSNs suffer from high data loss due to the inherent weaknesses in a wireless transmission medium, transmission problems in hostile environments due to human interference, etc. and node failures due to limited energy of sensor nodes. Hence ensuring data transfer with minimum loss i.e. reliable data transfer is very important in WSNs. The amount of loss tolerated is application dependent. We present a reliable protocol for data transfer from a base station to sensor nodes for time-critical applications in WSNs with zero tolerance for data loss. The protocol is based on hop-by-hop detection and recovery of lost data packets, out-of-sequence forwarding of packets and delayed request for missing packets at each node with non-acknowledgement of packets at each receiving node. We present a detailed analysis of the advantages of the key features of our protocol over other alternatives. The superiority of our protocol over an established protocol PSFQ is demonstrated via extensive simulations, in terms of both the delivery time of the entire data (sent from the base station to the sensor nodes) and the number of messages exchanged in the network during this process. In addition, we present two methods, one, for ensuring that at least one packet is delivered to a node in non-acknowledgement based systems and another, for sending reports from destination nodes to the base station respectively. We explore different methods for further improvement of protocol performance: (1) use of effective degree of a node in determining the optimum delay for requesting data packets missing at nodes, (2) variation of the priority order for sending different types of messages at nodes and, (3) selective response to requests for packets at nodes
    • 

    corecore