762 research outputs found

    Effects of Automation on Aircrew Workload and Situation Awareness in Tactical Airlift Missions

    Get PDF
    In tactical aviation, decision superiority brought upon by high situation awareness remains the arbiter of combat effectiveness. The advancement of sophisticated avionics and highly automated cockpits has allowed for the reduction of aircrew size, and in certain platforms, removal of the crew from the aircraft entirely. However, these developments have not reduced the complex and dynamic interaction between situation awareness and crew workload. While many predictive and experimental methods of evaluating workload exist, situation awareness can only be measured by conducting trials with human operators in a functional prototype. This thesis proposes an innovative methodology to predicatively determine situation awareness potential with discrete-event simulation software. This methodology measures situation awareness as both a function of task accomplishment and workload experienced. Utilizing two common but complex tactical scenarios, this method and existing workload measurement techniques can derive a direct comparison between a reduced-crew highly automated cockpit and a less automated legacy aircraft. Finally, conclusions regarding the effectiveness of replacing human operators with automation in tactical events can be made and tested in future experiments with actual aircraft and aircrews

    Automation in aviation

    Get PDF

    Aeronautical Engineering: A special bibliography with indexes, supplement 72, July 1976

    Get PDF
    This bibliography lists 184 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1976

    Human factors of flight-deck checklists: The normal checklist

    Get PDF
    Although the aircraft checklist has long been regarded as the foundation of pilot standardization and cockpit safety, it has escaped the scrutiny of the human factors profession. The improper use, or the non-use, of the normal checklist by flight crews is often cited as the probable cause or at least a contributing factor to aircraft accidents. An attempt is made to analyze the normal checklist, its functions, format, design, length, usage, and the limitations of the humans who must interact with it. The development of the checklist from the certification of a new model to its delivery and use by the customer are discussed. The influence of the government, particularly the FAA Principle Operations Inspector, the manufacturer's philosophy, the airline's culture, and the end user, the pilot, influence the ultimate design and usage of this device. The effects of airline mergers and acquisitions on checklist usage and design are noted. In addition, the interaction between production pressures and checklist usage and checklist management are addressed. Finally, a list of design guidelines for normal checklists is provided

    Usability Evaluation of Indicators of Energy-Related Problems in Commercial Airline Flight Decks

    Get PDF
    A series of pilot-in-the-loop flight simulation studies were conducted at NASA Langley Research Center to evaluate indicators aimed at supporting the flight crews awareness of problems related to energy states. Indicators were evaluated utilizing state-of-the-art flight deck systems such as on commercial air transport aircraft. This paper presents results for four technologies: (1) conventional primary flight display speed cues, (2) an enhanced airspeed control indicator, (3) a synthetic vision baseline that provides a flight path vector, speed error, and an acceleration cue, and (4) an aural airspeed alert that triggers when current airspeed deviates beyond a specified threshold from the selected airspeed. Full-mission high-fidelity flight simulation studies were conducted using commercial airline crews. Crews were paired by airline for common crew resource management procedures and protocols. Scenarios spanned a range of complex conditions while emulating several causal factors reported in recent accidents involving loss of energy state awareness by pilots. Data collection included questionnaires administered at the completion of flight scenarios, aircraft state data, audio/video recordings of flight crew, eye tracking, pilot control inputs, and researcher observations. Questionnaire response data included subjective measures of workload, situation awareness, complexity, usability, and acceptability. This paper reports relevant findings derived from subjective measures as well as quantitative measures

    A review of important cognitive concepts in aviation

    Get PDF
    Even considering the current low accident rate in aviation, the anticipated growth in the number of airplanes in the air in the next decades will lead to an inadmissible rise in the number of accidents. These have been mostly attributed to human error and a misunderstanding of automation by the crew, especially during periods of high workload and stress in the cockpit. Therefore, increased safety requires not only advances in technology, but improved cockpit design including better human-machine interface. These cannot be achieved however, without considering some of the cognitive constructs that affect the behaviour of pilots in the cockpit. In fact, given its characteristics and public visibility, the flight deck of commercial jets is one of the most common arenas for the study of complex and skilled human performance. Here I present a literature review on the selected topics of workload, situation awareness, stress and automation in the cockpit, with the goal of supporting the development of new technologies

    Multimodal Analysis of Pilot’s Fatigue During a Multi-Phase Flight Mission

    Get PDF
    One troubling threat to successful flight missions is attributed to fatigue induced and errors. Therefore, discovering effective methods to assess fatigue has been a major topic discussed by professional pilots and aviation experts. Fatigue is a major human factor related issue in aviation and currently subject to increased discussion by aviation administrations and professional pilots. Therefore, effective assessment of fatigue will provide opportunities to reduce the risk of fatigue-induced errors. Currently available subjective measures that assess fatigue can be somewhat affected by external and internal factors, that might cause biased judgment. Therefore, Psychomotor Vigilance Task (PVT), which provides objective measures, can be a viable approach to measure fatigue. In addition, eye movement analysis might augment the fatigue assessment, because eye movement analysis is an unobtrusive approach that does not require direct contact with the participant and can be measured for a long duration. However, it is unknown how eye movement characteristics are correlated with fatigue. In this research, a multi-modal fatigue measurement framework was developed by combining the PVT analysis with eye movement analysis. In detail, PVT measures (i.e., reaction time, lapses & false starts) and eye movement characteristics (i.e., eye fixation duration, pupil size, number of eye fixations, gaze entropy) were measured to determine pilots’ fatigue level under different flight conditions. The results show that significant correlations exist among the eye movement characteristics and the PVTs measures. The proposed multi-modal approach show promise on evaluating pilot fatigue in near real time, which in turn might enable timely recovery interventions

    Designing Flightdeck Procedures: Literature Resources

    Get PDF
    This technical publication contains the titles, abstracts, summaries, descriptions, and/or annotations of available literature sources on procedure design and development, requirements, and guidance. It is designed to provide users with an easy access to available resources on the topic of procedure design, and with a sense of the contents of these sources. This repository of information is organized into the following publication sources: Research (e.g., journal articles, conference proceedings), Manufacturers' (e.g., operation manuals, newsletters), and Regulatory and/or Government (e.g., advisory circulars, reports). An additional section contains synopses of Accident/Incident Reports involving procedures. This work directly supports a comprehensive memorandum by Barshi, Mauro, Degani, & Loukopoulou (2016) that summarizes the results of a multi-year project, partially funded by the FAA, to develop technical reference materials that support guidance on the process of developing cockpit procedures (see "Designing Flightdeck Procedures" https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160013263.pdf). An extensive treatment of this topic is presented in a forthcoming book by the same authors
    • …
    corecore