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Variational Monte Carlo — Bridging concepts of machine
learning and high dimensional partial differential

equations
Martin Eigel, Philipp Trunschke, Reinhold Schneider, Sebastian Wolf

Abstract. A statistical learning approach for parametric PDEs related to Uncertainty
Quantification is derived. The method is based on the minimization of an empirical risk on a
selected model class and it is shown to be applicable to a broad range of problems. A general
unified convergence analysis is derived, which takes into account the approximation and the
statistical errors. By this, a combination of theoretical results from numerical analysis and
statistics is obtained. Numerical experiments illustrate the performance of the method with
the model class of hierarchical tensors.

1. Introduction

In this article we explore connections between two very active research areas, namely Machine
Learning (ML) and Uncertainty Quantification (UQ) with high-dimensional partial differential
equations (PDEs). A central goal is to illustrate how ideas from statistical learning can be
exploited for the solution of high-dimensional and possibly non-linear parametric deterministic
problems. We employ empirical risk minimization (ERM) to approximate the solution of these
PDEs in non-linear model classes. Although we use hierarchical tensor networks (as described
e.g. in [1]) in our experiments, the presented approach is sufficiently general to also cover
more complicated model classes such as deep neural networks [2]. Moreover, the framework
can be applied to a large variety of problems, not necessarily related to simulation problems
and differential equations. In fact, most of the previous research in this area is concerned with
statistical problems which are founded on a fixed set of measured data points with statistical
errors. This is fundamentally different from the measurements we consider in this work since
we assume that arbitrary samples can be generated by simulation of a computable model which
– apart from numerical approximation errors – do not exhibit any statistical errors.

The term Variational Monte Carlo method, which we use for the presented approach, has its
origins in ground state computation in Quantum Physics. In large parts (in particular for linear
models), the notion coincides with our method [3].

The application focus of this work is a class of computationally demanding problems, which play
an important role in UQ [4, 5]. There, the uncertainty of model data is commonly described by
random fields, leading to high-dimensional parametrized PDEs. These may either be solved by
Monte Carlo sampling, allowing for the computation of quantities of interest (i.e. functionals)
of the solution, or by spectral methods leading to a functional approximation of the solution [6,
7]. The usually faster convergence and more detailed solution information gained by the latter
approach comes at the cost of a much higher computational complexity, in particular when
using a stochastic (Galerkin) projection [7–10]. With the present work, we strive to combine
function space approximations (in our case in a hierarchical tensor representation) and efficient
solution sampling by means of a learning method, i.e., the functional solution is learned
from generated sampling data. The solution approximation Φ is determined by minimizing an
objective functional J (Φ) =

´
Ω `(Φ;x) dρ(x) subject to some loss function `, which e.g. yields
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a least squares optimization. Since J cannot be determined exactly in many applications such
as non-linear problems, one has to resort to an empirical minimization where the computation is
based on (quasi) random samples constituting the empirical risk JN (Φ) = 1

N

∑
i=1,...,N `(Φ;xi).

As with other numerical techniques, a convergence analysis and an a posteriori control of
the occurring errors is of crucial interest. These errors can be split into a deterministic and
a stochastic part, which makes it possible to combine results from numerical analysis and
probability theory. Since empirical (i.e. random) quantities are involved, one does in general
not obtain worst case error estimates for the stochastic error. We hence pursue the concept of
convergence in probability. This results in error estimates which hold either with high probability
or with a certain confidence, which can be improved exponentially fast by increasing the number
of samples. The underlying theory has been developed in statistics and machine learning for
regression and classification problems [11] and carries over with slight modifications. However,
in addition to the mentioned qualitative difference of the used samples, while in statistics the
probability distribution of the data is unknown and its determination can be seen as part of the
task, in our case it is known and may be exploited in the method [12–15]. Another distinction
is that we are primarily interested in the accuracy of the approximate solution of the PDE
problem rather than computing the minimal risk.

When solving PDEs, the problem can often be cast into minimizing a specific integral like
the error, the residual or the Dirichlet energy. For high-dimensional problems, due to the
exponentially growing computational complexity (known as the curse of dimensionality), these
integrals only become feasible with an empirical approach. In many situations our method is
equivalent to the solution of a regression problem and we are not the first to apply regression
techniques for solving PDEs, see e.g. [16]. Nevertheless, it is our intention to present a unified
and general theoretical foundation in the chosen framework.

It should be noted that the considered parametric PDEs are well understood in terms of
regularity and sparsity [17–21]. As such, in our opinion they represent a valuable and fruitful
class of benchmark problems for machine learning algorithms, in particular since numerical
methods from UQ are available as a reference.

Fundamental convergence results in statistical learning theory have been developed starting
with the pioneering work of Vapnik and Chervonenkis [22–24] and Vailant [25]. We also refer
to the works of Hauser [26] and Bartlett [27]. A modern treatment can be found in the recent
monograph [28]. This theory is motivated by the binary classification problem and the inherent
complexity is typically measured by the Vapnik-Chervonenkis (VC) dimension.

In contrast to that, a statistical learning theory where the complexity is measured in terms of
the covering number is developed in Cucker and Smale [29] and Cucker and Zhou [30]. Since
the covering number is a fundamental complexity measure in approximation theory [31], we
find this approach more amenable for our approach and hence pursue this notion. Another view
on regression problems in this framework can be found in [32]. While following the treatment
of [29, 30], we also consider non-convex model classes.

As discussed at the end of this paper, the theoretical results so far are not optimal, at least for
linear models, which is illustrated by the numerical experiments in Section 3. The derived error
bounds seem to be too pessimistic and certainly can be improved for a wide class of models. A
recent example of this is provided in [13] and is briefly discussed in the outlook.
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The structure of the paper is as follows: In the next section, we introduce the general framework
of empirical risk minimization. In Section 3, we discuss typical choices of model classes and
cost functionals. Section 4 is used to derive error bounds for deterministic and stochastic error
components. In Section 5 we present an application of the theory in the context of uncertainty
quantification, in particular with high-dimensional PDEs. Numerical experiments illustrate the
performance of the approach in Section 6. Finally, we assess our results and point in directions
for future research in Section 7.

2. Variational Setting

Let V be a Hilbert space and (Ω, Σ, ρ) a measure space with finite measure ρ. We assume a
given loss function ` : V ×Ω→ R such that `( • ;x) is continuous for all x ∈ Ω and `(Φ; • ) is
integrable with respect to the measure ρ for every Φ ∈ V . Note that we use a modified version
of the usual definition of the loss function from machine learning. The objective is to find a
minimizer

Φ∗ ∈ arg min
Φ∈V

J (Φ)

of the cost functional
J (Φ) :=

ˆ
Ω
`(Φ;x) dρ(x) .

In applications in numerical analysis the space V is often infinite dimensional and one hence
has to confine the minimization to a discrete model or hypothesis class M⊆ V. To ensure
the existence of the optimum, we further assume compactness of M. The solution of the
corresponding minimization problem is denoted by

Φ∗(M) ∈ arg min
Φ∈M

J (Φ) .

Since ρ is a finite measure it can be interpreted as a scaled probability measure. Accordingly,
we rephrase the cost functional with a scaled version of ` as

J (Φ) =
ˆ

Ω
`(Φ;x) dρ(x) = E[`(Φ; • )] .

We assume that independent samples {xi}i≤N , distributed according to ρ, can be generated.
Instead of computing J , one can then resort to computing the empirical cost functional

JN(Φ) := E[`(Φ; • );N ] = 1
N

N∑
i=1

`(Φ;xi) .

This Monte Carlo integral provides a surrogate functional that can be minimized to obtain

Φ∗(M,N) ∈ arg min
Φ∈M

JN(Φ) .

We henceforth assume that Φ∗ indeed exists. The existence of the other two minimizers is
guaranteed sinceM is compact and ` is continuous in its first argument.

The central topic of this paper is to analyse the errors that are introduced by restricting the
optimization from V toM and by substituting J by the Monte Carlo surrogate JN . We aim
to present examples that illustrate the versatility of this approach and to provide a rigorous
error analysis for this general framework. The algorithm that is used to solve the minimization
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problem numerically can be chosen freely and we consider neither its error analysis nor its
complexity.

3. Cost Functionals and Model Classes

This section is devoted to examples for cost functionals and model classes in our setting. For
this we choose V as a subspace of L2(D) on a given Lipschitz domain D and consider the
elliptic operator equation

LΦ∗ = f

with a V-elliptic bounded linear operator L : V → V∗ and f ∈ V∗. Common choices for L are
second order differential operators like the Laplace operator, the identity operator LΦ(x) = Φ(x)
or a multiplication operator LΦ(x) = a(x)Φ(x) for some a : D → R.

Note that Φ∗ indeed exists and that since L is elliptic, an explicit restrictionM⊆ BR(0) :=
{Φ ∈ V | ‖Φ‖ ≤ R} is not necessarily required. An upper bound R for ‖Φ∗‖V is given by the
Lax-Milgram theorem. Depending on the model classM and the cost functional J , it may
however be that ‖Φ∗(M)‖V ≥ ‖Φ∗‖V . Therefore, an additional restriction can be applied and
can then be interpreted as a regularization of the problem.

Note that even though this example is a linear problem, the presented approach also allows to
solve non-linear equations.

3.1. Model classes. The model classM for the optimization can be chosen quite liberally
and some examples are given in the following.

(i) LetM = V be a finite element space.
(ii) LetM = V be the Reproducing Kernel Hilbert Space (RKHS) corresponding to a kernel

k : X 2 → R. Assume that the loss function has the form `(Φ;x) = ˜̀(x, Φ(x)) + g(‖Φ‖V)
for a strictly increasing function g : R→ R. This implies that J (Φ) = E[ ˜̀( • , Φ( • ))] +
g(‖Φ‖). Then, by the representer theorem, Φ∗(M,N) = Φ∗(V,N) ∈ span{k( • ,xi)}i≤N .
This means that the optimization can be carried out in finite dimensions even though the
solution space is indeed infinite. This is a popular choice in machine learning where the
additional summand g(‖ • ‖V) is often used to replace a constraint on the model class
M⊆ {Φ ∈ V : ‖Φ‖V ≤ R}. We refer to [33] for an exposition of this topic.

Both model classes are linear but the presented framework also allows for non-linear parametriza-
tions of the minimizer.

(iii) M may be a polynomial or a Gaussian mixture model.
(iv) M may be a set of tensors in a given tensor format. This results in multilinear models

which are built upon finite dimensional subspaces of univariate functions. We point out
that recently introduced hierarchical tensor representations (HT and TT formats) exhibit
striking mathematical properties. For instance, they form algebraic varieties, see e.g. [1],
and have an exponential power of expressiveness [34].

(v) M can be chosen to be multi-layer neural networks (NNs). Recent progress in machine
learning demonstrates the superiority of deep neural networks over classical shallow
architectures. Their theory however is rather incomplete as yet.
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3.2. Cost functionals. The framework introduced in Section 2 is quite generic in the choice
of the cost functional J . Some possible choices are listed in the following.

(a) A least squares approximation of Φ∗ = L−1f inM is computed via the cost functional

J (Φ) =
ˆ

Ω
|Φ(x)− Φ∗(x)|2 dρ(x) .

The respective loss is defined by `(Φ;x) = |Φ(x) − Ψ(x)|2 and the probability space is
(D,B(D), ρ) for any measure ρ that is absolutely continuous w.r.t. the Lebesgue measure.
The empirical problem is equivalent to the statistical least squares regression problem with
given data points (xi, Φ∗(xi)).

(b) The minimal residual problem in L2(Ω) is solved by

J (Φ) =
ˆ

Ω
|LΦ(x)− f(x)|2ρ(x) dx .

The respective loss is defined by `(Φ;x) = |LΦ(x)− f(x)|2 and the probability space can
be chosen as above.

(c) If L is self-adjoint w.r.t. the L2(Ω, ρ) inner product, we can minimize the Dirichlet energy

J (Φ) := 1
2(LΦ, Φ)L2(Ω,ρ) − (f , Φ)L2(Ω,ρ)

= 1
2

ˆ
Ω
LΦ(x)Φ(x)ρ(x) dx−

ˆ
Ω
f(x)Φ(x)ρ(x) dx,

with `(Φ;x) := 1
2LΦ(x)Φ(x)− f(x)Φ(x) and the probability space again chosen as above.

If L is positive definite as well, then there exists an operator B = L1/2 such that L can be
written as L = B∗B and we can also consider

J (Φ) = 1
2

ˆ
Ω
BΦ(x)BΦ(x)ρ(x) dx−

ˆ
Ω
f(x)Φ(x)ρ(x) dx,

where `(Φ,x) := 1
2BΦ(x)BΦ(x) − f(x)Φ(x). A common example for this is given by

B :=
√
κ(x)∇x. Note that although both cost functionals are equal, the corresponding

empirical functionals are quite different.

Remark 3.1. For many examples the exact minimum Φ∗ is attained if 0 ≤ `(Φ∗,x) = 0 for
almost all x. In this case the choice of ρ does not matter and we can replace ρ by any density
ρ̃ � ρ that is absolutely continuous w.r.t. ρ. The minimizers on the restricted model class
M⊆ V can however be different from the exact minimizers. In these cases we have to keep
in mind that the choice of ρ̃ will influence the solution Φ∗(M). This can, on the other hand,
be brought to bear by weighting the samples in the empirical functional and thereby reducing
instabilities.

The preceding list is of course incomplete and is only intended to illustrate the use of surrogate
functionals. Other examples like classification with softmax parametrization may prove to be
interesting but are deferred to a forthcoming work.

4. Convergence Analysis

This central section examines the convergence of the depicted framework in terms of the errors

Ecost := |J (Φ∗)− J (Φ∗(M,N))| and Enorm := ‖Φ∗ − Φ∗(M,N)‖V .
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Here, Ecost measures the error of the empirical approximation Φ∗(M,N) with respect to the cost
functional J while Enorm determines the approximation error of the minimizer in terms of a
norm ‖ • ‖V related to the problem. For the further analysis, Ecost is decomposed into two parts,

Ecost ≤ Eappr + Egen

= |J (Φ∗)− J (Φ∗(M))|

+ |J (Φ∗(M))− J (Φ∗(M,N))| .

The first term Eappr is called the approximation error. It is a purely deterministic quantity due
to the choice of the model class. The second term Egen is called the generalization error and is
a result of the use of the empirical loss functional in the minimization. This splitting allows to
use of the best bounds available for each part of the error and the problem at hand. In the
following, we provide generic bounds for both Eappr and Egen. In numerical applications the
error of the cost functional E is of minor importance and one is instead interested primarily in
an upper bound for the norm error Enorm. We derive such a bound in Section 4.3.

In the subsequent analysis, certain assumptions are required, which are introduced upfront.

� Boundedness: There exists C1 > 0 s.t. for all Φ ∈M it holds

|`(Φ;x)| ≤ C1 for almost all x ∈ Ω . (A1)

� Lipschitz continuity on M: There exists C2 > 0 s.t. for all Φ1, Φ2 ∈M it holds

|`(Φ1;x)− `(Φ2;x)| ≤ C2‖Φ1 − Φ2‖V for almost all x ∈ Ω . (A2)

� Global Lipschitz continuity: There exists C2 > 0 s.t. for all Φ1, Φ2 ∈ V it holds

|J (Φ1)− J (Φ2)| ≤ C2‖Φ1 − Φ2‖V . (A3’)

� Bounded second derivative: J is twice differentiable with bounded second derivatives,
i.e.,

Γ = sup
ξ∈V
‖D2J (ξ)‖L(V,V∗) <∞ . (A3”)

� Local strong convexity: J is strongly convex in a neighbourhood U of Φ∗. This means
that for all Φ, Ψ ∈ U it holds

J (Φ) ≥ J (Ψ) + DJ (Ψ)(Φ−Ψ) + γ

2‖Φ−Ψ‖2
V . (A4)

Assumptions (A1) and (A2) are required for bounding the generalization error in Section 4.2.
Either assumption (A3’) or (A3”) is needed to provide bounds for the approximation error
examined in Section 4.1. The last assumption (A4) is employed to bound the norm error Enorm.

4.1. Approximation error. Define the best approximation error of Φ∗ inM by

Ebest := inf
Φ∈M
‖Φ∗ − Φ‖V .

We can bound the approximation error in terms of the best approximation error in two ways.

Lemma 4.1. Let Assumption (A3’) be satisfied. Then

Eappr ≤ C2Ebest .

DOI 10.20347/WIAS.PREPRINT.2544 Berlin 2018
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Lemma 4.2. Let Assumption (A3”) be satisfied. Then

Eappr ≤
Γ
2 E

2
best .

Remark 4.3. It is worth noting the distinction between Eappr and Ebest. Both measure the
minimal distance of elements Φ ∈M in the model class to the global minimizer Φ∗. But Eappr
measures this distance in terms of the cost function, while Ebest measures it in the V-norm.

Remark 4.4. The assumptions for both Lemmas are satisfied, for example, by linear and
quadratic cost functionals, which are quite common in numerical applications.

Proof of Lemma 4.1. Follows immediately. �

Proof of Lemma 4.2. We can express the functional by a first order Taylor expansion of the
form

J (Φ) = J (Φ∗) + DJ (Φ∗)(Φ− Φ∗) + 1
2D2J (ξ)(Φ− Φ∗)(Φ− Φ∗) ,

for some ξ ∈ V . Consequently, using Γ = supξ∈V‖D2J (ξ)‖L(V,V∗) <∞ yields

|J (Φ)− J (Φ∗)| ≤ Γ
2 ‖Φ− Φ∗‖2

V .

This implies the claim. �

Remark 4.5. Bounding Ebest is an issue of approximation theory and for many model classes
sharp bounds are known. However, approximation results for the popular deep neural networks,
which could also be employed here, are scarce. This is the subject of ongoing research, see
e.g. [35, 36].

4.2. Generalization error. Motivated by the arguments and conclusions of Cucker and Smale
[29] and Macdonald [37], the following analysis of the generalization error Egen relies on the
concept of covering numbers, representing in a way the degree of compactness of the considered
space. In our applications this seems to be a more natural notion than e.g. the classical VC
dimension. For the sake of completeness, we provide full details of the derivations.

Definition 4.6 (covering number). The covering number ν(M, ε) of a subset M ⊆ V is
defined as the minimal number of ‖ • ‖V-open balls of radius ε needed to coverM.

Example 4.7. LetM be a bounded subset of a finite dimensional linear space (e.g. a finite
element space). The covering number ofM can be estimated by

ν(M, ε) . vol(B1(0))
(
R

ε

)dim(M)
.

where B1(0) denotes the unit ball and R = supv∈M‖v‖ is the radius of the domain.

Example 4.8. LetM be a Reproducing Kernel Hilber Space (RKHS). As sketched above,
the minimization can be performed in a finite dimensional subspaces and the corresponding
covering numbers are estimated in [30].
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Example 4.9. LetM be a set of tensors in a given tensor format. SinceM can be embedded
into a finite dimensional linear space we obtain the bound from Example 4.7 as a crude upper
bound. First sharper estimates for covering numbers for hierarchical tensors are provided by [38].
Example 4.10. For the currently extremely popular neural networks, estimates of the VC
dimension (a quantity related to the covering number) are provided by [27] and first covering
number estimates are derived in [36].
Remark 4.11. The concept of a covering number can be generalized to open balls with respect
to a dissimilarity measure instead of the ‖ • ‖V norm. This allows to apply the results of this
section to more general loss functions `.

The main convergence result for the generalization error is given in the following theorem.
Theorem 4.12. For all ε > 0,

P[Egen > ε] ≤ 2ν(M, ε

8C2
)δ( ε4 ,N) ,

where δ(ε,N) is an upper bound for P[|J (Φ)− JN(Φ)| > ε].
Remark 4.13. Depending on ν(M, ε) and the bound δ(ε,N), Theorem 4.12 may provide
a very pessimistic upper bound with a relatively large pre-asymptotic range and a “phase
shift” that separates an area of almost absolute certainty from an area where failure is almost
guaranteed. This happens for example in high-dimensional linear spaces and when using the
Hoeffding bound for P[|J (Φ)− JN(Φ)| > ε]. Nevertheless, the bound still provides a proof
of convergence and illustrates the relation N ∈ O(ε−2 ln(ε)). This is slightly worse than the
classical Monte Carlo bound of N ∈ O(ε−2) but is justified by the fact that we are not just
evaluating integrals but are indeed optimizing a function Φ with respect to this integration.
Moreover, we emphasize that the current analysis can not explain the significantly faster
convergence we see in practical experiments as illustrated in Section 6. Better bounds may
indeed be provided by exploiting further properties (e.g. sparsity) of the problem. This is
illustrated in [12] for the linear case.

We depict several lemmas in preparation of the proof of Theorem 4.12.
Lemma 4.14. It holds,

Egen ≤ 2 sup
Φ∈M
|J (Φ)− JN(Φ)|.

Proof. Recall that Φ∗(M) denotes a minimizer of J in the model classM. We immediately
derive

Egen = J (Φ∗(M,N))− J (Φ∗(M))

= J (Φ∗(M,N))− JN(Φ∗(M,N)) + JN(Φ∗(M,N))− J (Φ∗(M))

≤ |J (Φ∗(M,N))− JN(Φ∗(M,N))|+ JN(Φ∗(M))− J (Φ∗(M))
≤ 2 sup

Φ∈M
|J (Φ)− JN(Φ)|. �

Lemma 4.15. Let ε > 0, ν := ν(M, ε
8C2

) and {Φj}j∈[ν] the centers of the corresponding
covering. Then it almost surely holds

sup
Φ∈M
|J (Φ)− JN(Φ)| < ε

4 + max
1≤j≤ν

|J (Φj)− JN(Φj)|.
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Proof. Let Φ ∈ M be given. By definition of the {Φj}j∈[ν] there exists some Φj with ‖Φ−
Φj‖V < ε

8C2
. Assumption (A2) implies |J (Φ) − J (Φj)| < ε

8 and almost surely |JN(Φ) −
JN(Φj)| < ε

8 . Hence,

|J (Φ)− JN(Φ)|
≤ |J (Φ)− JN(Φ)− (J (Φj)− JN(Φj))|+ |J (Φj)− JN(Φj)|
≤ |J (Φ)− J (Φj)|+ |JN(Φ)− JN(Φj)|+ |J (Φj)− JN(Φj)|
< ε

4 + |J (Φj)− JN(Φj)| almost surely.
< ε

4 + max
1≤j≤ν

|J (Φj)− JN(Φj)| almost surely. �

Lemma 4.16. Let ε, ν and {Φj}j∈[ν] be as in Lemma 4.15. Then,

P[Egen > ε] ≤ ν max
1≤j≤ν

P[|J (Φj)− JN(Φj)| > ε
4 ].

Proof. With the preceding lemmas, we deduce

P[Egen > ε] ≤ P[ sup
Φ∈M
|J (Φ)− JN(Φ)| > ε

2 ] (Lemma 4.14)

≤ P[ max
1≤j≤ν

|J (Φj)− JN(Φj)| > ε
4 ] (Lemma 4.15)

≤
∑

1≤j≤ν
P[|J (Φj)− JN(Φj)| > ε

4 ] (union bound)

≤ ν max
1≤j≤ν

P[|J (Φj)− JN(Φj)| > ε
4 ]. �

Using Lemma 4.16, the supremum can be factored out of the probability expression and
then be bounded by means of classical concentration of measure arguments. This how-
ever comes at the price of the factor ν. Two well-known upper bounds for the probability
P[|J (Φj)− JN(Φj)| > ε

4 ] are given by the Hoeffding and the Bernstein inequalities.

Lemma 4.17 (Hoeffding 1963). Let {Xi}i=1,...,N be a sequence of i.i.d. bounded random
variables |Xi| ≤M and define X := 1

N

∑N
i=1Xi. It then holds that

P
[
|E[X]−X| ≥ ε

]
≤ 2 exp

(
−2ε2N

M2

)
.

Lemma 4.18 (Bernstein 1927). Let {Xi}i=1,...,N be a sequence of i.i.d. bounded random
variables |Xi| ≤M with bounded variance Var(Xi) ≤ σ2 and define X := 1

N

∑N
i=1Xi. It then

holds that

P
[
|E[X]−X| ≥ ε

]
≤ 2 exp

(
−

1
2ε

2N

σ2 + 1
3Mε

)
.

Corollary 4.19. If Assumptions (A1) holds, then Lemma 4.17 leads to the estimate

δ(ε,N) ≤ 2e−2ε2N/C2
1 .

If the variance σ2 of `(Φ, • ) can be assumed to be negligible, Lemma 4.18 yields the even
tighter bound

δ(ε,N) ≤ 2e−3εN/(4C2
1 ) .
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Proof. Recall that the samples xi are i.i.d. and therefore the `(Φ,xi) are i.i.d. for i = 1, . . . ,N .
Moreover, (A1) ensures that |`(Φ,xi)| ≤ C1 holds almost surely for all i = 1, . . . ,N . Hence the
assumptions for Lemma 4.17 are satisfied. Finally, (A1) also ensures that Var(`(Φ,xi)) ≤ C2

1
holds almost surely for all i = 1, . . . ,N . Therefore, Lemma 4.18 is applicable. �

Theorem 4.12 now is a mere corollary of the preceding lemmas.

Proof of Theorem 4.12. Follows from Lemma 4.16 and Corollary 4.19. �

4.3. Norm Error. We aim at using the proposed framework in the numerical analysis of
parametric PDEs as outlined in Section 5. Hence, we are primarily interested in the error of the
parameters Enorm = ‖Φ∗ − Φ∗(M,N)‖V . This section is devoted to the derivation of respective
error bounds.

Lemma 4.20. Let Assumption (A4) on local strong convexity be satisfied and assume that
Φ∗(M,N) lies in the strongly convex neighbourhood U of Φ∗. Then

E2
norm ≤

2
γ
Ecost .

Proof. By the first order optimality condition for Φ∗,

DJ (Φ∗)(Φ− Φ∗) = 0 for all Φ ∈ V .

Consequently, by Assumption (A4),

E2
norm = ‖Φ∗ − Φ∗(M,N)‖2

≤ 2
γ

(
J (Φ∗(M,N))− J (Φ∗)−DJ (Φ∗)(Φ∗(M,N) − Φ∗)

)
= 2
γ
|J (Φ∗)− J (Φ∗(M,N))| .

This proves the claim. �

Lemma 4.21. Let Assumptions (A3”) and (A4) be satisfied. Then

E2
norm ≤

Γ
γ
E2

best + 2
γ
Egen .

An interpretation of this estimate is that Egen in a way measures the quality of the chosen cost
functional. If the functional is chosen poorly, the minimum of the empirical functional Φ∗(M,N)

may deviate strongly from the minimum Φ∗(M) and may only converge with a slow rate.

Proof of Lemma 4.21. By Lemma 4.20, the splitting of Ecost and Lemma 4.2,

E2
norm ≤

2
γ
Ecost

≤ 2
γ

(Eappr + Egen)

≤ 2
γ

(
Γ
2 E

2
best + Egen

)
. �
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Corollary 4.22. Let a > 0 and define

p(a,N) := P[Egen ≥ 1
2aΓE2

best] .

Then, with probability 1− p(a,N),

E2
best ≤ E2

norm ≤ (1 + a)Γ
γ
E2

best . (1)

Recall that the norm error Enorm is the distance of the empirical solution Φ∗(M,N) to the exact
solution Φ∗ and that the best approximation error Ebest is the smallest such distance that is
obtainable in the given model class. Corollary 4.22 shows that in a “validity probability” the
norm error is quasi-optimal in the sense that it is equivalent to the best approximation error.
Using Lemma 4.12 we can bound p(a,N) in Corollary 4.22 and show that the probability
1− p(a,N) of equivalence (1) tends to one with an exponential rate in the number of samples
N . This means that the convergence results hold with high probability, provided that N is
sufficiently large.

Proof of Corollary 4.22. Lemma 4.21 implies

P[E2
norm ≥ ε] ≤ P

[
Γ
γ
E2

best + 2
γ
Egen ≥ ε

]

≤ P
[
Egen ≥

1
2(γε− ΓE2

best)
]

.

Choosing ε = γ−1(1 + a)ΓE2
best yields the assertion. �

5. Problems in UQ

In this section we discuss the intended application of the proposed method in the context of
Uncertainty Quantification. More specifically, consider the abstract problem

D(u; y) = 0 ,

where D encodes a (possibly non-linear) PDE model in a physical domain D ⊂ Rd, d = 1, 2, 3,
depending on parameters y ∈ Γ ⊂ RM . The parameter vector y may be finite dimensional
(M <∞) or infinite dimensional (M =∞). We assume that the parametric solution u(x, y)
can be represented as u ∈ L2(Γ, ρ;X ) ' X ⊗ Y =: V with (typically) X ⊆ H1(D) and
Y ⊆ L2(Γ, ρ) and ρ some probability measure on Γ.

Further details of these problems can e.g. be found in [6–8, 10, 20]. Moreover, adaptive Galerkin
discretizations are for instance considered in [39–43], which is one of the UQ standard methods
we have in mind.

5.1. Parametric PDEs. As a common benchmark example, we introduce a linear elliptic
PDE with homogeneous Dirichlet boundary data where the solution u(x, y) solves

−∇ · (a(x, y)∇u(x, y)) = f(x), u|∂D = 0. (2)

This equation models the stationary density u(x, y) of a substance diffusing through a medium
with permeability a(x, y) > 0. The parametric coefficient is assumed to be given either by an
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affine representation of the form

a(x, y) = a0(x) +
M∑
m=1

σmam(x)ym with y ∈ Γ = [−1, 1]M , (3)

or by the numerically more involved representation

a(x, y) = exp
(
a0(x) +

M∑
m=1

σmam(x)ym
)

with y ∈ Γ = RM . (4)

In both cases {a0, a1, . . . , aM} is considered to be an orthonormal basis in L2(D) and the
coefficients σm > 0 are assumed to be positive. The parameter y ∈ Γ can be associated with
a random variable y ∼ ρ that determines uncertainty in the porosity of the medium. For the
affine case (3) ρ is chosen to be a uniform distribution ρ = U(Γ) while for the log-normal
case (4) it is chosen to be standard Gaussian ρ = N (0, I). We assume the problem to be
elliptic with high probability (uniform ellipticity assumption), i.e., for a small ε > 0, there exist
constants a, a > 0 such that

P [0 < a ≤ a(x, y) ≤ a <∞] > 1− ε a.s. for (x, y) ∈ D × Γ.

We point out that for most random fields, choosing a finite parameter dimension M is a
required simplifying restriction for the actual computation to become feasible. Adaptive a priori
or a posteriori methods are available to sensibly control this parameter. For the Stochastic
Galerkin method, the affine setting is e.g. examined in [39, 41, 44] and first results with
log-normal coefficients are shown in [42] for reliable residual-based error estimators. Other
numerical methods such as Stochastic Collocation [45, 46] rely on a piori estimators or heuristic
hierarchical indicators.

We employ the variational formulation of problem (2) with respect to a test function v ∈ V,
cf. [39, 41]. It reads

A(u, v) :=
ˆ

Γ

ˆ
D

a(x, y)∇u(x, y) · ∇v(x, y)ρ(y) dx dy

=
ˆ

Γ

ˆ
D

f(x, y)v(x, y)ρ(y) dx dy .

Since V is a Hilbert space, this variational problem can be treated directly by means of the
presented Variational Monte Carlo approach by defining the bilinear form A(u, v), which induces
‖v‖2

A := A(v, v). We then consider the equivalent optimization problem

u = arg min
Φ∈V

1
2‖AΦ− f‖2

V

= arg min
Φ∈V

1
2‖A(Φ− u)‖2

V .

This means that the solution u ∈ V can be obtained by minimizing

J (Φ) := 1
2

ˆ
Γ
‖Φ(y)− u(y)‖2

B(y)ρ(y) dy ,

with the bilinear form B(y) : X × X → R defined by

B(y)(u, v) :=
ˆ
D

a(x, y)∇u(x)∇v(x) dx ,

and ‖v‖2
B(y) := B(y)(v, v).
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To find an appropriate finite dimensional model class, recall that V = H1(D)⊗ L2(Γ, ρ). We
first choose finite dimensional subspaces

XFEM ⊆ X and YI ⊆ Y ,

and consider the discrete solution subspace

VI = XFEM ⊗ YI ⊆ V ,

generated explicitly by the S-dimensional conforming FE space XFEM = span{ϕj}j=1,...,S with
respect to a regular triangulation of the domain D. Since Y = L2(Γ, ρ) exhibits a (countable)
product structure, we can choose YI as the vector space generated by a tensor product basis
of multivariate polynomials with α ∈ I given by

Pα(y) =
M⊗
m=1

Pαm(ym).

Here, the Pαm are orthogonal w.r.t. the marginal distribution ρm and I is a finite subset of∏M
m=1[qm] for given qm ∈ N. Hence, every Φ ∈ VI can be written as

Φ(x, y) = ΦW (x, y) =
S∑
j=1

∑
α∈I

W (j,α)ϕj(x)Pα(y) ,

with coefficient tensor W ∈ RS×q1×···×qM . As described in [1, 41, 47–49], we can represent W
by

W (j,α) = U0(j)U1(α1) · · ·UM(αM) ,
with

U0(j) ∈ Rr0 , j = 1, . . . ,S ,
Ui(αi) ∈ Rri−1×ri , αi = 1, . . . , qi ,

UM(αM) ∈ RrM−1 , αM = 1, . . . , qM ,

for some ranks r0, . . . , rM−1 ∈ N. The set of all coefficient tensors W with prescribed ranks
r = (r0, . . . , rM−1) is denoted byM≤r. We now define the model class by

M = {ΦW ∈ VI : W ∈M≤r} .

Denote by uh(y) the FE solution of B(y)uh(y) = f(y) in XFEM. Then by Galerkin orthogonality
it holds that for all Φ ∈M that

J (Φ) =
ˆ

Γ
‖Φ(y)− u(y)‖2

B(y)ρ(y) dy

=
ˆ

Γ
‖Φ(y)− uh(y)‖2

B(y)ρ(y) dy.

Due to the uniform ellipticity assumption, the norms ‖ • ‖B(y) and ‖ • ‖H1
0 (D) are equivalent

with high probability, i.e.,

a‖ • ‖H1
0 (D) ≤ ‖ • ‖B(y) ≤ a‖ • ‖H1

0 (D) .

We thus can introduce the functional

J̃ (Φ) =
ˆ

Γ
a2‖Φ(y)− uh(y)‖2

H1
0 (D)ρ(y) dy ,
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which is numerically much easier to handle than J (Φ). The corresponding minimum Φ̃ ∈M
is quasi-optimal by the equivalence of the norms, namely

ˆ
Γ
‖Φ̃(y)− u(y)‖2

B(y)ρ(y) dy ≤
ˆ

Γ
a2‖Φ̃(y)− u(y)‖2

H1
0 (D)ρ(y) dy

≤
ˆ

Γ
a2‖Φ∗(M)(y)− u(y)‖2

H1
0 (D)ρ(y) dy

≤
ˆ

Γ

a2

a2‖Φ
∗(M)(y)− u(y)‖2

B(y)ρ(y) dy .

Consequently, it follows with high probability that

‖Φ̃− u‖V ≤
a

a
‖Φ∗(M) − u‖V and ‖Φ̃− u‖A ≤

a

a
‖Φ∗(M) − u‖A .

Finally, in accordance with the proposed framework, this is formulated as empirical functional

J̃N(Φ) := 1
N

N∑
i=1
‖Φ(yi)− u(yi)‖2

H1
0 (D) , (5)

with yi sampled according to the density ρ. The approximations uh(yi) can be obtained
numerically by standard FE methods.

In the present setting, a( • , y) and y are in a one-to-one relation. Thus, the central notion
of this scheme is to learn the solution operator y 7→ a( • , y) 7→ u( • , y) from generated
data u( • , yi). The computation of the data u( • , yi) is completely non-intrusive, meaning that
standard FE solvers can be employed to compute u( • , yi) and perform the optimization of the
mean squared errors in a standard tensor recovery algorithm as described in [50].

Remark 5.1. For numerical reasons it is beneficial to represent the samples in a basis Ψ that
is orthogonal w.r.t. the H1

0 (D) scalar product. If Φ denotes the vector of standard FE basis
functions, every function u ∈ XFEM can be represented by

u(x) = uTΦ(x) = uTΨ(x) ,

where u and u denote the coefficient vectors. Using the stiffness matrix S, the H1
0 (D) scalar

product can then be computed via

(u, v)H1
0 (D) = uTSv = uTv.

This makes obvious that any decomposition S = XTX provides a basis transform X from
Φ to a basis Ψ = X−TΦ satisfying the orthogonality condition. In fact, this allows for the
computation of the H1

0 (D) norm of functions in the FE space more efficiently and provides
numerical stability to the minimization problem (5). Note also that one can use a standard
tensor reconstruction algorithm as in [50] since ‖u‖H1

0 (D) = ‖u‖`2 . However, the resulting tensor
represents the solution w.r.t. the orthogonal basis Ψ and another basis transformation after
optimization is thus required. Moreover, the price for the described efficiency and numerical
stability is a costly and numerically unstable Cholesky factorization of the ill-conditioned stiffness
matrix S.
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5.2. Backward Kolmogorov and Fokker-Planck equations. As another viable application
of our Variational Monte Carlo method, we derive a suitable formulation of the Backward
Kolmogorov and Fokker-Planck equations, which are high-dimensional elliptic PDEs derived
from stochastic processes. Let us consider a Langevin dynamic driven by a gradient field with
a confining potential V : Rd → R, V ∈ C2(Rd), such that V (x) → ∞ for |x| → ∞ and
x 7→ e−V (x) ∈ L1(Rd). We then define the following stochastic differential equations subject
to a stochastic process {Xt}t≥0 with a d-dimensional random variable Xt,

dXt = −grad V (Xt) dt+ σ dWt ,

where {Wt}t≥0 is a standard d-dimensional Wiener process [51]. The probability density p of
finding a particle at position x and time t is governed by the Fokker-Planck (FP) equation

∂

∂t
p = L†p := div((gradV )p) + σ2

2 ∆p .

The formal adjoint of the Fokker-Planck operator leads to the Backward Kolmogorov equation

∂

∂t
u = Lu := − gradV · gradu+ σ2

2 ∆u .

The presented approach can be used to solve an implicit Euler step for the Backward Kolmogorov
equation of the form

(I − hL)uk+1 = uk , (6)

with uk(x) := u(tk,x) and tk := hk.

Remark 5.2. The solution of the corresponding Fokker-Planck equation is given by p(t,x) =
ρ(x)u(t,x) and can thus be computed indirectly by the Variational Monte Carlo method.

Under suitable conditions [52], to solve (6) we consider the equation in a weighted L2 space.
The weight is chosen as the equilibrium density

ρ(x) := 1
Z
e−

2
σ2 V (x) , x ∈ Rd ,

with the normalization constant Z =
´
Rd e

− 2
σ2 V (x) dx which satisfies the stationary equation

L†ρ = 0. The backward Kolmogorov operator L : H1(Rd, ρ) → H1(Rd, ρ) is considered as
acting on the weighted Sobolev space

H1(Rd, ρ) := {u ∈ L2(Rd, ρ) : ∇u ∈ L2(Rd, ρ;Rd)} ,

with the inner product

a(u, v) := 〈∇u,∇v〉L2(Rd,ρ;Rd) + 〈u, v〉L2(Rd,ρ) .

It is straightforward to verify that in this weighted space the backward Kolmogorov operator L
becomes symmetric [52] and that solving equation (6) is equivalent to the minimization of the
cost functional

J (v) := 1
2(〈v, v〉L2(Rd,ρ) + h

σ2

2 〈∇v,∇v〉L2(Rd,ρ;Rd))− 〈uk, v〉L2(Rd,ρ) . (7)
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Theorem 5.3. For all u, v ∈ H1
0 (Rd, ρ) it holds that

〈u,Lv〉L2(Rd,ρ) = −σ
2

2 〈∇u,∇v〉L2(Rd,ρ;Rd) .

As a consequence, L is symmetric w.r.t. the prescribed weighted L2 inner product.

Proof. In the following we denote by 〈 • , • 〉 the L2 inner product and by 〈 • , • 〉ρ the weighted
L2 inner product w.r.t. the weight ρ. Integration by parts and the product rule yield

〈u,Lv〉ρ = σ2

2 〈u, ∆v〉ρ − 〈u, (∇V ) · (∇v)〉ρ

= −σ
2

2 〈∇(uρ),∇v〉 − 〈u, (∇V ) · (∇v)〉ρ

= −σ
2

2 〈∇u,∇v〉ρ −
σ2

2 〈u∇ρ,∇v〉 − 〈u, (∇V ) · (∇v)〉ρ .

Now observe that by definition of ρ,

∇ρ = − 2
σ2 (∇V )ρ .

Substitution concludes the proof. �

Clearly, we can use the Variational Monte Carlo framework to minimize the cost functional (7).
This provides a further striking example for the proposed methodology. The solution of the
eigenvalue problem for the backward Kolmogorov operators including more details about the
operators is considered in a forthcoming paper, which will also contain numerical verifications
of the suggested approach. Another way to obtain a solution of the backward Kolmogorov
equation by deep neural networks is considered in a recent publication [53].

6. Numerical Experiments

This section is concerned with illustrating the performance of the proposed Variational Monte
Carlo approach for a set of benchmark problems with parametric PDEs. To assess the quality
of the resulting approximation of the parametric solution, the error of the expectation and
the variance with respect to a Quasi-Monte Carlo (QMC) reference solution from 106 Sobol
samples is depicted.

The used model classes and cost functionals are defined analogously to Section 5. In the
resulting tensor representation, the high-dimensional integrals (quantities of interest such
as the expectation) can be evaluated efficiently and exactly. The computation of the FE
solution samples is carried out with a standard conforming P1-Galerkin method on the domain
D = (0, 1)2 using the open source FEniCS software package [54]. For the tensor reconstructions
the Block-ASD optimization algorithm described in [50] is employed. A complete implementation
is contained in the open source C++ library xerus [55], which is interfaced in the open source
python framework ALEA [56]. For the reconstruction, a maximal polynomial degree of 12
(affine) and 4 (log-normal) is allowed for each polynomial basis in the stochastic dimensions.
We plot the error progression with respect to the number of reconstruction samples. The rank
is chosen adaptively with an allowed maximum of 40, which for most problems does not impose
a restriction. We prevent excessive rank increases by allowing each rank to increase only once
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Figure 1. PDE setting (I): TT reconstruction error of the expectation (“Reco”)
compared to MC and QMC simulations (left). Additionally the average relative
error for a random set of 1000 samples not used for the reconstruction is shown
(“Error”). TT reconstruction error of the variance compared to MC and QMC
simulations (right).

every 10 iterations. For the experiments, we follow and extend our previous work [50] and use
the same optimization algorithm for the tensor reconstruction.

6.1. Parametric PDEs. We consider parametric second order PDEs in the context of UQ as
described in Section 5. The model for the coefficient a(x, y) is given by

a(x, y) := a0(x) +
M∑
m=1

σmam(x)ym.

Here, a0 determines the mean field, which is set to 1 if not stated otherwise, and am(x) ∝
m−2 sin(bm+2

2 cπx1) sin(dm+2
2 eπx2). This choice corresponds to the slow decay experiments

e.g. in [39, 40] but with a larger scaling factor of the modes.

The examined examples are defined by the following PDEs with homogeneous Dirichlet boundary
conditions and a(x, y) expanded in M = 20 terms1. The relative errors for the expectation
value and variance obtained by the reconstruction are compared to Monte Carlo and Quasi
Monte Carlo simulations in Figures 1-4.

(I) Diffusion (affine)

−∇ · (a(x, y)∇u(x, y)) = 1 with y ∼ U([−1, 1]M)

(II) Diffusion (lognormal, a0 ≡ 0)

−∇ · (exp(a(x, y))∇u(x, y)) = 1 with y ∼ N (0, IM)

(III) Nonlinear Diffusion (affine)

−∇ ·

(a(x, y)
10 + u(x, y)

)2

∇u(x, y)
 = 1 with y ∼ U([−1, 1]M)

1Note that the parameter vector y is the image of a random variable and hence is associated to a probability
distribution but (despite the inaccurate notation) not actually a random quantity.
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Figure 2. PDE setting (II): TT reconstruction error of the expectation (“Reco”)
compared to MC and QMC simulations (left). Additionally the average relative
error for a random set of 1000 samples not used for the reconstruction is shown
(“Error”). TT reconstruction error of the variance compared to MC and QMC
simulations (right).
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Figure 3. PDE setting (III): TT reconstruction error of the expectation (“Reco”)
compared to MC and QMC simulations (left). Additionally the average relative
error for a random set of 1000 samples not used for the reconstruction is shown
(“Error”). TT reconstruction error of the variance compared to MC and QMC
simulations (right).

(IV) Convection-Diffusion (affine, SUPG stabilized FEM)
−∇ · (κ∇u(x, y)) + β · ∇u(x, y) = 1,

with κ = 10−2 and β =
(
1− a(x, y) 1− |a(x, y)|

)ᵀ
.

The examples demonstrate that the suggested approach can be sucessfully applied to linear
and non-linear PDE problems alike. In Figures 1 to 4, the relative errors for the expectation
and variance obtained by the tensor reconstruction are compared to Monte Carlo simulations.
We emphasize again that the tensor reconstruction in fact represents the entire stochastic
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Figure 4. PDE setting (IV): TT reconstruction error of the expectation (“Reco”)
compared to MC and QMC simulations (left). Additionally the average relative
error for a random set of 1000 samples not used for the reconstruction is shown
(“Error”). TT reconstruction error of the variance compared to MC and QMC
simulations (right).

parametric solution u(x, y) ∈ V from which the first two moments are evaluation in order to
compare the approximation quality with classical methods, which only allow for an evaluation
of functionals. As a consequence, in principle arbitrary statistical quantities can be obtained
globally and locally from the tensor representation of u(x, y) (e.g. pointwise densities).

In all cases we observe that the presented approach provides significantly better results for the
expectation than Monte Carlo sampling. It is striking that for the Darcy examples, this even
holds when compared with the QMC simulations. The log-normal case (II) is considered as
rather involved and the observed results are quite ecouraging. We note that the pointwise error
(“Error”), which represents the approximation quality of the actual parametric solution (not
just a functional), is also small.

For the complicated settings (III) and (IV) with either non-linear x-dependence or explicit
non-linear y-dependence, the QMC results are slightly better for the first two moments when
compared to the tensor reconstruction. Nevertheless, the relative errors are of the same order
of magnitude. A good indication for the large variance of the solution manifold is the now
larger pointwise “Error”. However, it should be noted that this is still quite accurate for the
types of problems considered here. It can be expected that a sensible increase of the tensor
ranks, the polynomial degree and the number of samples used for the reconstruciton would
lead to even better results.

6.2. Cookie Problems. In this section, in order to examine a different type of setup with
inherently finite-dimensional noise, we consider two so-called “cookie problems”. With these,
circular inclusions of fixed or random size and with different random diffusion coefficients are
prescribed.

(V) Diffusion (fixed radii) Let 9 subdomains of D be given by discs Dk (k = 1, . . . , 9) with
fixed radius r = 1/8 and centers c =

(
i/6 j/6

)ᵀ
for i, j ∈ {1, 3, 5}. The considered

DOI 10.20347/WIAS.PREPRINT.2544 Berlin 2018



M. Eigel, R. Schneider, P. Trunschke, S. Wolf 20

10−6

10−5

10−4

10−3

10−2

10−1

100

0 2500 5000 7500 10000

Re
la

tiv
e

er
ro

r

Number of Samples N

MC
QMC

Reco
Error

10−6

10−5

10−4

10−3

10−2

10−1

100

0 2500 5000 7500 10000

Re
la

tiv
e

er
ro

r

Number of Samples N

MC
QMC

Reco

Figure 5. PDE setting (V): TT reconstruction error of the expectation (“Reco”)
compared to MC and QMC simulations (left). Additionally the average relative
error for a random set of 1000 samples not used for the reconstruction is shown
(“Error”). TT reconstruction error of the variance compared to MC and QMC
simulations (right).

problem depends on y =
(
y1 . . . y9

)ᵀ
with yk ∼ U(−1, 1), has homogeneous

Dirichlet boundary conditions and is given by

−∇ · (κ(x, y)∇u(x, y)) = 1,

where κ|D\∪k=1,...,4Dk = 1 and κ|Dk = yk.
(VI) Diffusion (random radii) The setting is the same as before. However, the problem de-

pends on additional parameters y∗ =
(
y∗10 . . . y∗18

)ᵀ
with y∗j ∼ U(−1, 1) determining

the radii rj = (1 + y∗j/3)/3 of the inclusions j = 10, . . . , 18.

The relative errors for the expectation value and variance obtained by the reconstruction are
compared to (Quasi) Monte Carlo simulations in Figures 5-6. As before, the tensor reconstruction
yields significantly more accurate results (fixed radii) or at least errors comparable to the QMC
simulations. This is especially noteworthy since setting (VI) clearly exhibits no tensor structure.
When compared to the simpler PDE setting (V), all depicted results apparently indicate a much
more difficult problem.

7. Assessment and Outlook

The analysis in this paper is based on known results from statistical learning, which we scrutinize
from the perspective of UQ and high-dimensional PDEs. Central references for our exposition
are [29, 30] with additional relations to the theory of Chervonenkis & Vapnik. We consider
the presented treatise as an initial step in this direction with rigorous error estimates but
with many remaining open questions. Numerical experiments show that the pursued strategy
provides a promising approach for solving high-dimensional PDEs and problems in UQ. A
notable observation is that the achieved accuracy often is significantly better than what could
be expected from the theoretical estimates. This raises the question if there are ways to
improve the derivations for the problems under consideration. In particular, we have shown
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Figure 6. PDE setting (VI): TT reconstruction error of the expectation (“Reco”)
compared to MC and QMC simulations (left). Additionally the average relative
error for a random set of 1000 samples not used for the reconstruction is shown
(“Error”). TT reconstruction error of the variance compared to MC and QMC
simulations (right).

that for model classes in finite dimensional vector spaces the generalization error behaves like
N ∈ O(ε−2 ln ε). In fact, in the presence of noise in the input data, we should not expect major
improvements. However, in the present setting, we are mainly interested in the noise-free case2,
since the samples are only used to approximate an integral. In a series of recent publications [13,
57] it was shown that in this case one can achieve the (almost) best approximation rate in
`∞ with high probability for the approximation of problems like in this work. The authors
considered linear model classes of (orthogonal) polynomials in Rd and the least squares loss
function. Convergence is guaranteed by bounding the condition number of the Gram matrices.
Using recent results of Chernóv type it can be shown that this holds for different types of
polynomials high probability. A related analysis in the context of regression with sparse grids
can be found in [32].

When compared to the works of Cucker et al., the analytical approach of Cohen et al. is
in line with the fundamental theory of numerical methods for elliptic partial differential
equation, manifested e.g. in Finite Elements [58] and projection methods [59]. Broadly speaking,
convergence follows from stability together with consistency. Therefore, the approach of these
authors is rooted mathematically in numerical analysis and based on a stability result, which in
principle is an inf-sup condition [60], but limited to linear models.

We believe that this is an intriguing ansatz, which could also be adopted to non-linear model
classes and empirical functionals, allowing for an explanation of our empirical observations. A
way to extend the present results may be to formulate a corresponding RIP (restricted isometry
property) condition for non-linear model classes due to which stability would follow immediately.
This is e.g. common in the area of compressed sensing. From this perspective we conjecture
that under the assumption of a RIP condition, the solution can be reconstructed exactly for a
rather general set of model classes. This then allows for better estimates of the total error than

2i.e. “noise” in the samples is only due the numerical approximation
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what is achieved with the techniques used in this work. We defer an extended treatment of
these ideas to forthcoming work. Nevertheless, the presented theory already provides a robust
and versatile framework which guarantees convergence and is not restricted to linear models
classes although the results appear to be too pessimistic for data with small noise.

We would like to point out that the condition `(Φ)(x) ≤ C a.e. ∀Φ ∈M also asserts a certain
kind of stability. However, in many cases it not easy to immediately show that this condition
holds. In the case of RKHS, this estimate is guaranteed by the assumption ‖Φ‖K ≤ R. If
no regularization of a similar kind is invoked, it is not even clear for linear models that this
condition holds. For example, this assumption can be violated in finite dimensional spaces if
the dimension is larger than the number of samples.

In this article we neglect the optimization task, which otherwise raises many further question
like the convergence to a global minimum and the complexity of the employed algorithm. Both
aspects are of major importance for our PDE setting since the best approximation problem
on tensor manifolds exhibits many local minima and is delicate with respect to computational
complexity by its high-dimensional nature. In high-dimensional empirical risk minimization,
variance reduced stochastic gradient methods [61–63] are established as a standard but an
efficient adaptation to tensor networks is not straightforward. In the implementations it is
also of interest to explore the possibility of importance sampling techniques (that may also
be used to adaptively modify the sampling density) [14, 15] and of size adaptive sampling
strategies [64, 65]. Moreover, recent experiences in the deep learning setting indicate that
for highly non-convex models, stochastic gradient updates have an advantageous effect on
the generalization error. This important issue is not understood yet and it is not clear how it
impacts solving high-dimensional PDEs where the noise level is relatively low and the required
accuracy is relatively high.

In order to render the presented approach more relevant for practical applications, adaptive
strategies will have to be devised, which automatically steer the discretization parameters
depending on the considered problem. Since the derived a priori bounds are quite pessimistic,
they are inappropriate to yield an indication of the required sample number N . Moreover, in
initial iterations, one does not need a very good approximation of the functional, which leaves
some freedom to numerical methods.

To sketch some first ideas, recall that for given Φ ∈M it holds E[|J (Φ)−JN(Φ)|] ≤ C4
1

N2 . This
provides a crude bound for the error of the approximation of the cost functional. Since optimizing
JN becomes more difficult with every sample and numerical (non-convex) optimization is
bound to errors, we argue that we can start with a relatively small set of samples and increase
the sample size dynamically. This conjecture is confirmed in numerical experiments in Section 6.
The reasoning is that if the optimization algorithm converges with order O(k−1) on J , we
want the error |J − JN | to be at least of the same order in some sense3. However, this bound
for E[E(Φ)] cannot be used to choose N since the constants are unknown. To still use this a
posteriori bound, one could assume a minimization algorithm which converges with rate k−1

(where k is the iteration number). One can then choose a sequence Nk s.t. the error in the
approximation E[E(Φ)(Nk)] ∈ O(k−1) vanishes as quickly as the error of the optimization.

3such as with respect to the expectation as derived above
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Additionally, with the employed FE solution samples, an a posteriori error control of the
approximation error can be achieved easily. If the approximation error is defined as the
expectation of the energy error, an averaging of pathwise standard FE error estimators yields a
sensible a.s. reliable error estimation for an adaptive mesh refinement procedure. The efficacy
of this approach was presented in [66] for goal-oriented error control.
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