308 research outputs found

    The Computational Structure of Spike Trains

    Full text link
    Neurons perform computations, and convey the results of those computations through the statistical structure of their output spike trains. Here we present a practical method, grounded in the information-theoretic analysis of prediction, for inferring a minimal representation of that structure and for characterizing its complexity. Starting from spike trains, our approach finds their causal state models (CSMs), the minimal hidden Markov models or stochastic automata capable of generating statistically identical time series. We then use these CSMs to objectively quantify both the generalizable structure and the idiosyncratic randomness of the spike train. Specifically, we show that the expected algorithmic information content (the information needed to describe the spike train exactly) can be split into three parts describing (1) the time-invariant structure (complexity) of the minimal spike-generating process, which describes the spike train statistically; (2) the randomness (internal entropy rate) of the minimal spike-generating process; and (3) a residual pure noise term not described by the minimal spike-generating process. We use CSMs to approximate each of these quantities. The CSMs are inferred nonparametrically from the data, making only mild regularity assumptions, via the causal state splitting reconstruction algorithm. The methods presented here complement more traditional spike train analyses by describing not only spiking probability and spike train entropy, but also the complexity of a spike train's structure. We demonstrate our approach using both simulated spike trains and experimental data recorded in rat barrel cortex during vibrissa stimulation.Comment: Somewhat different format from journal version but same conten

    Intelligent Learning Automata-based Strategies Applied to Personalized Service Provisioning in Pervasive Environments

    Get PDF
    Doktorgradsavhandling i informasjons- og kommunikasjonsteknologi, Universitetet i Agder, Grimstad, 201

    Learning algorithms for adaptive digital filtering

    Get PDF
    In this thesis, we consider the problem of parameter optimisation in adaptive digital filtering. Adaptive digital filtering can be accomplished using both Finite Impulse Response (FIR) filters and Infinite Impulse Response Filters (IIR) filters. Adaptive FIR filtering algorithms are well established. However, the potential computational advantages of IIR filters has led to an increase in research on adaptive IIR filtering algorithms. These algorithms are studied in detail in this thesis and the limitations of current adaptive IIR filtering algorithms are identified. New approaches to adaptive IIR filtering using intelligent learning algorithms are proposed. These include Stochastic Learning Automata, Evolutionary Algorithms and Annealing Algorithms. Each of these techniques are used for the filtering problem and simulation results are presented showing the performance of the algorithms for adaptive IIR filtering. The relative merits and demerits of the different schemes are discussed. Two practical applications of adaptive IIR filtering are simulated and results of using the new adaptive strategies are presented. Other than the new approaches used, two new hybrid schemes are proposed based on concepts from genetic algorithms and annealing. It is shown with the help of simulation studies, that these hybrid schemes provide a superior performance to the exclusive use of any one scheme

    Existence of Multiagent Equilibria with Limited Agents

    Full text link
    Multiagent learning is a necessary yet challenging problem as multiagent systems become more prevalent and environments become more dynamic. Much of the groundbreaking work in this area draws on notable results from game theory, in particular, the concept of Nash equilibria. Learners that directly learn an equilibrium obviously rely on their existence. Learners that instead seek to play optimally with respect to the other players also depend upon equilibria since equilibria are fixed points for learning. From another perspective, agents with limitations are real and common. These may be undesired physical limitations as well as self-imposed rational limitations, such as abstraction and approximation techniques, used to make learning tractable. This article explores the interactions of these two important concepts: equilibria and limitations in learning. We introduce the question of whether equilibria continue to exist when agents have limitations. We look at the general effects limitations can have on agent behavior, and define a natural extension of equilibria that accounts for these limitations. Using this formalization, we make three major contributions: (i) a counterexample for the general existence of equilibria with limitations, (ii) sufficient conditions on limitations that preserve their existence, (iii) three general classes of games and limitations that satisfy these conditions. We then present empirical results from a specific multiagent learning algorithm applied to a specific instance of limited agents. These results demonstrate that learning with limitations is feasible, when the conditions outlined by our theoretical analysis hold
    • …
    corecore