7 research outputs found

    A representer theorem for deep kernel learning

    Full text link
    In this paper we provide a finite-sample and an infinite-sample representer theorem for the concatenation of (linear combinations of) kernel functions of reproducing kernel Hilbert spaces. These results serve as mathematical foundation for the analysis of machine learning algorithms based on compositions of functions. As a direct consequence in the finite-sample case, the corresponding infinite-dimensional minimization problems can be recast into (nonlinear) finite-dimensional minimization problems, which can be tackled with nonlinear optimization algorithms. Moreover, we show how concatenated machine learning problems can be reformulated as neural networks and how our representer theorem applies to a broad class of state-of-the-art deep learning methods

    Variational Monte Carlo - Bridging concepts of machine learning and high dimensional partial differential equations

    Get PDF
    A statistical learning approach for parametric PDEs related to Uncertainty Quantification is derived. The method is based on the minimization of an empirical risk on a selected model class and it is shown to be applicable to a broad range of problems. A general unified convergence analysis is derived, which takes into account the approximation and the statistical errors. By this, a combination of theoretical results from numerical analysis and statistics is obtained. Numerical experiments illustrate the performance of the method with the model class of hierarchical tensors

    Error analysis of regularized and unregularized least-squares regression on discretized function spaces

    Get PDF
    In this thesis, we analyze a variant of the least-squares regression method which operates on subsets of finite-dimensional vector spaces. In the first part, we focus on a regression problem which is constrained to a ball of finite radius in the search space. We derive an upper bound on the overall error by coupling the ball radius to the resolution of the search space. In the second part, the corresponding penalized Lagrangian dual problem is considered to establish probabilistic results on the well-posedness of the underlying minimization problem. Furthermore, we have a look at the limit case, where the penalty term vanishes and we improve on our error estimates from the first part for the special case of noiseless function reconstruction. Subsequently, our theoretical foundation is used to obtain novel convergence results for regression algorithms based on sparse grids with linear splines and Fourier polynomial spaces on hyperbolic crosses. We conclude the thesis by giving several numerical examples and comparing the observed error behavior to our theoretical results
    corecore