19,763 research outputs found

    Approximate Modified Policy Iteration

    Get PDF
    Modified policy iteration (MPI) is a dynamic programming (DP) algorithm that contains the two celebrated policy and value iteration methods. Despite its generality, MPI has not been thoroughly studied, especially its approximation form which is used when the state and/or action spaces are large or infinite. In this paper, we propose three implementations of approximate MPI (AMPI) that are extensions of well-known approximate DP algorithms: fitted-value iteration, fitted-Q iteration, and classification-based policy iteration. We provide error propagation analyses that unify those for approximate policy and value iteration. On the last classification-based implementation, we develop a finite-sample analysis that shows that MPI's main parameter allows to control the balance between the estimation error of the classifier and the overall value function approximation

    Tight Performance Bounds for Approximate Modified Policy Iteration with Non-Stationary Policies

    Get PDF
    We consider approximate dynamic programming for the infinite-horizon stationary γ\gamma-discounted optimal control problem formalized by Markov Decision Processes. While in the exact case it is known that there always exists an optimal policy that is stationary, we show that when using value function approximation, looking for a non-stationary policy may lead to a better performance guarantee. We define a non-stationary variant of MPI that unifies a broad family of approximate DP algorithms of the literature. For this algorithm we provide an error propagation analysis in the form of a performance bound of the resulting policies that can improve the usual performance bound by a factor O(1γ)O(1-\gamma), which is significant when the discount factor γ\gamma is close to 1. Doing so, our approach unifies recent results for Value and Policy Iteration. Furthermore, we show, by constructing a specific deterministic MDP, that our performance guarantee is tight

    Approximate modified policy iteration and its application to the game of Tetris

    Get PDF
    International audienceModified policy iteration (MPI) is a dynamic programming (DP) algorithm that contains the two celebrated policy and value iteration methods. Despite its generality, MPI has not been thoroughly studied, especially its approximation form which is used when the state and/or action spaces are large or infinite. In this paper, we propose three implementations of approximate MPI (AMPI) that are extensions of the well-known approximate DP algorithms:~fitted-value iteration, fitted-Q iteration, and classification-based policy iteration. We provide error propagation analysis that unify those for approximate policy and value iteration. We develop the finite-sample analysis of these algorithms, which highlights the influence of their parameters. In the classification-based version of the algorithm (CBMPI), the analysis shows that MPI's main parameter controls the balance between the estimation error of the classifier and the overall value function approximation. We illustrate and evaluate the behavior of these new algorithms in the Mountain Car and Tetris problems. Remarkably, in Tetris, CBMPI outperforms the existing DP approaches by a large margin, and competes with the current state-of-the-art methods while using fewer samples

    Sampling-based Approximations with Quantitative Performance for the Probabilistic Reach-Avoid Problem over General Markov Processes

    Get PDF
    This article deals with stochastic processes endowed with the Markov (memoryless) property and evolving over general (uncountable) state spaces. The models further depend on a non-deterministic quantity in the form of a control input, which can be selected to affect the probabilistic dynamics. We address the computation of maximal reach-avoid specifications, together with the synthesis of the corresponding optimal controllers. The reach-avoid specification deals with assessing the likelihood that any finite-horizon trajectory of the model enters a given goal set, while avoiding a given set of undesired states. This article newly provides an approximate computational scheme for the reach-avoid specification based on the Fitted Value Iteration algorithm, which hinges on random sample extractions, and gives a-priori computable formal probabilistic bounds on the error made by the approximation algorithm: as such, the output of the numerical scheme is quantitatively assessed and thus meaningful for safety-critical applications. Furthermore, we provide tighter probabilistic error bounds that are sample-based. The overall computational scheme is put in relationship with alternative approximation algorithms in the literature, and finally its performance is practically assessed over a benchmark case study

    A Theory of Regularized Markov Decision Processes

    Full text link
    Many recent successful (deep) reinforcement learning algorithms make use of regularization, generally based on entropy or Kullback-Leibler divergence. We propose a general theory of regularized Markov Decision Processes that generalizes these approaches in two directions: we consider a larger class of regularizers, and we consider the general modified policy iteration approach, encompassing both policy iteration and value iteration. The core building blocks of this theory are a notion of regularized Bellman operator and the Legendre-Fenchel transform, a classical tool of convex optimization. This approach allows for error propagation analyses of general algorithmic schemes of which (possibly variants of) classical algorithms such as Trust Region Policy Optimization, Soft Q-learning, Stochastic Actor Critic or Dynamic Policy Programming are special cases. This also draws connections to proximal convex optimization, especially to Mirror Descent.Comment: ICML 201

    Batch Policy Learning under Constraints

    Get PDF
    When learning policies for real-world domains, two important questions arise: (i) how to efficiently use pre-collected off-policy, non-optimal behavior data; and (ii) how to mediate among different competing objectives and constraints. We thus study the problem of batch policy learning under multiple constraints, and offer a systematic solution. We first propose a flexible meta-algorithm that admits any batch reinforcement learning and online learning procedure as subroutines. We then present a specific algorithmic instantiation and provide performance guarantees for the main objective and all constraints. To certify constraint satisfaction, we propose a new and simple method for off-policy policy evaluation (OPE) and derive PAC-style bounds. Our algorithm achieves strong empirical results in different domains, including in a challenging problem of simulated car driving subject to multiple constraints such as lane keeping and smooth driving. We also show experimentally that our OPE method outperforms other popular OPE techniques on a standalone basis, especially in a high-dimensional setting
    corecore