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To our heterogeneous most relevant ones.

An important scientific innovation rarely makes its way by gradually

winning over and converting its opponents: What does happen is that the

opponents gradually die out.

Max Plank
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Foreword

As Schumpeter pointed out long ago, conceptual frameworks, models and

policy prescriptions are embedded in the economist’s “preanalytic vision” of

the economy. And preanalitc visions have been and still are very different in

the profession.

Nowadays the majority of the profession embraces the Neoclassical ap-

proach to economic behavior according to which agents are endowed with

substantial rationality, adopt optimal rules, interact indirectly through the

price vector on markets which are continuously in equilibrium. This ap-

proach has been extraordinarily fruitful, as it has allowed to build models

that can be solved analytically and yield clearcut policy implications. The

obvious case in point is Walras’ theory of General Equilibrium, beautifully

outlined in his Elements d’Economie Politique and elegantly extended and

refined by Arrow and Debreu. Moreover, the approach has been remarkably

flexible. Appropriately designed variants of the Neoclassical approach have

been applied to economies characterized by imperfect competition, imperfect

information, strategic interaction, heterogeneous agents. The most insightful

of these theoretical developments have been incorporated in micro-founded

macroeconomic models of the New Neoclassical Synthesis that have been all

the rage during the years of the Great Moderation.

However, the capability of the Neoclassical approach to encompass and
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explain all the complex details of economic life has reached a limit. For

instance it is now abundantly clear that the Neoclassical approach is not

well suited to describe the Global Financial Crisis and the Great Recession.

In models of the New Neoclassical Synthesis, in fact, a great recession may

be explained only by a large aggregate negative shock, whose probability is

extremely low (it is an extreme and rare event). This mechanism does not

clarify much of the crisis and does not help much in devising appropriate

remedies.

The current predicament, both in the real world and in the public debate,

resembles the early ’30s of last century. The way out of the Great Depression

in the ’30s required a new economic theory and the II World War. 1 Luckily,

in order to escape the current predicament we can dispense at least with the

latter. We still need, however, to reshape the way in which we think about

the economy.

For several years now, a Complexity approach has been developed which

conceives the economy as a complex system of heterogeneous interacting

agents characterized by limited information and bounded rationality. In this

view, a “crisis” is a macroscopic phenomenon which spontaneously emerges

from the web of microscopic interactions. Agent Based Models (ABMs) are

the analytical and computational tools necessary to explore the properties of

a complex economy.

Agent-based macroeconomics is still in its infancy but it is undoubtedly a

very promising line of research. So far only a small minority in the economic

profession has adopted this approach. This may be due to the“wait and

see” attitude of those who want to see the approach well established in the

1The unemployment rate, which peaked at 1/4 of the labour force during the Great
Depression, went back to the long run “normal” of around 1/20 only after the end of the
war. The huge increase in Government spending due to the war effort helped to absorb
the unemployment generated by the Great Depression.
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profession before embracing it. The hesitation, however, may also come

from methodological conservatism. For instance, while in other disciplines

the explanatory power of computer simulations is increasingly recognized,

most economists remain dismissive of any scientific work that is not based

on strict mathematical proof.2 With the passing of years, however, AB tools

have been refined. This book is a guide to the main issues which an interested

reader may encounter when approaching this field. We hope this will help in

nudging a new generation of curious minds to explore the fascinating field of

complexity.

Thanks to Leonardo Bargigli, Giovanni Dosi, Bruce Greenwald, Alan Kir-

man, Roberto Leombruni, Antonio Palestrini, Joe Stiglitz....

Our post docs.

This book benefited from funding from the European Community’s Sev-

enth Framework Programme (FP7/2007-2013), grants agreements n. xxx

(CRISIS), n. xxx (NESS), n.xxx (MATHEMACS) and INET.

2A recent intriguing line of research aims at providing analytical solutions to multi-
agent systems adopting the apparatus of statistical mechanics, e.g. the Fokker-Planck
equations. See, for instance, M. Aoki (2011), Di Guilmi (2016).
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Chapter 1

Introduction

Domenico Delli Gatti and Mauro Gallegati

1.1 Hard times for Dr. Pangloss

High and persistent unemployment, over-indebtedness and financial instabil-

ity, bankruptcies, domino effects and the spreading of systemic risk: These

phenomena have taken center stage in the light of the Global Financial Crisis.

By construction, the Neoclassical approach is much better suited to study

the features of the world of Dr Pangloss (Buiter, 1980) than the intricacies

of a complex, financially sophisticated economy. This point is well taken

in the introduction of a seminal paper by Bernanke, Gertler and Gilchrist

published well before the Global Financial Crisis: “How does one go about

incorporating financial distress and similar concepts into macroeconomics?

While it seems that there has always been an empirical case for including

credit-market factors in the mainstream model, early writers found it dif-

ficult to bring such apparently diverse and chaotic phenomena into their

formal analyses. As a result, advocacy of a role for these factors in aggre-
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gate dynamics fell for the most part to economists outside the US academic

mainstream, such as Hyman Minsky, and to some forecasters and financial

market practitioners.” (Bernanke, 1999, p.1344).

This candid admission by three among the most distinguished macro-

economists (one of them destined to be Chairman of the Federal Reserve for

eight long and turbulent years) – which incidentally provides a long overdue

implicit tribute to Hyman Minsky – provides also the research question for

a model of the financial accelerator which has started a non-negligible body

of literature in contemporary macroeconomics.

In order to put this development in macroeconomic thinking into context,

it is necessary to recall that any mainstream macroeconomic model is based

on a Dynamic Stochastic General Equilibrium (DSGE) skeleton, which can

support either a Real Business Cycle model or a New Keynesian (NK) model.

The latter differs from the former because of the presence of imperfections,

the most important being imperfect competition and nominal rigidity. The

structural form of the standard NK-DSGE framework boils down to a “three

equation” model consisting of an optimizing IS equation, a NK Phillips curve

and a monetary policy rule based on changes in the interest rate.

The NK-DSGE framework is of course too simple and therefore inade-

quate to analyze the emergence of a financial crisis and a major recession for

the very good reason that neither asset prices nor measures of agents’ finan-

cial fragility show up anywhere in the model. In order to make the model

operational from this viewpoint, financial frictions have been incorporated

into the basic model in one way or another.

In the last decade we have witnessed an explosion of models with this type

of frictions. The “story” that can be attached to this literature, however, can

be told in simple terms. A negative shock which triggers a recession yields
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a reduction of firms’ internaly generated funds. Borrowers need more funds

but lenders are less willing to supply loans as the value of firms’ collateral is

also going down. Hence firms might be forced to scale activity down. This

in turn will lead to lower cash flow, and to a further deceleration of activity.

The financial accelerator provides a mechanism of amplification of an

aggregate shock (i.e. a positive feedback or a self-reinforcing mechanism)

based on financial factors. By construction, however, it cannot be a model

of the origin of a financial crisis and the ensuing recession.

As in all DSGE models, in fact, also in models characterized by financial

frictions a fluctuation is determined by an aggregate shock (an impulse)

and is channeled to the economy by a propagation mechanism. Moreover,

the stability of the steady state makes fluctuations persistent but relatively

short lived. Therefore, a great recession may be explained only by a sizable

aggregate negative shock and is bound to disappear relatively soon. Recent

models incorporating financial frictions trace back the great recession to a

major negative shock (possibly of a new type: an “investment shock”, a

“financial shock” instead of the usual Total Factor Productivity shock) which

spreads through the economy and becomes persistent because of the financial

amplification but is temporary so that the economy goes back to equilibrium

in due time.

This view of the Global Financial Crisis is not convincing. It does not pro-

vide a plausible theory of its origin, since the crisis was not the consequence

of a global shock but originated from a small segment of the US financial

system (the subprime loans market) and spread to the entire US financial

system and to the world economy. Moreover, it does not provide an appro-

priate characterization of the actual recovery, which has been unusually long
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and painful.1 In fact, during the recession, quantitative forecasts of future

GDP growth (also at a very short time horizon) generated by these models

systematically overestimated actual GDP growth.

The financial accelerator story is intriguing but is not enough to charac-

terize a major crisis. Models with financial frictions yield interesting results

but their scope is necessarily limited because of the built in features of the

DSGE framework. This framework in fact abstracts from the complex web of

financial and real relationships among heterogeneous agents that characterize

modern financially sophisticated economies and are at the root of the spread-

ing of financial fragility economywide. Contemporary macroeconomics, in

other words, has assumed away most of the features of the economy which

are relevant today.

1.2 The Complexity View

For several years now, a different approach has been developed which con-

ceives the macro-economy as a complex system of heterogeneous agents char-

acterized by bounded rationality, endowed with a limited and incomplete

information set, interacting directly and indirectly with other agents and the

environment.

In a complex economy, an idiosyncratic shock – i.e., a shock to a specific

agent – can well be the source of an epidemic diffusion of financial distress.

In other words, idiosyncratic shocks do not cancel out in the aggregate, espe-

cially if the macro-economy is characterized by an underlying network struc-

ture and the idiosyncratic shocks hit crucial nodes of the network. Therefore

1The idea of a “secular stagnation” pioneered by L. Summers, which is gaining ground
in the profession, is based exactly on the unusual length and painfulness of the recovery
from the Great Recession.
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a recession may not be caused only by an aggregate shock.

To be specific, in a credit network the financial accelerator can lead to an

avalanche of bankruptcies, due to the positive feedback of the bankruptcy of

a single agent on the net worth of the ”neighbours”, linked to the bankrupt

agent by credit relationship. This is of course ruled out by construction in a

framework with a representative firm and a representative bank.

In order to deal with these issues, one has to start with a population

of heterogeneous agents. Heterogeneity, therefore, is key in modelling the

phenomena which we want to investigate.

1.3 Heterogeneity in a Neoclassical world

The way in which financial frictions have been incorporated in current macroe-

conomic models provides an example of a recurrent pattern in the develop-

ment of contemporary macroeconomics. Research issues brought to the fore

by new macroeconomic facts are incorporated into an analytical edifice based

on Neoclassical foundations by means of appropriate twists of some assump-

tions or by additional assumptions, as epicycles in Ptolemaic astronomy.

This is the way in which “normal science” (in Kuhn’s wording) adjusts to

real macroeconomic developments. In this way, there is nothing truly new

under the sun.2

Heterogeneity has been incorporated in Neoclassical models since the

early ’90s of last century. This is an impressive achievement as the Neo-

classical approach is utterly unsuitable for the study of this issue. In a

Neoclassical Representative Agent-Rational Expectations world, equilibrium

prices depend on a relatively small number of state variables and shocks.

2As Max Planck put it: “Normal science does not aim at novelties of fact or theory
and, when successful, finds none.”
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Forming Rational Expectations of future prices in such an environment is a

daunting but not impossible task, as the Representative Agent in the model

has the same information of the modeller herself, the “true” model of the

economy included (at least in reduced form).

Things are much more complicated in a multi-agent setting. In this case

equilibrium prices are in principle a function of the entire distribution of

agents (e.g., households’ wealth). Hence, to form expectations agents need

to know the entire distribution at each point in time, i.e., the law of motion

of this distribution. An impossible task. This is the well known “curse of

dimensionality”.3

Neoclassical Heterogeneous Agents Models have been developed in order

to study the causes and consequences of income and wealth inequality in a

DSGE framework.4

The seminal papers by Imrohoroglu, Hugget, Aiyagari essentially relax

only the Representative Agent assumption (and only as far as households

are concerned) but generally retain all the other conceptual building blocks

of DSGE models (intertemporal optimization, continuous market clearing

and general equilibrium).5

In Aiyagari (1994) households are heterogeneous because of idiosyncratic

shocks to earnings. If the markets were complete, these shocks would be

insurable and therefore they would not impinge on average or aggregate con-

3One possible way out is to keep the number of agents low, i.e. to reduce the di-
mensionality of the problem, e.g. two types of agents. An example, among many, is the
NK-DSGE framework with Limited Asset Market Participation, where households can
be either free to access financial markets or financially constrained. In the latter case
households cannot smooth consumption by borrowing and lending.

4These models are also known as Bewley models (according to the terminology pro-
posed by Ljungqvist (2004)) or Standard Incomplete Markets models (Heathcote (2009)).
Notice that Heterogeneous Agents and Incomplete Market go hand in hand, for the reasons
which will become clear momentarily.

5See Rios-Rull (1995) for a review of early work in this area.
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sumption (they would wash out in the aggregate).6 Under these circum-

stances the long run or “equilibrium” distribution of wealth would be both

indeterminate and irrelevant (because any distribution of wealth would yield

the same average behaviour).

If markets were incomplete, on the contrary, the possibility to insure

against idiosyncratic risk would be limited and therefore: (i) idiosyncratic

risk would impact on consumption (and macroeconomic performance), (ii)

the equilibrium distribution of wealth would be determinate. In particular

in Aiyagari’s model, inequality yields precautionary savings which impact

positively – through investment – on growth.

Research in this field has been extended at least in three directions: (1)

the analysis of other sources of heterogeneity (besides idiosyncratic shocks

to earnings), e.g. innate characteristics; (2) the analysis of additional ways

to insure idiosyncratic shocks; (3) the impact on aggregate fluctuations (see

Heathcote, 2009). Focusing on third line, we will single out the pioneering

paper by Krusell and Smith (Krusell, 1998) as typical of the approach.

Krusell and Smith circumvent the curse of dimensionality in a very smart

way. They summarize the shape of the agents’ distribution by means of a

finite number of its moments. In this way they can abstract from the actual

distribution and be as precise as they wish in describing its shape: The larger

the number of moments considered, the more granular the description of the

6Completeness and homothetic preferences imply a linear relationship between con-
sumption and wealth at the individual level, i.e. Engel curves are linear. In this case,
perfect approximation applies: average consumption will be a linear function of average
wealth. Only the first moment of the distribution of wealth is necessary to determine
average (and aggregate) consumption. Heterogeneity, as captured by the variance and
higher moments of the distribution, is irrelevant. Of course this is no longer true if the
relationship between consumption and wealth at the individual level is non linear. If the
relationship were concave, for instance, an increase in the dispersion of wealth would lead
to lower consumption on average – thanks to Jensen inequality – even if the mean were
preserved.
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distribution. For simplicity, they use only two moments. The 1st moment

(mean) captures the central tendency of the distribution, the 2nd moment

(variance) captures the dispersion, one aspect of the degree of heterogeneity

characterizing the distribution. When dispersion is low, the mean of the

distribution is almost sufficient to describe the distribution itself. Therefore

higher moment(s) of the distribution can be safely ignored and one can think

of the economy “as if” it were a Representative Agent world, identified with

the Average Agent.

Agents in a Krusell-Smith economy are “near rational” as they optimize

using only the moments of the distribution. Forming near rational expecta-

tions of future prices in such an environment is a daunting but not impossible

task as equilibrium prices are functions only of the moments of the distribu-

tion instead of the entire distribution.

In this model there is approximate aggregation:“in equilibrium all aggre-

gate variables ... can be almost perfectly described as a function of two simple

statistics: the mean of the wealth distribution and the aggregate productiv-

ity shock” (Krusell, 1998, p.869). Using only these measures near rational

agents are able to minimize the forecast errors (therefore higher moments of

the distribution do not affect the decision of the agents).

Moreover, Krusell and Smith show through simulations that macroeco-

nomic time series generated by the model are almost indistinguishable from

those generated by a Representative Agent model. Hence macroeconomic

fluctuation can be sufficiently described by fluctuation of the mean, higher

moments of the distribution do not add much to the picture. In other words:

Taking heterogeneity on board does not add much to the accuracy of the

model. Only the first moment of the distribution have macroeconomic con-

sequences. In a sense, this is a very smart way of resurrecting the moribund
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Representative Agent and the macroeconomic literature based on it.

However, as shown by Heathcote (2009) with reference to fiscal shocks,

there are indeed real world circumstances in which heterogeneity has impor-

tant macroeconomic consequences even in Neoclassical multi-agent models.

1.4 Agent Based Models (ABMs)

The research agenda of the Neoclassical multi-agent literature is very specific,

dictated by the self-imposed guidelines on the way in which economic theo-

rizing should take form in the Neoclassical approach. Heterogeneity therefore

is key in these models but is dealt with in a restricted, disciplined environ-

ment. This may be considered a virtue of the approach but can also be a

limitation as issues and problems which are indeed important “out there”, in

the real world, are left out of the admissible set of issues and problems to be

dealt with. Agent Based Models (ABMs) have a completely different origin

and a much more flexible agenda. ABMs are the analytical and computa-

tional tools developed by an interdisciplinary network of scientists – physi-

cists, economists, computer scientists – to explore the properties of Complex

Adaptive Systems (CAS), i.e., “systems comprising large numbers of coupled

elements the properties of which are modifiable as a result of environmen-

tal interactions...In general CAS are highly non-linear and are organized on

many spatial and temporal scales” (1st workshop on CAS, Santa Fe, 1986).

In ABMs a multitude of objects, which are heterogeneous under differ-

ent profiles, interact with each other and the environment. The objects are

autonomous, i.e., there is no centralized (“top down”) coordinating or con-

trolling mechanism. Therefore, ABMs cannot be solved analytically. The

output of the model must be computed and consists of simulated time series.
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Agent based Computational Economics (ACE) is the application of AB

modelling to economics or: “The computational study of economic processes

modelled as dynamic systems of interacting agents” (Tesfatsion and Judd,

2006, p.832). The economy, in fact, can be conceived of as a complex adaptive

system.

Behavioural equations may or may not be derived from optimization.

AB modellers generally prefer to assume that agents are characterized by

bounded rationality; they are “not global optimizers, they use simple rules

(rules of thumb) based on local information” (Epstein, 2006a, p.1588).7

No equilibrium condition is required (out-of-equilibrium dynamics). This

is, in a sense, a consequence of the assumption according to which there is

no top down coordinating mechanism in ABMs. The Walrasian auctioneer,

who is gently nudging the agents towrds an equilibrium position, is indeed a

metaphor of such a top down coordinating mechanism. AB modellers, in fact,

generally prefer to assume that markets are systematically in disequilibrium.

In principle, however, at least some markets may converge to a statistical

equilibrium (see below).

ABMs are built from the bottom-up. At the micro level, the behavior of

heterogeneous agents is captured by simple, often empirically-based heuris-

tics which allow for adaptation, i.e. gradual change over time in response

to changing circumstances. Aggregate variables are determined by means

of summation or averaging across the population of heterogeneous agents.

Instead of untying the Gordian knot of aggregation, in ABMs this is cut

by allowing the computational tool to do the job. Due to interaction and

non-linearities, statistical regularities emerge at the macroscopic level that

cannot be inferred from the primitives of individuals. These emergent prop-

7In principle, however, behavioural rules can be either grounded in bounded rationality
(rules of thumb) or can be derived from specific optimization problems (optimal rules).
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erties are at the core of macroeconomics in a complex setting. Generally,

aggregate variables in Macroeconomic ABM (e.g. GDP) show a tendency to

self-organize towards a stable aggregate configuration occasionally punctu-

ated by bursts of rapid change. The self-organization of the macro-economy

can be represented by a statistical equilibrium in which the aggregate spon-

taneous order is compatible with individual disequilibrium. The equilibrium

of a system no longer requires that every single element be in equilibrium by

itself, but rather that the statistical distributions describing aggregate phe-

nomena be stable, i.e. in “a state of macroscopic equilibrium maintained by

a large number of transitions in opposite directions” (Feller, 1957, p. 356).

This is not general equilibrium in the standard meaning i.e. a state in which

demand equals supply in each and every market.

In a macroeconomic ABM – i.e., an ABMs applied to the macro-economy

– a “crisis”, i.e., a deep downturn followed by a long and painful recovery,

is a macroscopic phenomenon which spontaneously emerges from the web of

microscopic interactions. In a macro ABM, in other words, big shocks are

not necessary to explain big recessions, an appealing property indeed in the

light of the Global Financial Crisis.

The real world phenomena that are conceived of as rare“pathologies” in

the Neoclassical view – high and persistent unemployment, over-indebtedness

and financial instability, bankruptcies, domino effects and the spreading of

systemic risk – turn out to be the spontaneous emerging macroscopic con-

sequence of complex interactions in a multi-agent framework with heteroge-

neous agents.
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1.5 Plan of the book

The main aim of this book is to provide an introduction to Agent-Based

Modelling methodology with an emphasis on its application to macroeco-

nomics.

The book is organized as follows. In chapter 2 we answer the most basic

questions: What is an ABM? When is it necessary and/or appropiate to

build such a model? The chapter ends with a succinct overview of a very

early example of ABM: Schelling’s model of racial segregation.

In chapter 3 we provide a formal characterization of an ABM as a re-

cursive model. We put ABMs in the wider context of simulation models

and introduce notation and key concepts to describe the agents’ state and

behavioural rules in ABMs in rigorous terms.

Chapter 4 is devoted to a general overview of rationality, the determina-

tion of behavioural rules and expectation formation in contemporary macroe-

conomics, from Keynesian aggregative models to macroeconomic ABMs pass-

ing through monetarist, New Classical and New Keynesian models. This

survey allows to put the AB methodology into context and paves the way

to the more detailed analysis of behavioural rules and learning processes in

chapter 5.

Chapter 5, in fact, digs deeper into the definition and description of

agent’s rationality and learning processes. Where do behavioral rules come

from? Agents in real economies are intentional subjects. In order to de-

cide on a line of action (a behavioural rule), in fact, they must form mental

representations of their environment and of the behavior of other agents. Be-

havioral rules in the real world, therefore, must be related to the cognitive

processes that guide actions. Learning is a key ingredient of these cognitive

processes.
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Chapter 6 deals with the issue of interaction, which is key in ABMs. In a

sense the chapter is an introductory overview of network theory, a rapidly ex-

panding field both in mainstream and complexity theory. ABMs, in fact, are

often based on an underlying network structure, e.g. of trading relationships,

credit relationships, supply chain etc.

Chapter 7 explores the research outcome of an ABM, i.e. the model

behaviour. The AB researcher, in fact, sets up the “rules of the game” –

i.e. she builds the model – but does not know in advance the implications

of those rules, e.g. the statistical structure of the output of simulations.

The chapter presents techniques to gain understanding about the model be-

haviour – the Data Generating Process implicit in the ABM – which are quite

under-explored in the AB literature. In a model which requires simulations

only inductive knowledge about its behaviour can be gained, by repeatedly

running the model under different samples from the parameter space.

Chapters 8 is devoted to the empirical validation of ABMs. Empirically

validating an ABM means, broadly speaking,“taking the model to the data”,

essentially in the form of empirical and/or experimental data. Validation may

concern the model inputs and/or outputs. Input validation is essentially the

assessment of the “realism” of the assumptions on which the model rests

while output validation is the assessment of the capability of the model to

replicate in artificial or simulated data the stylized facts of economic reality

under consideration. Output validation is a joint test on the structure of the

model and the values of the parameters. This means that input and output

validation are connected.

Chapters 9 deals with the issue of estimation of ABM parameters, an

intriguing new field which aims at aligning the empirical validation techniques

of ABMs to that of standard macroeconomic models where estimation tools

13



are readily available and relatively easy to implement.
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Chapter 2

Agent-based Computational

Economics: What, Why, When

Matteo Richiardi

2.1 Introduction

What are agent-based (AB) models? In a nutshell, they are models, i.e.

abstract representations of the reality, in which (i) a multitude of objects

interact with each other and with the environment, (ii) the objects are au-

tonomous, i.e there is no central, or “top-down”, control over their behavior

(and, more generally, on the dynamics of the system1, and (iii) the outcome of

their interaction is numerically computed. Since the objects are autonomous,

they are called “agents”. The application of agent-based modeling to eco-

nomics is called Agent-based Computational Economics (ACE). As Leigh

1The Walrasian auctioneer, for instance, is a top-down device for ensuring market
clearing. Another example of top-down control is the consistency-of-expectations require-
ment typically introduced by the modeler in order to allow for a meaningful equilibrium
in neoclassical models. More on this point on section 2.2 below.
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Tesfatsion —one of the leading researchers in the field and the “mother” of

the ACE acronym— defines it, ACE is

the computational study of economic processes modeled as dy-

namic systems of interacting agents (Tesfatsion, 2006).

In other terms AB models are the tool traditionally employed by ACE

researchers to study economies as complex evolving systems, that is systems

composed by many interacting units evolving through time.

None of the features above, in isolation, defines the methodology: the

micro-perspective implied by (i) and (ii) is roughly the same as the one

adopted, for instance, by game theory, where strategic interaction is inves-

tigated analytically (though in game theory the number of individuals that

populate the models is generally very small). The computational approach,

instead, is typical of Computational General Equilibrium or Stock-Flow Con-

sistent models, which however are based on aggregate representations of the

system.

In this introductory chapter we describe the features of AB models (sec-

tion 2.2), offering an overview of their historical development (section 2.3),

discussing when they can be fruitfully employed and how they can be com-

bined with more traditional approaches (section 2.4). As an example, we

describe one of the first and most prominent AB models, Thomas Schelling’s

Segregation model (section 2.5). Conclusions follow.

2.2 Features of agent-based models

The basic units of AB models are the “agents”. In economics, agents can

be anything from individuals to social groups, like families or firms. They

may also be more complicated organizations (banks for instance) or even
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industries or countries. Agents can be composed by other agents: the only

requirement being that they are perceived as a unit from the outside, and

that they “do” something, that is they have the ability to act, and possibly

to react to external stimuli and interact with the environment and with other

agents.

The environment, which may include physical entities (like infrastruc-

tures, geographical locations, etc.) and institutions (like markets, regulatory

systems, etc.) can also be modeled in terms of agents (a central bank, the or-

der book of a stock exchange, etc.), whenever the conditions outlined above

are met. If not, it should be thought of simply as a set of variables (say

“weather”, or “business confidence”) characterizing the system as a whole

or one of its parts. These variables may be common knowledge among the

agents or communicated throughout the system by some specific agent —say

the statistical office— at specific times.

From what we have said so far, it should be clear that aggregate vari-

ables like consumption, savings, investment, disposable income, which are

the prime units of analysis of Keynesian macroeconomics, cannot be modeled

as agents in an AB framework —they are computed by aggregating microeco-

nomic agent quantities; the same applies to the fictitious representation of a

“representative agent” (RA), a cornerstone of neoclassical economics. There-

fore, ACE can in principle provide sound microfoundations for the traditional

Keynesian macroeconomics, and sound aggregate results for the neoclassical

analysis based on individual optimization. The direct modeling of a demand

or a supply curve is also forbidden in an agent-based setting: rather, these

aggregate functions may (or may not) emerge as the outcome of the decisions

of the individual agents.
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2.2.1 Scope of agent-based models

AB models are in general developed to analyze the effects of interaction.

What do we exactly mean by interaction? An interaction between agents

in a real-world economy may take many different forms. It may represent

a physical exchange of commodities, but it may also be a direct exchange

of information or knowledge, or even an expectation relationship (agent A

thinks that agent B is relevant for the consequences of her actions, and

therefore forms an expectation over agent B’s future actions). Notice that

such a general definition of interactions encompasses the traditional notion

of externalities in economics, which is one of the possible causes for market

failures. The AB approach, contrary to the standard approach to economics,

does not treat externalities as a perversion of an economic system, but it

acknowledges their central role in shaping social dynamics. As we shall show

in more details below, the fact that agents directly interact in non trivial

ways is often central to understand how and why economies behave as we

observe them to do in reality.

In general, common AB research questions are related to how the aggre-

gate behavior of a system is affected by differences in individual behavior,

individual characteristics, norms and institutions, etc. The focus of interest

is generally explanation and replication, rather than prediction and control

(Epstein, 2008). In other terms, much more effort has been historically put in

describing reality like it is, and possibly explaining why it is like we observe

it, rather than understanding how it will be and what we need to do to make

it like we would like it to be.

AB models are typically general (dis)equilibrium models: both the sup-

ply side and the demand side of a market are explicitly modeled, and the

feedbacks between the different sides/level of analysis (micro and macro,
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for instance) constitute the main object of interest. However, unlike what

happens in the standard general equilibrium model, there is no top-down re-

strictions preventing the economy to always fluctuate out-of-equilibrium. In

fact, equilibrium in its traditional meaning is not a requirement in AB model-

ing, and if any type of equilibria emerges, it must be an endogenous outcome

generated by the interactions among the agents. For example, in general

equilibrium models the aggregate supply-demand equivalence is posited as

an assumption. In equivalent AB models of market dynamics, one would

typically observe an evolving relationship between aggregate supply and de-

mand, which may not always be perfectly balanced, but nonetheless may tell

us something about the endogenous re-equilibrating ability of the economy.

All that accounts for the complexity of AB models, and require that in-

dividual behavior is kept as simple as possible, to avoid the risk of having an

excessively rich model which would then hamper interpretation and analysis.2

These common characteristics are a distinctive feature of AB models and dis-

tinguish the methodology from other techniques that share the same basic

ingredients —once again, micro-foundations and a computational approach.

In particular, they discriminate between AB models and microsimulation,

a technique used to investigate the effects of individual heterogeneity, of-

ten in one-sided models of a market (labor supply for example), mainly for

prediction or policy analysis.

2.2.2 The whole and its parts

Having agents as the unit of analysis, AB modeling is deeply rooted in

methodological individualism. This doctrine was introduced as a method-

ological precept for the social sciences by Max Weber, most importantly in

2A 1:1 map of reality being not only almost impossible to build, but also by far useless.
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the first chapter of Economy and Society —although the term was already

present in Schumpeter.3 Methodological individualism amounts to the claim

that social phenomena must be explained by showing how they result from

individual actions, which in turn must be explained through reference to the

intentional states that motivate the individual actors.4 However, the term

still bears some ambivalence over whether explanations should be in terms

of individuals alone, or in terms of individuals plus their interaction (Hodg-

son, 2007). In the first meaning, methodological individualism suggests that

the “whole” is nothing but the “sum of its parts”, a position that has been

labeled reductionism (Jones, 2000). This interpretation implies that the ag-

gregate behavior can be derived observing the behavior of a single agent, a

position that is clearly incompatible with the AB modeling approach. On

the other hand, reductionism is implicit in the RA paradigm, which claims

that the whole society can be analyzed in terms of the behavior of a single,

representative, individual.

The opposite view is holism, the idea that the properties of a given system

cannot be determined or explained by the sum of its component parts alone;

rather, the system as a whole determines in important ways how the parts

behave.5 As such, holism is closely related to organicism, introduced as a

biological doctrine stressing the importance of the organization, rather than

the composition, of organisms.6 This view has gained renewed popularity as

a new science of Complexity —which, as we will discuss in the next section, is

3See Weber (1968) and Schumpeter (1909).
4The use of methodological individualism in Economics was championed by the Aus-

trian school of Economics in the XX century, of which Friederich von Hayek was one of the
main exponent (von Hayek, 1948). The legacy of Hayek to agent-based modelling and the
complex system approach (see for instance von Hayek (1967)) has been amply recognized
(Rosser, 1999; Vaughn, 1999; Koppl, 2000; Vriend, 2002; Rosser, 2009).

5The general principle of holism was concisely summarized by Aristotle in his Meta-
physics: “The whole is more than the sum of its parts”.

6William Emerson Ritter coined the term in 1919.

20



to a large extent responsible for the introduction of AB models in the study

of social and biological systems— developed in the last decades of the XX

century.

So, where does AB modeling stand in this debate? As already noted, AB

models are characterized by the fact that aggregate outcomes (the “whole”)

are computed as the sum of individual characteristics (its “parts”). However,

aggregate behavior can often be recognized as distinct from the behavior of

the comprising agents, leading to the discovery of unexpected (“emergent”)

properties. In this sense, the whole is more than —and different from—

the sum of its parts. As the Nobel price-winner phisicists Philiph Anderson

concisely expressed, “more is different” (Anderson, 1972). It might even be

the case than the whole appears to act as if it followed a distinct logic, with

own goals and means, as in the case of a cartel of firms that act in order

to influence the market price of a good. From the outside, the “whole”

appears no different from a new agent type. A new entity is born, the

computational experiment has been successful in “growing artificial societies

from the bottom up”.7 Epstein (2006b, p.66) explains the point with the

following analogy:

Suppose we know all of the underlying components of a system

and all of the rules by which these components interact —does

it then follow that we understand the system? Perhaps not. For

example, if we know the color, shape and location of every piece

of glass in a stained glass window, do we necessarily know what

figure will emerge from their conglomeration? While clearly all

the information is there, we may not be able to imagine what the

completed window looks like just from reading about each piece

7As in the title of the well known book by Epstein and Axtell (1996).
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and its location. We may need to “assemble” the window in some

form before any kind of image can emerge. We might get a good

idea of the window by using a crude line drawing, or perhaps a

more elaborate full-color diagram will be required. The level of

necessary detail will be linked to some inherent characteristics of

the actual image. In some cases, the easiest way to “know” the

window is to assemble the entire thing piece by piece.

2.2.3 The dual problem of the micro-macro relation

As we have seen, AB modeling allow to investigate the interplay occurring

at two different scales of a given system: the micro structure and the macro

structure. This investigation may occur in two directions: (i) to find the

aggregate implications of given individual behaviors and interaction struc-

tures, and (ii) to find the conditions at the micro level that give rise to some

observed macro phenomena. We refer to these two perspectives as the dual

problem of the micro-macro relation. Both share the same approach: “If you

didn’t grow it, you didn’t explain it”(Epstein, 1999), which motivates the

definition of ACE as generative social science.

Of course, AB modeling is by no means the only way to study the dual

problem of the micro-macro relation. However, taking into account the inter-

action of a multitude of (heterogeneous) agents, of possibly different types,

easily becomes analytically intractable, and the traditional approach of sim-

plifying everything may —as it should be clear from the discussion above—

“throw the baby out with the wash water”. On the contrary, AB models

only require to “wait and see” the unveiling of the consequences of the as-

sumptions, and leave much more freedom than conventional economics in the

specifications of the assumptions.
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Because of this focus on the theoretical links between micro and macro

the typical AB model is a relatively small “toy” model, where only the es-

sential features for some interesting aggregate properties to emerge from the

rules of micro interaction are included, possibly at the expenses of realism.8

However, in recent years larger AB models are starting to appear, claiming

a richer empirical content. These models explicitly aim at replacing dy-

namic stochastic general equilibrium (DSGE) as the workhorse at the core

of macroeconomics, and constitute at present the biggest challenge for AB

research.9

2.2.4 Adaptive versus rational expectations

The generative approach of AB modeling has one crucial theoretical impli-

cation, which accounts for the main divergence with neoclassical models:

rational expectations (RE) are banned.

The assumption of RE —which was introduced in economics by Muth

(1961)— states that agents’ predictions of the future value of economically

relevant variables are not systematically wrong, in that all errors are random.

This amounts to say that RE are model-consistent: all agents in the model

are able to solve the model, and behave in a mutually consistent way so

that outcomes meet expectations, on average; no one regrets his decision

rule, though many may be disappointed by the outcome.10 Thus, RE lead

naturally to Nash-type equilibria concepts: given an equilibrium outcome,

no (rational) individual would unilaterally depart.

Appealing as it seems, RE have a number of drawbacks and limitations.

8As exemplified by the Schelling’s segregation model described below.
9See Dawid et al. (2013) and Caballero (2010).

10The strongest version of RE leads to the efficient-market hypothesis, which asserts
that financial markets are “informationally efficient” and no arbitrage opportunities can
arise.
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First, their application to macro models with representative agents is theo-

retically flawed as it suffers from the usual aggregation problem: even if all

individuals have RE, the representative household describing these behaviors

may exhibit behavior that is not rational.11 But, admittedly, this is a prob-

lem of RA, not of RE. However, even in a truly microfounded model with

perfect knowledge, RE outcomes might easily be non-computable: agents

have to anticipate the outcome and conform to it in advance; therefore, the

system “jumps” to the equilibrium. In the best case, off-equilibrium tra-

jectories converge to the equilibrium path. However, strong hypotheses are

needed for such convergence properties to hold, and these are not warranted

by the assumptions made at the micro level. The existence of a RE Nash

equilibrium (or of some refinements thereof) does not imply that such an

equilibrium is attainable, not to say that it can be attained on reasonable

time scales, or at reasonable computing costs. As Duncan Foley summarizes,

The theories of computability and computational complexity sug-

gest that there are two inherent limitations to the rational choice

paradigm. One limitation stems from the possibility that the

agent’s problem is in fact undecidable, so that no computational

procedure exists which for all inputs will give her the needed an-

swer in finite time. A second limitation is posed by computational

complexity in that even if her problem is decidable, the computa-

tional cost of solving it may in many situations be so large as to

overwhelm any possible gains from the optimal choice of action”

(Albin, 1998).

By converse, in AB models —much as in the real world— agents are

characterized by bounded rationality and hold adaptive expectations (Con-

11See Janssen (1993).
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lisk, 1996; Gigerenzer and Selten, 2001a). They have to learn from their

experience and possibly from other agents. They are goal seekers and they

can be forward looking, but their ability to infer the rules of the game in or-

der to form expectations is constrained by what they know about the model

they inhabit, which is typically limited, and may change over time. More-

over, their computing ability is also constrained. They therefore have to use

simple rules based on local information (Edmonds, 1999; Manson, 2006; Pyka

and Fagiolo, 2007; Hommes, 2009).

How does individual and social learning affect the behavior of a system?

An extreme viewpoint is that evolutionary mechanisms will result in surviv-

ing individuals with high levels of rationality, or who will behave as if they

were fully rational. Professional billiard players might not be able to assess

numerically the angles and distances of the balls, compute the optimum di-

rections of travel, and hit the balls at the exact point and with the strength

indicated by the formulas. However, if they were not able to reach essen-

tially the same result, they would not in fact be expert billiard players: they

behave as if they knew the math, and the same math can be used by some

external observer to describe and predict their action (Friedman, 1953).

However, it is not true that individual rationality always leads to individ-

ually optimal outcomes, nor that competitive pressure is able to compensate

for lack of individual rationality. The winner curse exemplifies: in a com-

mon value auctions with incomplete information, the auctioned item is worth

roughly the same to all bidders, who differ only by their respective estimates

of the market value. The winner is the bidder with the highest bid, which

reflects the highest estimate. If we assume that the average estimate is ac-

curate, then the highest bidder overestimates the item’s value: thus, the

auction’s winner is likely to overpay.
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It is also not true that a sub-optimal individual behavior necessarily leads

to inefficiencies. For instance, it is generally acknowledged that freeways

cannot sustain a flux of more than 2,000 vehicles per hour per lane. However,

urban freeways are able to carry about 2,500-3,000 vehicles per hour per lane,

because drivers “learn” that in order to go faster they have to restrain from

passing slower vehicles (Richiardi, 2005).

The same holds with social outcomes. While neoclassical modeling im-

plicitly assumes that “the invisible hand requires rational fingers” (Epstein,

2006b, p. 26), AB models allow to investigate how different types of fingers

work, from the dumbest to the more expert.

Note that while it is easy to implement adaptive expectations in a com-

puter simulation, it is very cumbersome to simulate agents with rational ex-

pectations (the opposite is true in analytical models), as this involves solving

the problem of the agents simultaneously, while the computer is essentially a

sequential machine.12 It could be argued that the same holds for real agents.

2.2.5 Additional features of agent-based models

We have so far introduced the three fundamental characteristics of AB mod-

els: there are agents that play the role of actors, there is no script or Deus

ex-machina13 and the story is played “live” (computed).

However, there are a number of characteristics that are often found in

AB models, and may motivate their use. Following Epstein (1999; 2006a) we

can include:

• Heterogeneity. While in analytical models there is a big advantage in

reducing the ways in which individuals differ, the computational bur-

12See chapter 5 on AB models as recursive systems.
13In the Greek theater, a mechanism was used to drop one or more divinities on the

stage to solve complicated situations, in which no apparent ways out were available.
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den of an AB model does not change at all if different values of the

parameters (preferences, endowments, location, social contacts, abili-

ties etc.) are specified for different individuals. Normally, this is done

by choosing a distribution for each relevant parameter, and this simply

implies that a few parameters (those governing the distribution) are

added to the model.

• Explicit space. This can be seen as specification of the previous point:

individuals often differ in the physical place where they are located, and

/or in the neighbors with whom they can or have to interact (which

define the network structure of the model).

• Local interaction. Again, this can be seen as a specification of the net-

work structure connecting the agents. Analytical models often assume

either global interaction (as in Walrasian markets), or very simple local

interaction. AB models allow for much richer specifications.

• Scalability. AB models can be easily scaled up. This is different from

analytical models, where solutions can generally be found either for

very few or very many agents. For example, in physics planetary mo-

tion can be analytically handled only with one, two, three or infinitely

many planets. Similarly, in economics analytical models exist for mo-

nopolies, duopolies and perfect competition. However, there are many

examples where the scaling up of a system (by increasing the number

of agents, or the number of choices) might end up in a very different

behavior: for instance, when a phase transition occurs at some thresh-

old. The identification of these qualitative change in behavior or, by

converse, of scaling regularities (“scaling laws”) might be important in

understanding a dynamical system. In an AB model, the only con-
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straint for scaling up a model is computing time. This should not be

downplayed, and great care should be taken that the model remains

of tractable computational complexity, but as computing power con-

stantly increases, the issue is in principle of limited importance.14

• Non-equilibrium dynamics. AB models are (stochastic) recursive mod-

els, in which the state of the system at time t + 1 is computed (or

probabilistically evaluated) starting from the state at time t. Hence,

they allow the investigation of what happens all along the route, not

only at the start and at the end of the journey.

The latter point is of great importance and must be elaborated upon. W.

Brian Arthur (2006) offered a beautiful and concise statement of its relevance

for economic theory:

Standard neoclassical economics asks what agents’ actions, strate-

gies, or expectations are in equilibrium with (consistent with) the

outcome or pattern these behaviors aggregatively create. Agent-

based computational economics enables us to ask a wider ques-

tion: how agents’ actions, strategies or expectations might react

to —might endogenously change with— the pattern they create.

In other words, it enables us to examine how the economy behaves

out of equilibrium, when it is not at a steady state.

This out-of-equilibrium approach is not a minor adjunct to stan-

dard economic theory; it is economics done in a more general

14By “tractable computational complexity” we generally mean models that can be com-
puted in polynomial time, O(nk), where k is a nonnegative integer and n is the complexity
of the input. Indeed, according to the Cobham-Edmonds thesis computational problems
can be feasibly computed on some computational device only if they can be computed in
polynomial time; that is, if they lie in the complexity class P. However, the size of the
exponent k and of the input n does matter: when n is large, even O(n3) algorithms are
often impractical.
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way. [...] The static equilibrium approach suffers two charac-

teristic indeterminacies: it cannot easily resolve among multiple

equilibria; nor can it easily model individuals’ choices of expec-

tations. Both problems are ones of formation (of an equilibrium

and of an “ecology” of expectations, respectively), and when ana-

lyzed in formation —that is, out of equilibrium— these anomalies

disappear.

Of course, the fact that AB models can be investigated out of equilib-

rium does not mean that equilibrium analysis is not relevant for AB models.

Think of equilibrium as some sort of “constant” behavior, either at the micro

or at the macro level: a regularity that the model is able to produce, under

some circumstances. Admittedly, this is a very loose definition of equilib-

rium, and we will come back to it in chapter 5. What is sufficient to say here

is that the characterization of such regularities is an inescapable requirement

for the understanding of the behavior of a system. Moreover, a regularity

needs not to be absorbing (once there, the model displays it forever since);

it may be transient, and vanish after some time, possibly when some other

condition is met. These transient regularities might characterize the adjust-

ment phases, or —in Artur’s parlance— the non-equilibrium properties of

the system. What we believe is important to stress is that a model without

regularities is useless : we don’t really need a formal apparatus to say that

anything can happen. We can go further, claiming that a model without reg-

ularities is impossible: a model which has no properties does not exist (even

pure white noise can be formally characterized). In this sense, equilibrium

analysis is not marginalized by AB modeling. But the point remains that in

AB modeling we can let the properties of the system manifest themselves,

and study their dynamic unfolding.
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2.3 The development of ACE

The roots of AB modeling can be traced down to the study of cellular au-

tomata.15 AB models further developed within the evolutionary economics

approach and the so-called Santa Fe perspective on the study of complex

systems, though an overlooked antecedent is to be found in the dynamic

microsimulation literature.

2.3.1 Evolutionary Roots

From an historical point of view, the first attempts to introduce in the study

of economic dynamics thinking concepts like bounded rationality, adaptive

expectations, disequilibrium, local interactions, and so on, come from what

we now label “evolutionary economics” (Dosi and Nelson, 1994). Evolution-

ary economics employs metaphors and notions from evolutionary biology to

describe the dynamics of firms, markets and economies over time. Central

to this approach are the notions of selection (only the best firms survive

competition), variety over which selection operates (firms are heterogeneous

in their knowledge bases and cognitive repertoires, that is behavioral and

learning rules), novelty (firms endogenously introduce innovations) and in-

teraction (firms exchange information and knowledge).

The seminal book by Nelson and Winter (1982a) was a landmark achieve-

ment in this respect, as it presented a series of stylized models of industry

dynamics very much in the spirit of what we now call AB models. These mod-

els describe the evolution of industries characterized by boundedly rational

firms and analyzed by means of simulations, in line with the suggestions of

Herbert Simon (1981).

15See von Neumann and Burks (1966); Gardner (1970) and, for a first application to
social issues, Schelling (1969).
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The book emphasized the role of routines and heuristics. These behav-

ioral rules need to be robust in the sense that they can be used repeatedly

and successfully in similar circumstances, but simple enough to be devel-

oped by real world agents without the computational abilities and mental

sophistication of rational profit maximizers neoclassical agents. Despite their

simplicity, heuristics and routines can be applied to solve in intelligent ways

the complex problems faced everyday by real world organizations. Just as a

Rubik cube solver decomposes the problem of getting a cube with each face

consisting of one color in smaller but simpler tasks (getting a single face with

one color, then adding another face with another color, and so on), firms

facing complex problems (introducing an innovation, coping with turbulent

markets, etc.) try to decompose them in smaller tasks and goals to which

they apply some pre-existing routine. In other words, problems that like the

Rubik’s cube are extremely difficult (if not impossible) to solve in a one shot

way, are typically decomposed in easily recognizable sub-modules to which

there is already a solution. Efficiency is traded off for feasibility: rationality,

in many difficult and interesting cases, may not be an intelligent way to cope

with a problem (Dosi et al., 2005).

Evolutionary economics can be seen as one of the first, most important,

antecedents of the ACE approach. ACE is in some sense a more general

perspective, as it is not necessarily linked with the idea of selection typical of

the evolutionary camp. This has restricted the applicability of evolutionary

models to situations where selection is an issue, primarily industry and firm

dynamics. The demand side of the markets were instead less prone to be

modeled via the variety-selection metaphor (consumers are not selected on

the base of what they choose to consume).
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2.3.2 The Santa Fe perspective: The economy as an

evolving complex system

The development of AB computational economics is closely linked with the

work conducted at the Santa Fe Institute, a private, not-for-profit, indepen-

dent research and education center founded in 1984 in Santa Fe, New Mexico.

The purpose of the Institute has been, since its foundation, to “foster multi-

disciplinary collaboration in pursuit of understanding the common themes

that arise in natural, artificial, and social systems”. This unified view is the

dominant theme of what has been called the new science of complexity.16

For what concerns economics, the main outcomes of the research project

conducted at the Santa Fe Institute were three books, all bearing the title

The economy as an evolving complex system (Anderson et al., 1988; Arthur

et al., 1997; Blume and Durlauf, 2006). From the preface of the 1997 volume,

edited by W. Brian Arthur, Steven Durlauf and David Lane,

In September 1987 twenty people came together at the Santa Fe

Institute to talk about “the economy as a evolving, complex sys-

tem”. Ten were theoretical economists, invited by Kenneth J. Ar-

row, and ten were physicists, biologists and computer scientists,

invited by Philip W. Anderson. The meeting was motivated by

the hope that new ideas bubbling in the natural sciences, loosely

tied together under the rubric of “the sciences of complexity”,

might stimulate new ways of thinking about economic problems.

16See also, among many others, (Edmonds, 1999; Phelan, 2001; Chu et al., 2003) and
especially the popular books by James Gleick (Gleick, 1987) and Mitchell Waldrop (Wal-
drop, 1992). A rather critical view of the research on complex systems undertaken at
the Santa Fe Institute through the mid-1990s can be found in the writings of the science
journalist John Horgan (Horgan, 1995, 1997). A very good account of the relationships
between complexity theory, cybernetics, catastrophe theory and chaos theory (the four
“C”) and their implications for economic theory, can be found in (Rosser, 1999).
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[...] But just what is the complexity perspective in economics?

That is not an easy question to answer. [...] Looking back over the

developments in the past decade, and of the papers produced by

the program, we believe that a coherent perspective —sometimes

called the “Santa Fe approach”— has emerged within economics

(Arthur et al., 1997).

Arthur goes on in describing the main characteristics of the Santa Fe

approach.17 These were identified in models having cognitive foundations,

structural foundations, no global controller, and exhibiting continual adapta-

tion, perpetual novelty and out-of-equilibrium dynamics (Arthur, 1990).

Two main reasons can help explaining why the Santa Fe approach gained

some visibility outside the restricted group of people interested in the com-

plexity theory (perhaps contributing in this way to mount what Horgan

(1995, 1997) called an “intellectual fad”). Together, they offered an ap-

pealing suggestion of both what to do and how to do it. The first reason

was the ability to present the complexity paradigm as a unitary perspective.

This unitary vision stressed in particular the existence of feedbacks between

functionalities and objectives : individual objectives determine to some extent

the use and modification of existing functionalities, but functionalities direct

to some extent the choice of individual objectives. It is this analytical focus

that proved to be valuable in disciplines as diverse as the social sciences, the

biological sciences and even architecture. The second reason has to do with

the creation of a specific simulation platform that allowed relatively inex-

perienced researchers to build their own “toy” models that, thanks to the

17Although this perspective is associated with the Santa Fe Institute, it was initiated in
Europe by chemists and physicists concerned with emergent structures and disequilibrium
dynamics (more precisely, in Brussel by the group of the Nobel prize winner physical
chemist Ilya Progogine and in Stuttgart by the group of the theoretical physicist Hermann
Haken) —see (Prigogine and Stengers, 1984; Nicolis and Prigogine, 1989; Haken, 1983).
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enormous and sustained increase in commonly available computing power,

could run quickly even on small PCs. This simulation platform was called

Swarm (Askenazi et al., 1996), and consisted in a series of libraries that im-

plemented many of the functionalities and technicalities needed to build an

agent-based simulation, as the schedule of the events, the passing of time and

graphical widgets to monitor the simulation. In addition to offering a prac-

tical tool to write agent-based simulations, the Swarm approach proposed

a protocol in simulation design, which the Swarm libraries exemplified.

Ten years and two volumes later, Blume and Durlauf summarize this

intellectual Odyssey as follows:

On some levels, there has been great success. Much of the origi-

nal motivation [...] revolved around the belief that economic re-

search could benefit from an injection of new mathematical mod-

els and new substantive perspectives on human behavior. [...] At

the same time [...] some of the early aspirations were not met.

The models presented here do not represent any sort of rejection

of neoclassical economics. One reason for this is related to the

misunderstanding of many non-economists about the nature of

economic theory; simply put, the theory was able to absorb SFI-

type advances without changing its fundamental nature. Put

differently, economic theory has an immense number of strengths

that have been complemented and thereby enriched by the SFI

approach. Hence, relative to the halcyon period of the 1980s,

this SFI volume is more modest in its claims, but we think much

stronger in its achievements (Blume and Durlauf, 2006).
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Figure 2.1: Excerpt from the Bulletin of the Santa Fe Institute, Vol. 1, No. 1, June 1986

2.3.3 AB models as dynamic microsimulations

An earlier antecedent of AB modeling can be identified in the dynamic mi-

crosimulation (DMS) literature, and in particular in two almost forgotten

works: Barbara Bergmann’s microsimulation of the US economy and Gun-

nar Eliasson’s microsimulation of the Swedish economy (Bergmann, 1974;

Eliasson et al., 1976; Bergmann et al., 1977; Eliasson, 1977). For the con-

nections between AB modeling and DMS see Richiardi (2013).

Broadly defined, microsimulation is a methodology used in a large variety

of scientific fields to simulate the states and behaviors of different units —

individuals, households, firms, etc.— as they evolve in a given environment

—a market, a state, an institution. Very often it is motivated by a policy

interest, so that narrower definitions are generally provided.18

18For instance, Martini and Trivellato (1997, p. 85) define microsimulation models
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The field of microsimulation originates from the work of Guy Orcutt in

the late 1950s (Orcutt, 1957; Orcutt et al., 1961). Orcutt was concerned that

macroeconomic models of his time had little to say about the impact of gov-

ernment policy on things like income distribution or poverty, because these

models were predicting highly aggregated outputs while lacking sufficiently

detailed information of the underlying micro relationships, in terms of the

behavior and interaction of the elemental decision-making units. However,

if a non-linear relationship exists between an output Y and inputs X, the

average value of Y will indeed depend on the whole distribution of X, not

on the average value of X only.

Orcutt’s revolutionary contribution consisted in his advocacy for a new

type of modeling which uses as inputs representative distributions of individ-

uals, households or firms, and puts emphasis on their heterogeneous decision

making, as in the real world. In so doing, not only the average value of Y is

correctly computed, but its entire distribution can be analyzed. In Orcutt’s

words, “this new type of model consists of various sorts of interacting units

which receive inputs and generate outputs. The outputs of each unit are, in

part, functionally related to prior events and, in part, the result of a series

of random drawings from discrete probability distributions”.

As defined, DMS appears very similar to AB modeling. The main dif-

ferences can be traced down to the following (i), microsimulations are more

policy-oriented, while AB models are more theory-oriented; (ii) microsimula-

tions generally rely on a partial equilibrium approach, while AB models are

most often closed models.

Bergmann and Eliasson questioned the second tenet, and introduced two

as “computer programs that simulate aggregate and distributional effects of a policy, by
implementing the provisions of the policy on a representative sample of individuals and
families, and then summing up the results across individual units”.
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basic innovations with respect to the DMS literature that was emerging at the

time —and in which they were firmly grounded: in their macro models with

production, investment, and consumption (Eliasson also had a demographic

module) they explicitly considered the interaction between the supply and

demand for labor, and they modeled the behavior of firms and workers in a

structural sense. On the other hand, the standard approach to microsimula-

tion —or, as Guy Orcutt called it, the “microanalytic approach for modeling

national economies” (Orcutt, 1990) — was based on the use of what he

considered as a-theoretical conditional probability functions, whose change

over time, in a recursive framework, describe the evolution of the different

processes that were included in the model. This is akin to reduced-form mod-

eling, where each process is analyzed conditional on the past determination

of all other processes, including the lagged outcome of the process itself.

Bergmann and Eliasson had a complete and structural, although rel-

atively simple, model of the economy, which were calibrated to replicate

many features of the US and Swedish economy, respectively. However, their

approach passed relatively unnoticed in the DMS literature, which evolved

along the lines identified by Orcutt mainly as reduced form, probabilistic

partial equilibrium models, with limited interaction between the micro unit

of analysis, and with abundant use of external coordination devices in terms

of alignment to exogenously identified control totals. On the contrary, the

AB approach emerged with a focus on general equilibrium feedbacks and in-

teraction, at the expenses of richer empirical grounding. Hence, the work of

Bergmann and Eliasson could be interpreted as a bridge between the (older)

DMS literature and the (newer) AB modeling literature, though this intel-

lectual debt goes relatively unnoticed among AB practitioners.
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2.3.4 The experimental machine

Crucial for the development of agent-based modeling has been the increas-

ing availability of computing power, which allowed to run even complicated

simulations on small PCs.19

Together with continuous hardware improvements came software develop-

ment. Aside traditional programming (in Fortran, C++, etc.) three different

approaches emerged. The first one relies on general-purpose mathematical

software, like Mathematica, Matlab or Matcad. The second one, ex-

emplified by the Starlogo/Netlogo experience, is based on the idea of

an agent-based specific language (Resnick, 1994). The third one represents a

protocol in the design process, implemented as agent-based specific libraries

in standard programming languages (like Java).20 The ancestor of these

agent-based tools is Swarm. The principles of the Swarm approach are:

• the use of object-oriented programming language, with different objects

(and object types) being a natural counterpart for different agents (and

agent types);

• a separate implementation of the model and the tools used for moni-

toring and conducting experiments on the model (the so called “Ob-

server”);

• an architecture that allows nesting models one into another, in order

to build a hierarchy of “swarms” —a swarm being a group of objects

19This is summarized by the empirical law of a twofold increase in performance every
two years. It is worth remembering that some of the brightest minds of their time —
gathered together around physicists Robert Oppenheimer under the Manhattan project,
the World War II U.S. Army project at Los Alamos aimed at developing the atomic bomb—
were reported to spend half of their time and effort in order to find smarter algorithms
and save precious computing time on the huge but slow machines available (Gleick, 1992).

20This allows the possibility to integrate tools developed as separate libraries by third
parties (for graphical visualization, statistical analysis, database management, etc.).
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and a schedule of actions that the objects execute. One swarm can

thus contain lower-level swarms whose schedules are integrated into

the higher-level schedule.

While in the “revolutionary” days of the Santa Fe Institute the third

approach appeared to be the most promising, a more anarchic attitude (Fey-

erabend, 1975) has now emerged among practitioners.

Finally, despite the fact that AB models are most often computer models,

and that the methodology could not develop in the absence of cheap and

easy-to-handle personal computers, it is beneficial to remember that one of

the most well-known agent-based models, the pioneering work on spatial

segregation by the Nobel laureate Thomas Schelling, did not make use of

computers at all (Schelling, 1971). As Schelling recalls, he had the original

idea while seating on the aeroplane, and investigated it with paper and pencil.

When he arrived home, he explained his son the rules of the game and got him

to move zincs and coppers from the child’s own collection on a checkerboard,

looking for the results. “The dynamics were sufficiently intriguing to keep

my twelve-year-old engage” (Schelling, 2006).

2.4 Why agents

Although ACE developed together with the Santa Fe approach, its applica-

bility is by no way limited to the analysis of complex systems. Abstracting

from the characteristics of the system being modeled, ACE proves valuable

in two cases:

• to get a quick intuition of the dynamics that the system is able to

produce, and
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• to thoroughly investigate models that are not susceptible of a more

traditional analysis, or are susceptible of a more traditional analysis

only at too a high cost.

Often, an AB model can be quickly implemented, and it can be used not

differently from scrap paper. It allows to experiment with hypothesis and

assumptions, and gives a hint to which results can be proved. It often sug-

gests the refinements that might eventually lead to a fully algebraic solution

of the model.

However, it might turn out that an analytical solution is not even nec-

essary, or not feasible. It is possible to identify three distinct uses of agent-

based models in the social sciences, a part from the “scrap paper” one de-

scribed above. These uses can be ranked according to their auxiliary nature,

with respect to analytical modeling (Axtell, 2000).21

The first use is numerical computation of analytical models. Note with

Axtell that

“[t]here are a variety of ways in which formal models resist full

analysis. Indeed, it is seemingly only in very restrictive circum-

stances that one ever has a model that is completely soluble, in

the sense that everything of importance about it can be obtained

solely from analytical manipulations”.

Situations in which resort to numerical computation may prove useful in-

clude (a) when a model is not analytically soluble for some relevant variable,

(b) when a model is stochastic, and the empirical distribution of some rele-

vant variable needs to be compared with the theoretical one, of which often

few moments can be analytically derived, (c) when a model is solved for the

21The categories identified below correspond only partially to Axtell’s.
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equilibrium, but the out-of-equilibrium dynamics are not known. In partic-

ular, with reference to the last point, it may happen that multiple equilibria

exist, that the equilibrium or (at least some of) the equilibria are unstable,

that they are realized only in the very long run. Conversely, it may happen

that equilibria exist but are not computable.22 Finally, it may be the case

that the equilibrium is less important than the out-of-equilibrium fluctua-

tions or extreme events. Clearly, agent-based simulations are not the only

way to perform numerical computations of a given analytical model. How-

ever, they may prove effective and simple to implement, especially for models

with micro-foundations.

The second use is testing the robustness of analytical models with respect

to departures from some of the assumptions. Assumptions may relate to

the behavior of the agents, or to the structure of the model. Note that,

in general, as the assumptions are relaxed or altered, an analytical solution

becomes very improbable (otherwise, the possibility of changing them could

have been easily incorporated in the original work, leading to a more general

model). One important feature of ACE is that in considering departures from

the assumptions of the reference model, a number of different alternatives can

be investigated, thus offering intuition toward a further generalization of the

model itself.

The first two uses of ACE models are complementary to mathematical

analysis. The third use is a substitute, going beyond the existence of an an-

alytical reference model. It provides stand-alone simulation models for (a)

problems that are analytically intractable, or (b) problems for which an an-

alytical solution bears no advantage. The latter may happen when negative

results are involved, for instance. A simulation may be enough to show that

22Axtell provides references and examples for each case.
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some institution or norm does not work in the intended way. Analytical

intractability may arise when more complicated assumptions are needed, or

when the researcher wants to investigate the overall effect of a number of

mechanisms (each possibly already analytically understood in simpler mod-

els), at work at the same time.

It must be added that developing AB models as substitutes for mathe-

matical analysis, in economics is also a way to propose an alternative to the

standard mainstream (neoclassical) paradigm. Neoclassical models are in-

deed firmly rooted in the presumption that any meaningful economic model

must start from a set of unavoidable assumptions that represent the core of

the paradigm. These, in a nutshell, are: (i) agents are fully-rational with

unbounded computational skills; (ii) equilibrium is defined by rational ex-

pectations at the individual level, and by a no-arbitrage condition at the

aggregate level; (iii) interactions and heterogeneity, to a first approximation,

only add noise to the underlying economic dynamics, so that one can safely

employ models with a representative individual replacing a wealth of het-

erogeneous agents, and focus on simple setups concerning interactions and

externalities (for instance, competitive markets where firms do not interact

with anyone else or strategic situations where everyone interacts with every-

one else). Notice that this set of core assumptions are typically not sufficient

to get analytical solutions from a neoclassical model (other, ever stronger as-

sumptions are necessary), but they help a lot in simplifying the framework:

in fact removing each of them generates a lot of problems as far as analytical

tractability of neoclassical models is concerned. Therefore, studying comple-

mentary models in an ACE perspective also means to provide a valid scientific

alternative paradigm to neoclassical economics, one firmly rooted instead on

concepts like bounded rationality, direct interactions, disequilibrium, etc..
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As will be clearer in what follows, these departures from the benchmark

assumption traditionally used in neoclassical models are also more in line

with what experimental and empirical data tell us about the way real-world

economic agents (all of us) behave and interact in everyday life. Interpreted

in the light of empirical and experimental evidence, assumptions like full

rationality are clearly at odds with reality. Under that perspective, ACE

can be seen as a substitute to standard neoclassical approaches to economics

that tries to build more reasonable models of the reality to better address

its behavior, a new approach that rejects the idea that good models can be

built using false assumptions and trying instead to explore models based on

assumptions more in line with what we know about how real-world agents

behave and interact.

2.5 An ante litteram agent-based model:

Thomas Schelling’s Segregation model

One of the early and most well known examples of an AB model is the seg-

regation model proposed by Thomas Schelling, who received the 2005 Nobel

prize for his studies in game theory (Schelling, 1969, 1971). To correctly

assess the importance of the model, it must be evaluated against the social

and historical background of the time. Up to the end of the 1960s racial

segregation was institutionalized in the United States. Racial laws required

that public schools, public places and public transportation, like trains and

buses, had separate facilities for whites and blacks. Residential segregation

was also prescribed in some States, although it is now widely recognized that

it mainly came about through organized, mostly private efforts to ghettoize

blacks in the early twentieth century - particularly the years between the
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world wars. But if the social attitude was the strongest force in produc-

ing residential segregation, the Civil Right movement of the 1960s greatly

contributed to a change of climate, with the white population exhibiting in-

creasing levels of tolerance. Eventually, the movement gained such strength

to achieve its main objective, the abolition of the racial laws: this was sealed

in the Civil Rights Act of 1968 which, among many other things, outlawed

a wide range of discriminatory conduct in housing markets. Hence, both the

general public attitude and the law changed dramatically during the 1960s.

As a consequence, many observers predicted a rapid decline in housing segre-

gation. The decline, however, was almost imperceptible. The question then

was why this happened. Schelling’s segregation model brought an answer,

suggesting that small differences in tolerance level or initial location could

trigger high level of segregation even without formal (legal) constraints, and

even for decent levels of overall tolerance. In the model whites and blacks

are (randomly) located over a grid, each individual occupying one cell. As

a consequence, each individual has at most eight neighbours (Moore neigh-

bourhood), located on adjacent cells. Preferences over residential patterns

are represented as the maximum quota of racially different neighbours that

an individual tolerates. For simplicity, we can assume that preferences are

identical: a unique number defines the level of tolerance in the population.

For example, if the tolerance level is 50% and an individual has only five

neighbours, he would be satisfied if no more than two of his neighbours are

racially different. If an individual is not satisfied by his current location, he

tries to move to a different location where he is satisfied.

The mechanism that generates segregation is the following. Since indi-

viduals are initially located randomly on the grid, by chance there will be

someone who is not satisfied. His decision to move creates two externalities:
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one in the location of origin and the other in the location of destination. For

example, suppose a white individual decides to move because there are too

many black people around. As he leaves, the ethnic composition of his neigh-

bourhood is affected (there is one white less). This increases the possibility

that another white individual, who was previously satisfied, becomes eager

to move. A similar situation occurs in the area of destination. The arrival

of a white individual affects the ethnic composition of the neighbourhood,

possibly causing some black individual to become unsatisfied. Thus, a small

non-homogeneity in the initial residential pattern triggers a chain effect that

eventually leads to high levels of segregation. This mechanism is reinforced

when preferences are not homogeneous in the population.

Figure 2.2, which shows the Netlogo implementation of the Schelling

model, exemplifies.23 The left panel depicts the initial residential pattern,

for a population of 2,000 individuals, evenly divided between “green” and

“red”, living on a 51x51 cells torus (hence the population density is 76.9%).

Two values for the tolerance threshold are tested: in the first configuration,

tolerance is extremely high (70%), while in the second it is significantly lower

(30%), although at a level that would still be considered decent by many

commentators. The initial residential pattern (obviously) shows no levels of

segregation: every individual has on average 50% of neighbors of a different

race. However, after just a few periods the equilibrium configurations of

the middle (for a tolerance level of 70%) and right (for tolerance level of

30%) panels are obtained. The level of segregation is high: more than three

quarters of neighbors are on average of the same racial group, even when

individuals are actually happy to live in a neighborhood dominated by a

different racial group! Moreover, most people live in perfectly homogeneous

23Wilensky (1998), who introduced only minor changes with respect to the original
version.
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(a) (b) (c)

(a) Initial (random) pattern. The average share of racially similar neighbors is roughly
50%. With a tolerance level of 70% (40%), less than 20% (more than 80%) of the individ-
uals are not satisfied.
(b) Tolerance level = 70%. Final pattern: the average share of racially similar neighbors
is 72.1%; everyone is satisfied.
(c) Tolerance level = 30%. Final pattern: the average share of racially similar neighbors
is 99.7%; everyone is satisfied.

Figure 2.2: Netlogo implementation of Schelling’s segregation model

clusters, with different ethnic clusters being often physically separated from

each other (by “no man’s lands”). Only the relative mix brought by confining

clusters keeps down the measure of overall segregation in the middle panel.

Should the overall composition of the population be biased in favour of one

ethnic group, we would clearly recognize the formation of ghettos.

Note that the formation of racially homogeneous ethnic clusters and ghet-

tos is an emergent property of the system, which could hardly be deduced

by looking at individual behavior alone, without considering the effects of

interaction. Actually, it can be shown that no matter the shape of individual

preferences, the resulting aggregate pattern is always one in which segrega-

tion occurs. Moreover, the clusters themselves could be considered as the

elementary unit of analysis at a different, more aggregate level, and their

behavior — whether they shrink, expand, merge or vanish — studied with

respect to some exogenous changes in the environment. Not only a prop-

erty, that is a statistical regularity, has emerged, but also a whole new entity
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can be recognized. However, this new entity is nothing else but a subjec-

tive interpretation by some external observer of an emergent property of the

system.

2.6 Conclusions

In their brilliant book, John Miller and Scott Page (2006) maintain that the

interest of many social phenomena lies “in between” the extremes: in between

various scientific fields, in between the few (often just one or two) and the

infinitely many agents of neoclassical models, in between the continuous and

the discrete, in between the micro and the macro. They argue that the science

of complex systems, and in particular the use of computational models, is

the most appropriate approach to the investigation of these phenomena.

In this short introduction, we have discussed why this might be the case.

We have described the main features of ACE, and showed how it can be

a valid methodology for the investigation of social phenomena. The use of

AB models can complement the traditional tools, or can provide a valid

alternative. Although the agent-based methodology is used in disciplines as

different as biology, medicine, natural resources management and sociology,

its potential for economics is still deeply undervalued. We therefore conclude

with J. Doyne Farmer and Duncan Foley that “[t]he economy needs agent-

based modelling” (Farmer and Foley, 2009). The rest of the book is devoted

on how to develop and analyze such models.
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Chapter 3

Agent-based models as

recursive systems

Matteo Richiardi

3.1 Introduction

A rather common misunderstanding about simulations is that they are not

as sound as mathematical models. Computer simulations are, according to a

popular view, characterized by an intermediate level of abstraction: they are

more abstract than verbal descriptions but less abstract than “pure” mathe-

matics. This is nonsense. Simulations do consist of a well-defined (although

not concise) set of functions, which relate inputs to outputs. These func-

tions describe a fully recursive system and unambiguously define its macro

dynamics. In this respect, AB models are no different from any other model:

they are logical theorems saying that, given the environment and the rules

described by the model, outputs necessarily follow from inputs. As any other

model, they provide sufficiency theorems: the environment and the rules are
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sufficient conditions to obtain the results, given the inputs. The resort to

computer simulations is only an efficient way —given some conditions— to

obtain the results.

In this chapter we offer a characterisation of AB models as recursive mod-

els. The chapter has a simple structure: section 3.2 places AB modelling in

the wider context of simulation models; section 3.3 introduces the notation

and the key concepts; finally, section 3.4 concludes elaborating on what con-

stitutes a “proof” of what in an AB setting.

3.2 Discrete-event vs. continuous simulations

and the management of time

Computer-based simulations face the problem of reproducing real-life phe-

nomena, many of which are temporally continuous processes, using discrete

microprocessors. The abstract representation of a continuous phenomenon

in a simulation model requires that all events be presented in discrete terms.

However, there are different ways of simulating a discrete system.

In Discrete Event Simulations (DES) entities are thought of as moving

between different states as time passes. The entities enter the system and

visit some of the states (not necessarily only once) before leaving the system.

This can be contrasted with System Dynamics (SD), or continuous simulation

modelling, a technique created during the mid-1950s by Jay Forrester at the

Massachusetts Institute of Technology (Forrester, 1971), which characterizes

a system in terms of ordinary differential equations (ODEs). SD takes a

slightly different approach to DES, focusing more on flows around networks

than on the individual behaviour of entities. In SD three main objects are

considered: stocks, flows and delays. Stocks are basic stores of objects, as the
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number of unemployed workers. Flows define the movement of items between

different stocks in the system and out/into the system itself, as, for example,

the rates in and out of employment and the fraction of workers that enter

and exit the labour force in a given time frame (e.g. a week). Finally, there

may be delays between measurement and action upon that measurement, for

instance if it takes some time before unemployed workers become discouraged

and decide to leave the labour force. An SD model is a network of stocks,

flows and delays.

Note that in DES inherently continuous processes, as the increase in hu-

man capital due to being in education, must be discretized (for instance by

modelling degree completion: the level of human capital increases only upon

obtaining the degree). On the other hand, a continuous approximation must

be taken for inherently discrete events in SD, as in the labour example above:

if there are many workers, the fact that any individual can be in only one

state (either employed or unemployed) does not affect the smoothness of the

aggregate flows. The discrete nature of digital computers however requires to

take a further approximation, simulating to any degree of accuracy the differ-

ential equations with the corresponding difference equations, by considering

increasingly smaller time frames.

Where do AB models lie in this taxonomy? AB models are in essence

discrete event simulations. Although there are authors in the simulation lit-

erature stressing the difference between AB models and DES (Siebers et al.,

2010, see for instance), these differences appear to be related more to the

modelling specification and the purpose of the analysis than to the technical

implementation. The theory of discrete event simulations originated in the

Operation Research (OR) literature, a discipline concerned with system op-

timization where decision problems are broken down into basic components
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Discrete-event simulations AB models

Process oriented (top down modelling
approach); the focus is on modelling
the system in detail, not the entities.

Individual based (bottom up mod-
elling approach); the focus is on mod-
elling the entities and interactions be-
tween them.

One thread of control (centralized).
Each agent has its own thread of con-
trol (decentralized).

Passive entities, i.e. something is done
to the entities while they move trough
the system; intelligence (e.g. decision
making) is modelled as part in the sys-
tem.

Active entities, i.e. the entities them-
selves can take on the initiative to do
something; intelligence is represented
within each individual entity.

Queues are a key element. No concept of queues.

Flow of entities through a system;
macro behaviour is modelled.

No concept of flows; macro behaviour
is not modelled, it emerges from
the micro decisions of the individual
agents.

Input distributions are often based on
collect/measured (objective) data.

Input distributions are often based on
theories or subjective data.

Table 3.1: Discrete Event Simulations (DES) vs. Agent-Based (AB) models. Source:
Siebers et al. (2010).

and then solved in defined steps by mathematical analysis. Discrete event

simulations are therefore often understood as top-down exercises: the object

of interest is a specific process (e.g. the functioning of an emergency room),

which is analyzed in terms of its constituent sub-processes. The difference in

perspective can be seen in table 3.1, which describes the main attributes of

the two techniques according to Siebers et al. (2010).

Apart from these difference in use, AB modelling and DES share the

same structure: in both cases, models consist of a set of entities that interact

with each other in an environment. This leads researchers within the OR

literature itself to recognise that the two methodologies “are like England

and America —separated by a common language.” (Brailsford, 2014, p.3).

Note that the recognition of the atomistic (i.e. discrete, at a microscopic

level) nature of most processes implies that any SD system admits a DES/AB
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representation (Macal, 2010). Every well formulated continuous simulation

model has an equivalent formulation as a discrete event simulation. However,

in some cases this may not be convenient, as AB models are a lot more time

consuming to build and run.

Within the literature on DES, an important distinction concerns the

treatment of time. Discrete-time simulations break up time into regular time

slices ∆t (steps) and the simulator calculates the variation of state variables

for all the elements of the simulated model between one point in time and

the following. Nothing is known about the order of the events that happen

within each time period: discrete events (marriage, job loss, etc.) could have

happened at any moment in ∆t, while inherently continuous events (ageing,

wealth accumulation, etc.) are best thought to progress linearly between one

point in time and the following one.

By converse, Discrete-time simulations are characterized by irregular time

frames that are punctuated by the occurrence of discrete events (jumps).

Between consecutive events, no change in the system is assumed to occur;

thus the simulation can directly jump in time from one event to the next.

Note the distinction between treatment of events and treatment of time.

Irrespective of time being sampled at regular or irregular intervals, an AB

model is always a discrete event simulation.

In both continuous and discrete time, discrete event simulations and AB

models can be understood as a recursive systems (figure 3.1). A recursive

system is one in which the output is dependent on one or more of its past

outputs. If the system is “memoryless”, meaning that the probability dis-

tribution of the next state depends only on the current state and not on

the sequence of events that preceded it, the system is a Markov chain: “the
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Figure 3.1: The recursive nature of AB models.

future depends on the past only through the present”. Note that it is always

possible to redefine the state space by taking into account all relevant past

states, so that the identification of Markov chains and recursive systems is

complete. For instance, suppose that the transitions between employment

(E) and unemployment (U) depend on the current state, s0 = {U,E}, and

the state in the previous period, s−1 = {U,E}. We can redefine the state

space as s = {(U,U), (U,E), (E,U), (E,E)}, where each possible state is

a combination of the current and the previous state, (s0, s−1), obtaining a

Markov chain. Hence, AB models are Markov Chain (Izquierdo et al., 2009).

Further, AB models can also be seen as dynamical systems (Hinkelmann

et al., 2011) —where a function describes the time evolution of the system in

the state space (Luenberger, 1979). Markov chains are naturally related to

linear dynamical systems, since the state transition probabilities of Markov

chains evolve as a linear dynamical system (Attal, 2010).

Markov chains are important because, if some conditions hold, it is pos-

sible to characterise a stationary distribution of the states by looking only
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at the transition matrix between states. Unfortunately, the applicability of

Markov chain theory to AB modelling is limited. This is because the state

space of an AB model can grow enormous, so that he transition matrix often

does not have an analytical representation, and it might well be time inho-

mogenous, that is the probability of a transition from one state to another

state might change over time.

The recursive nature of AB models has one important computational

consequence. As Barbara Bergmann put it,

The elimination of simultaneous equations allows us to get results

from a simulation model without having to go through a process

of solution. (Bergmann, 1990)

It is the recursive structure of the simulation that allows computability.

This is to be contrasted with the fixed point structure of rational expecta-

tions models (see the next chapter), which makes computability much harder.

Moreover, recursivity has not only an instrumental value in modelling com-

plex system: it also reflects an intrinsic characteristics of reality:

The world is essentially recursive: response follows stimulus, how-

ever short the lag. (Watts, 1991)

3.3 The structure of an AB model

In this section, we offer a formal characterization of AB models as recursive

systems. Our analysis applies both to models set in discrete time, and to

models set in continuous time, the only difference being the interpretation

of t + 1: one (regular) step ahead to the next period in discrete time, and

one (irregular) jump ahead to the time of the next event in event queue in

continuous time.
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At each time t an agent i, i ∈ 1 . . . n, is fully described by some state

variables xi,t ∈ <k.1 Let the evolution of her state variables be specified by

the difference equation:

xi,t+1 = f i(xi,t,x−i,t,θi, ξi,t). (3.1)

where ξi,t are stochastic terms, and θi ∈ Θ is a vector of parameters, with

Θ being a compact subset of RQ. The behavioural rules may be individual-

specific both in the functional form f i(.) and in the parameters θi, and may

also depend on the state x−i of all agents other than i.2 The set of structural

equations (3.1), defined at the individual level, specifies the data generating

process (DGP) of the model.

At any point in time, the system is in a state X t = (xi,t) which is the

matrix of all individual states. By replacing eq. (3.1) in the definition above,

we obtain

X t+1 = F (X t,θ,Ξt), (3.2)

where Ξt is a matrix containing all stochastic elements at time t. Equation

(3.2) defines the transition equation of the system.

Note that in optimal control theory it is distinguished between state and

control variables, where the latter are characterised by two qualifiers:

1. control variables are subject to the optimiser’s choice,

2. they have an effect on the value of the state variable of interest.

In AB models however, because agents do not engage in mathematical

1Categorical variables can be indexed with integer values (e.g. 0 for unemployed, 1 for
employed).

2Here and in the following we use “behavioural rules” and similar terms in a loose
sense that encompasses the actual intentional behaviours of individuals as well as other
factors such as technology etc.
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optimization (see chapter 5), there is no real need to distinguish between

state and control variables. Each individual variable evolves according to a

rule, or law of motion, fi. Some of them are simple accounting identities: for

instance, wealth at time t+ 1 is equal to wealth at time t plus income minus

consumption, and it is not a direct object of choice for the individual. But

control variables, as consumption in the above example, are also determined

in an algorithmic way in AB models: for instance, consumption might evolve

as a constant fraction of income, or be influenced by neighbours and friends,

so the only difference is that its law of motion is subject to more assumptions

than the law of motions of wealth.

To elaborate on the point, optimization requires solving something like

min
ct

C(ci,t, si,t,θ
c
i) (3.3)

s.t.

si,t = s(si,t−1, s−i,t−1, ci,t,θ
s
i ) (3.4)

where c are control variables, s are state variables, C is an objective func-

tion, and the constraint (3.4) is the law of motion of the state variables.3

This introduces a natural distinction between c and s. The solution of the

optimization problem leads to a law of motion for the control variables,

ci,t = c(St−1,θi) (3.5)

where S is the collection of all state variables of all individuals. This can

then be plugged back into the law of motion of the state variables (3.4):

si,t = s̃(St−1,θi) (3.4′)

3For the sake of clarity, we omit expliciting the stochastic terms
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The two classes of law of motions (3.4′) and (3.5) have the same form. Be-

cause in AB modelling we generally do not explicit the individual optimiza-

tion problem, we can simply refer to both state and control variables as “state

variables” xi = [si, ci], subject to the general law of motion (3.1).

Often, we are interested in some aggregate (observable) statistics of our

economy. A vector of aggregate variables yt is defined as a function over the

state of the system, that is as a projection from X to y:

yt = m(X t,κt). (3.6)

where κt are extra random terms that accounts for measurement errors and

other shocks to the observables, if any. This is the measurement equation,

which together with the transition equation forms the state space represen-

tation of the system. The question is whether it is possible to solve equation

(3.6) for each t, regardless of the specification adopted for f i(.), and the

answer is that a solution can always be found by backward iteration, which

traces the stochastic evolution of yt back to the initial state of the system

and the values of the parameters. Expliciting this relationship is complicated

because of the random terms Ξ and κ that enter at every stage. As the be-

havioural rules f i and the measurement function m need not to be linear,

these random terms cannot be netted out by taking expectations. Therefore,

the only way to analyze the mapping of (X0,θ) into yt is by means of Monte

Carlo analysis, by simulating the model for different initial states and values

of the parameters, and repeating each simulation experiment many times to

obtain a distribution of yt.

However, because digital computers are deterministic machines, it is pos-

sible to further pin down the formalization above.4 In a digital computer

4Analog computers exist in which continuously variable physical quantities, such as
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random terms are not truly random: they are generated by an algorithm

which produces sequences of numbers that resemble the properties of random

numbers. Accordingly, these numbers are referred to as pseudo-random, and

the algorithm is called random number generator. Each sequence is identi-

fied by a seed —–which for the sake of simplicity is often called random seed

(causing some confusion: random seeds are not random).5 Specifying the

random seed guarantees the reproducibility of the results. 6 Therefore, the

random terms Ξ and κ are a deterministic function of the random seed s,

and equations (3.2)-(3.6) reduce to

X t+1 = F (X t,θ, s) (3.2′)

yt = m(X t, s). (3.6′)

The random seed can be thought of as a latent parameter, lacking a “natu-

ral” counterpart. Alternatively, and more conveniently, it can be considered

as a further initial condition: Z0 = {X0, s}. By iteratively substituting

electrical potential, fluid pressure, or mechanical motion, are used to represent (analo-
gously) the quantities in the problem to be solved. Answers to the problem are obtained
by measuring the variables in the analog model. Analog computers are not determinis-
tic, as physical quantities cannot be measured with absolute precision. Though digital
computing has taken the lead, analog computers have been widely used in simulating the
operation of aircraft, nuclear power plants, and industrial chemical processes.

5If there are more than one random number generators, we can think of s as the seed of
an additional random number generator determining the seeds of the different generators
used in the model.

6When the random seed is not specified, it is generally taken from some environmental
variable (as the computer clock), which guarantees that it is different for every simulation
run.
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X t+1 with X t using (3.2′), we get

X t = F (F (· · ·F (Z0,θ) · · · ))

= F t(Z0,θ) (3.2′′)

yt = m
(
F t(Z0,θ)

)
= gt(Z0,θ). (3.6′′)

The law of motion (7.1) uniquely relates the value of y at any time t

to the initial conditions of the system and to the values of the parameters,

and is known as the input-output transformation (IOT) function. The word

“function” is appropriate here, as any particular input given to the computer

model will lead to only one output (different inputs might lead to the same

output, though).

This is a convenient mathematical representation, and will be used in

chapter 7 for discussing the properties of AB models. However, from a prac-

tical point of view it is still true that knowledge of the IOT function must

be obtained by Monte Carlo analysis, by simulating the model for different

initial states, parameter values, and random seeds.

Given this framework, it is easy to discuss the alleged differences in terms

of “mathematical soundness” between analytical models and computer sim-

ulations. In analytical models, the behavioural rules (3.1) typically have a

simple structure, with either limited or global interaction, and heterogeneity

is kept to a minimum. Functional forms are often linear (or linearized). Ag-

gregation is performed on selected variables by taking expectations over the

stochastic elements, which are conveniently specified. On the contrary, an

AB model poses little restrictions on the specification of equation (3.1), but

this freedom comes at two prices: (i) the modeller has to exert self-discipline
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in order to stick with the KISS (keep it simple, stupid) principle and connect

with the existing literature, and (ii) the equation for the macro dynamics

(7.1) can easily grow enormous, hindering any attempt at symbolic manipu-

lation. Nevertheless, the functions (7.1) are completely specified. It is thus

possible to explore their local behaviour by analysing the artificial time series

produced by the simulation.

3.4 Obtaining results in AB models

The input-output transformation function (7.1) is the basic object of interest

to derive results in an AB setting. Because it has no analytical formulation, it

has to be analysed by means of simulations. By performing sensitivity analyis

of the model outcomes with respect to the parameters and initial conditions,

we can recover the shape of the IOT function, either locally or globally.

Sensitivity analysis is discussed at length in chapter 7, while chapter 9 deals

with making use of the IOT function for estimating the model parameters.

We now assume our veil of ignorance about the IOT function is finally

lifted, and elaborate on how we can use it to increase our knowledge of the

real world. However, it should be clear that AB models differ from analytical

models only because of this veil of ignorance around the IOT function, which

is sometimes so dark as to make the whole model appear as a “black box”.

Hence, our discussion below is a methodological conclusion that applies to

any type of model. We will revert to the specificities of AB model in the last

paragraph.

When we fix the random seed, the IOT function is a deterministic map-

ping of inputs (parameters and the initial state of the system) into outputs,

hence it identifies sufficient conditions for whatever dynamics emerge. Given
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the assumptions embedded in the model specification, those values of the

parameters and initial conditions are sufficient to generate the observed dy-

namics, in the simulated data. Performing Monte Carlo simulations with

different random seeds allows to make probabilistic statements about the

likelihood of getting an outcome, given the inputs.

If the simulated dynamics bear some resemblance with the real data,

then we stumbled upon a possible explanation of the phenomenon of interest.

However, there might be other explanations, either within the model itself

(other combinations of inputs leading to the same outcomes, an instance of

equifinality or non-identification), or outside the model, when other assump-

tions and model specifications are made. But if the researcher is confident

enough that the assumptions are valid (see chapter 8), then the model offers

a likely explanation.

This form of logical reasoning is called abduction, or “inference to the best

explanation”. Let the observed circumstances be denoted with b, while a is

an hypothetical explanation. Abduction means “guessing” a from b because

a implies b. The American philosopher Charles Sanders Peirce (1839–1914)

first introduced the concept of abduction using precisely the term “guessing”.

To abduce a from b two steps are involved: determining that a is sufficient,

even if not necessary, for b, and arguing that a is indeed an economical

explanation for b, the KISS principle.

Models (included simulation models) can also be used in a deductive way,

when fed with real (observed) input. Then, given the assumptions made,

outputs will necessarily follow: if we observe a, the model predicts that b will

happen (with some probability distribution if the random feed is not fixed).

In both cases the connection between inputs and outputs is the IOT

function, the black box over which only inductive evidence based on the sim-
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ulated data can be obtained. The “proof” of the results thus lies in the code,

rather than in mathematical reasoning as in analytical models. This is why

it is fundamental, in AB models, to write the simulation code in a clear and

transparent way, document it and make it public. Also, supporting evidence

for the working of the “black box”, the shape of the inferred IOT function,

should be provided, either in terms of analytical results for simple cases, or

in terms of intuition explaining why the simulated results are obtained.
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Chapter 4

Rationality, behaviour and

expectations

Domenico Delli Gatti

4.1 Introduction

In order to achieve her goals, an agent must decide a line of action (a be-

havioural rule). Mental representations of the environment and of the be-

havior of other agents are key in taking this decision. The availability of

an adequate and appropriate information set and of cognitive capabilities to

process information, in turn, are key in forming these mental models. In

a context characterized by uncertainty, one of the most important cogni-

tive process is expectation formation. In this chapter we overview the way in

which rationality, behavioural rules and expectation formation are connected

in modern macroeconomics.

In section 4.2 we set the stage by discussing (optimal) decision making

in an environment of full rationality and certainty. From section 4.3 on, we
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discuss the consequences of uncertainty – in its wide range of specifications –

and expectation on individual decision making and on macroeconomic per-

formance.

Section 4.3 is devoted to the theory of choice in the presence of mea-

surable uncertainty (risk). Uncertainty is measurable when agents are able

to attach probabilities to uncertain events. In this setting the probability

distribution of the variable of interest replaces the true value of the variable

(which is available only in the case of certainty) in the information set of the

agent. We will provide simple examples of choice in the case of risk neutral-

ity (subsection 4.3.1) and risk aversion (subsection 4.3.2). Moreover, we will

discuss choice in a multi-period setting (subsection 4.3.3).

We will show that it is straightforward, and extremely useful, to extend

the notion of measurable uncertainty discussed in subsections 4.3.1 and 4.3.2

to the multi-period setting. Also in a multi-period context, in fact, the true

values of the variables of interest are replaced by probability distributions.

The Rational approach to Expectation formation (RE) is the natural

candidate to model expectations in such a setting. In fact we introduce a

Linear Stochastic Difference Equation at this early stage of the analysis.

We illustrate its solution by means of a graphical tool which exploits the

two way relationship between current and expected value of a variable of

interest. The true (or actual or current) value of variable x is a function of

the expectation of the same variable xe, in symbols x = f(xe) (represented

by the True Value or TV schedule). On the other hand, the Expectation of

the variable is a function of the current value: xe = g(x) (represented by

the EXpectations or EX schedule). The intersection of these two schedules

yields consistency (equilibrium) between actual and expected values.

This equilibrium yields correct (and model-consistent) expectations only
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when the Expectation schedule coincides with the 45-degree line: xe = x. In

this case, the RE equilibrium (in the absence of shocks) can be characterized

as a fixed point of map f .

Section 4.4 introduces heuristics to form expectations, with special refer-

ence to the adaptive expectation formation mechanism.

Section 4.5 is an overview of macroeconomic thought from the viewpoint

of expectation formation. Using variants of the same basic macroeconomic

framework, we will survey models of the Neoclassical-Keynesian Synthesis, of

the Monetarist School, of the New Classical Macroeconomics and of the New

Neoclassical Synthesis. We will provide the solution of these macroeconomic

models with adaptive and/or rational expectation. We will also discuss the

effect of shocks with simple examples. We will use the graphical apparatus,

based on the TV and EX schedules, introduced in subsection 4.3.3.

Section 4.6 touches upon the criticisms and objections to rational expec-

tations and paves the way to the thorough discussion of these issues which

will be carried out in chapter 5.

In section 4.7 we present a conceptual framework to discuss the macroe-

conomic role of heterogeneous expectations. In this case the TV and EX

schedules are functions of average expectations, i.e. of the mean of individ-

ual heterogeneous expectations.

Section 4.8 presents some ideas and an example on heterogeneous expec-

tations in macroeconomic ABMs. Section 4.9 concludes.

4.2 Certainty

Neoclassical choice theory assumes that agents are endowed with full or sub-

stantial rationality, which allows to solve a well defined (usually constrained)
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optimization problem. In its simplest and clearest form, full rationality is

characterized by the following assumptions: (i) agents have an objective

function which associates an index of individual well-being (e.g. utility for

the agent, profit for the firm) to each and every possible choice (consump-

tion for the agent, production for the firm); (ii) agents have constraints (the

budget constraint for the agent, the production function for the firm); (iii)

agents have an information set which contains all the items necessary to the

definition of the objective function and the constraints (prices of consump-

tion goods and income for the agent; costs of inputs, the sale price1 and

the resources to be devoted to production for the firm); (iv) agents have the

cognitive capabilities to carry on the task of finding an optimum of the ob-

jective function under constraints. In the absence of uncertainty – i.e. when

all the necessary information is available – and in the absence of cognitive

limitations agents can therefore define a fully optimal behavioral rule.

For instance, in a competitive setting the manager of a firm sets the

quantity q to be produced by solving the following optimization problem:

maxπ = Pq −Wn

s.t. q = nα

where π represents profit (the objective function), P the price, W the (nomi-

nal) wage, n employment. The constraint is represented by the well behaved

production function q = nα with 0 < α < 1. The information set consists

of α,W,P . It is easy to see that in a competitive setting the manager max-

imizes profits by choosing q∗ such that the selling price P is equal to the

1The price is a piece of information for the firm in perfect competition, when the firm
is a price taker; it is a choice variable in imperfect competition, when the firm has market
power.
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marginal cost of production: c(q) where c(q) = W
α
q

1−α
α . Hence

q∗ =

(
αP

W

) α
1−α

(4.1)

Equation (4.1) is the (optimal) behavioral rule adopted by the firm.

4.3 Uncertainty

It may well happen that some of the variables of interest are uncertain, i.e.,

unknown at the time a decision has to be taken. In our example, this is for

instance the case when the selling price is unknown (for any reasons). The

information set is not complete. Therefore a fully optimal behavioral rule is

not within the reach of the firm.

Following a well-known taxonomy proposed by Knight (1921) we distin-

guish between

• measurable or tractable uncertainty (also known as “risk”): in this case

agents are able to attach probabilities to uncertain events (e.g. “states

of the world”);

• untractable or “true” uncertainty: in this case, agents either do not

know the states of the world or they are incapable of associating prob-

abilities to them. As Keynes (1937) put it: they “simply don’t know”.

Uncertainty is measurable when the agent knows the set of all possible

states of the world, the value that the variable of interest will assume in each

state and the associated probability. In a sense in a risk setting the true

value of the variable is replaced by the true probability distribution of the

variable in the information set of the agent. Of course, all the states of the
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world must be known, i.e. there should be complete information as to the

support of the probability distribution. Moreover, there should be a unique,

“true” probability distribution.

4.3.1 Risk neutrality

For instance, in our example, the manager can still make an optimal choice

if the following pieces of information are available: (i) all the states of the

world (to simplify matters, suppose there are only two states: the good one,

characterized by “high” demand and the bad one with “low” demand),2 (ii)

the selling price in each state of the world (PH and PL respectively, with

PH > PL), (iii) the probability associated to each state of the world (pH and

pL = 1− pH respectively). If the manager is endowed with this information,

she may compute the expected selling price E(P ) = PL + pH(PH − PL).

In the presence of uncertainty, it is crucial for the agent to form expec-

tations, i.e. to figure out unknown aspects of the environment or of the

behavior of other agents which are relevant for the achievement of her objec-

tive. Hence, in the design of agents’ behavior we must take into consideration

the expectation formation mechanism.

An agent is risk neutral if, in the presence of (measurable) uncertainty,

she will maximize the expected value of the uncertain payoff.

In our example, if the manager is risk neutral, she will maximize expected

profits, i.e., the difference between expected sales proceeds and current costs.

Expected sales proceeds, in turn, will be equal to the product of the expected

selling price and the quantity (to be decided by the firm). In the presence of

uncertainty, therefore, the optimization problem of the risk neutral firm in a

2This setting can be easily generalized to any number of states of the world.
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competitive setting must be redesigned as follows

maxE(π) = E(P )q −Wn

s.t. q = nα

E(π) represents expected profit (the objective function). The information

set consists of α, W and the probability distribution of the selling price (PH

with probability pH and PL with probability 1− pH).

The manager maximizes expected profits by choosing q∗ such that the

expected selling price E(P ) is equal to the marginal cost of production c(q).

Hence

q∗ =

(
αE(P )

W

) α
1−α

(4.2)

Equation (4.2) is the (optimal) behavioral rule adopted by the firm in the

presence of measurable uncertainty. In other words an optimal choice can

still be made if the agent knows the probability distribution of the variable

which is uncertain. This probability distribution plays a role in the optimal

behavioral rule: the rule changes if the distribution changes (i.e. if the

support or the pdf of the distribution changes). For instance, the scale of

activity will increase if the probability that the firm associates with a high

aggregate demand (pH) goes up.

4.3.2 Risk aversion

An agent is risk averse if, in the presence of uncertainty, she will maximize

the expected utility of the uncertain payoff. We will discuss this issue in a

simple Diamond (1983) setting.

Consider an agent who must choose in t how much to consume in t+1

and in t+2. For simplicity, suppose the agent can be of two types: (1) an
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“early consumer” who wants to consume c1 in t+1 (for example because she

will need medical treatment) or (2) a“late consumer” who can wait until

period t+2 to consume c2. Utility, as usual, is increasing with consumption

and concave: u′(ci) > 0 and u”(ci) < 0, i = 1, 2. Suppose, moreover that

the agent is endowed with one unit of wealth, which may be invested in t in

(i) a liquid asset with gross return equal to 1 in any future period or (ii) an

illiquid asset with gross return equal to R > 1 in t+2. By assumption, if the

investment in the illiquid asset is liquidated prematurely (i.e. in t+1) it will

go wasted i.e., the return on the illiquid asset in t+1 is zero.

If the agent knew her type (i.e. in the absence of uncertainty), she would

maximize her utility by investing her wealth entirely (1) in the liquid asset

if an early consumer (so that c1 = 1) or (2) in the illiquid asset if a late

consumer (so that c2 = R). Denoting with θ the fraction of wealth invested

in the liquid asset, the fully optimal portfolio choice would be θ∗ = 1 when

the agent is an early consumer and θ∗ = 0 when the agent is a late consumer.

Suppose now that the agent is uncertain about her type which will be

revealed by nature only in t+1. The agent will be an “early consumer” if she

will need medical treatment, a circumstance which is unknown in t and will

materialize only in t+1. The information set is not complete: the piece of

information concerning the type of the agent is not available at the moment

the agent has to make a decision.3 Therefore a fully optimal behavioural rule

is not possible. The agent, however, can still make an optimal choice if the

following pieces of information are available: (i) all the states of the world in

t+1 (in our simple example there are only state 1 in which the agent needs

to consume in t+1 and state 2 in which she can wait until t+2), (ii) the

preferences over consumption in each state of the world represented by the

3In other words, the agent does not know whether she will need medical treatment or
not in t+1.
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well behaved utility functions u(c1) and u(c2), (iii) the probability associated

to each state of the world (p1 and p2 = 1− p1).4

Using this information, the agent can compute the expected utility in t

as the weighted average of the utility of consumption as an early consumer

and the utility of consumption as a late consumer, where the weights are the

probabilities of the two states of the world:

E(U) = u(c1)p1 + u(c2)p2 (4.3)

This is a Von Neumann-Morgestern utility function. Let’s specify u(.) as a

CRRA5 utility function: u(ci) =
c1−σi

1−σ ; i = 1, 2 where σ is the (relative) risk

aversion coefficient.

The risk averse agent will choose in t – i.e., before the type will be revealed

– c1 and c2 in order to maximize her expected utility under the constraint

represented by the composition of her wealth in terms of liquid and illiquid

assets. If the agent turns out to be an early consumer, she will consume

only the fraction of wealth invested in the liquid asset θ (so that c1 = θ); if

she turns out to be a late consumer, in addition to θ she will consume also

the wealth invested in the non-liquid asset, augmented by the rate of return:

4p1 is the probability of being an early consumer, i.e., in our example, of requiring
medical treatment in t+1. Since the endowment has already been invested in t, p1 can
also be conceived as the probability of a “liquidity shock” i.e., a shock which requires the
liquidation of wealth. Thanks to the law of large numbers, p1 (p2) is also the fraction of
early (late) consumers in the population.

5The acronym CRRA stands for Constant Relative Risk Aversion.
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(1− θ)R. Hence the problem of the agent is:

max
c1,c2

E(U) =
c1−σ1

1− σ
p1 +

c1−σ2

1− σ
p2

s.t. c1 = θ

c2 = θ + (1− θ)R = R− rθ

where r = R− 1. The elements of the information set are: σ, R and the

probabilities p1 and p2.

Substituting the constraints in the objective function, the optimal choice

of consumption translates into an optimal portfolio decision, i.e. the determi-

nation of the optimal fraction of the endowment to be invested in the liquid

asset:

max
θ
E(U) =

θ1−σ

1− σ
p1 +

[θ + (1− θ)R]1−σ

1− σ
p2

Solving for θ we get:

θ∗ = R

[
r +

(
r(1− p1)

p1

)1/σ
]−1

(4.4)

In the special case σ = 1 (i.e., with log utility), the optimal portfolio choice

boils down to

θ∗ = c∗1 =
R

r
p1 (4.5)

so that c∗2 = R− rθ∗ = R(1− p1).

From the discussion above, it is clear that an optimal choice can still be

made if the agent knows the probability distribution of the types. The optimal

behavioral rule changes if the distribution changes. For instance, the fraction
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of wealth invested in the liquid asset increases if the probability of being an

early consumer (p1) goes up. This is in a nutshell the methodology assumed

in the theory of choice in the presence of risk i.e. Subjective Expected Utility

theory (Savage, 1954).

4.3.3 Optimal choice in a multi-period setting

In a “dynamic” context – i.e. when the time horizon of the optimizing agent

consists of more than one period – the agent must solve an intertemporal

optimization problem, i.e. she must decide a sequence of optimal values for

the choice variables over a specified multi-period time span. For the sake

of discussion, in the following we suppose this time-horizon is infinite, i.e.

agents are infinitely lived.6 As an example, let’s consider an agent who must

decide the optimal consumption plan over an infinite time horizon.

In a multi-period setting, it is straightforward to assume that there is

uncertainty over the future states of the world.7 Therefore, the infinitely lived

agent must choose the consumption plan which maximizes Expected Lifetime

Utility (ELU) Et
∞∑
s=0

βsu(ct+s) i.e. the expected sum of “felicity functions”

u(ct+s); s = 0, 1, 2... discounted using the factor β.8 The maximization of

ELU is subject to a sequence of budget constraints, one for each period over

the same time span.

The budget constraint in each period states that the uses of resources

6Of course there can also be the dynamic case in which the time horizon is finite. The
most obvious category of models of this type is the “overlapping generations” model in
which there are only two periods, youth and old age. We will not treat this case here.

7The absence of uncertainty in a multi-period setting characterizes the “perfect fore-
sight” scenario: all the future state variables are known with certainty. We will not deal
with this scenario here.

8The felicity function U(x1t, x2t, ...) or period utility function represents the prefer-
ences of the agent in period t. The arguments of the felicity function in period t = 1, 2, ...
are the goods in the same period (xit, i = 1, 2, ..., N).
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in a certain period must be smaller or equal to the resources available to

the agent. In the simplest case, the agent has a certain amount of an asset

bt−1 (in real terms) which yields a return in one period so that the resources

available in t are Rt−1bt−1 where R is the gross real interest rate. These

resources are used to consume and accumulate assets. The budget constraint

in t therefore is: ct + bt ≤ Rt−1bt−1.
9

Assuming that utility is CRRA, the intertemporal optimization problem

of the agent consists in choosing a plan for consumption and asset holdings

over an infinite time horizon such that

maxEt

∞∑
s=0

βs
c1−σt+s

1− σ

s.t. ct+s + bt+s ≤ Rt+s−1bt+s−1 s = 0, 1, ...

Consolidating the first order conditions for a maximum with respect to c

and b one gets the consumption Euler equation:

ct+s = (βRt+s)
−1/σEtct+s+1 s = 0, 1, ... (4.6)

Imposing the usual stationarity condition in (4.6) we get the steady state

of the real interest rate R∗ = 1/β. In words: in the steady state the real

interest rate is equal to the rate of time preference of the agent.

We can linearize the expression above around the steady state. Denoting

with xt+s the percentage deviation of consumption from its steady state in

period t+s, i.e. xt+s := ct+s−c∗
c∗

and with Rt+s the percentage deviation of

the real interest rate from its steady state in period t+s, i.e. Rt+s := Rt+s−R∗
R∗

9The future values of the state variables must also be subject to an expectation. The
expected (in t) budget constraint for t+s is: Et(ct+s + bt+s) ≤ Et(Rt+s−1bt+s−1).
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and focusing on s=1 we can write

xt = − 1

σ
Rt + Etxt+1 (4.7)

Notice that, in the simplest case in which there is no investment, from the

aggregate resource constraint it follows that output is equal to consumption.

Hence the percentage deviation of consumption from its steady state is equal

to the percentage deviation of output/income from its steady state, a measure

of the output gap.

In order to illustrate the role of expectation formation in this setting in the

simplest possible way, let’s assume that the real interest rate is a stochastic

variable described by the following auto-regressive process:

Rt = (1− ρ)R∗ + ρRt−1 +R∗εt (4.8)

where 0 < ρ < 1 and εt is a white noise stochastic disturbance, i.e. a random

variable with zero mean and constant and finite variance.10

From (4.8) it follows that the deviation of the real interest rate from the

steady state is governed by the following law of motion

Rt = ρRt−1 + εt (4.9)

Suppose the real interest rate were equal to the rate of time preference in

the past. A shock in period T, εT , generates a departure of the real interest

rate from the rate of time preference, RT = εT . Since ρ < 1, over time

the auto-regressive process represented by (4.9) will gradually drive the real

10This assumption is not meant to be realistic. It plays the pedagogical role of allowing
us to introduce rational expectations at a very early stage of the exposition (see section
4.3.3). For a more realistic model of the real interest rate see below, section 4.5.
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interest rate back to its steady state R∗.

Since R is stochastic (by assumption), (4.7) can be conceived as the

semi-reduced form of a macroeconomic model which determines the current

output gap as a function of the expected future output gap (which will be

endogenized in the next section) and an exogenous shock.

A foretaste of Rational Expectation

Equation (4.7) is a Linear Stochastic Difference equation (LSDE). According

to (4.7) the actual or true value of the state variable xt is linearly related

to the expected (in t) value of xt+1 and to the shock Rt. For each possible

realization of the shock, equation (4.7) can be represented as a straight line

on the (Etxt+1, xt) plane, which we will label the True Value (TV) schedule.11

The 45-degree line on this plane is the Fulfilled Expectations (FE) schedule.

This is the first time we encounter these terms. The terminology and the

graphical apparatus will be used time and time again in the present chapter

to illustrate the different ways in which expectations may be formed and

their consenquences for macroeconomic performance.

The decisionmaking process will be complete only when also expectations

will be endogenously determined. The obvious way to endogenize expecta-

tions consists in solving (4.7) under Rational Expectations (RE). Rational or

model-consistent expectations, introduced by Muth (1961) and popularized

by Lucas and Sargent in the 1970’s, are mathematical expectations, condi-

tioned on the agents’ information set, of the variables of interest. RE are

based on the assumption that agents know the underling “true” economic

model so that they can anticipate the evolution of the variables to be fore-

cast. In fact, we will assume that agents know both the LSDE (4.7) and

11Using the jargon of the adaptive learning literature (see next chapter) equation (4.7)
can be conceived as the Actual Law of Motion of the state variable.
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the stochastic process (4.9). In other words, the information set available to

the private sector consists of the “true” model of the economy (at least in

reduced form) and the parameters characterizing the distribution of R.

In the absence of shocks, (4.7) boils down to xt = Etxt+1. This is rep-

resented by the straight line labelled TV (0) in figure 4.1. In this particular

setting TV(0) coincides with the 45-degree line.

𝐸𝑡𝑥𝑡+1 

𝑥𝑡 TV (0) 

E 

EX 

𝑇𝑉 𝜀𝑇  

F 

𝐸𝑇𝑥𝑇+1 

𝑥𝑇 

G 

Figure 4.1: RE solution of (4.7)

We will solve (4.7) using the method of “undetermined coefficients”. One

reasonable guess is that xt is a linear function of the random variable Rt i.e.,

xt = αRt where α is an undetermined coefficient. If the coefficient can be

determined (as a polynomial of the parameters showing up in the information

set), then the guess is verified. It is easy to show that the guess is indeed
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verified.12 The solution of the LSDE is

xt = − 1

σ(1− ρ)
Rt (4.10)

Notice that from the guess follows that Etxt+1 = ρxt. This is the equation of

the EXpectation schedule (EX) in figure 4.1. Graphically the solution of the

LSDE can be found at the intersection of the TV and EX schedules. In the

absence of shocks, from (4.10) x = 0 follows. In fact, the intersection of the

EX and TV(0) schedules is the origin of the axes (point E). Notice that, by

construction, in E expectations are fulfilled (the FE schedule coincides with

TV(0)).13

Suppose the economy has settled in the origin and has not experienced

a shock for a long time. Suppose now a shock εT occurs in period T which

generates a departure of the real interest rate from the rate of time preference,

RT = εT , and therefore a departure of consumption (and output) from its

steady state. Graphically, the TV schedule shifts down (see TV (εT )). The

RE solution is xT = − 1
σ(1−ρ)εT which can be read as the coordinate on the

y-axis of the intersection point between the EX and TV (εT ) schedules. The

after shock equilibrium is point F, which does not belong to the FE schedule.

In point F there is a recession – due to the sudden increase of the real interest

rate – and expectations are not fulfilled.

The auto-regressive process represented by (4.9) will gradually drive the

real interest rate and consumption back to their steady states (point E). For

instance, in period T+1 the TV schedule moves up (see the dotted line) and

12From the guess follows that Etxt+1 = αEtRt+1. From (4.9) follows that EtRt+1 =
ρRt. Hence Etxt+1 = αρRt = ρxt. Substituting this expression in (4.7) we can infer that
the guess is verified with α = − 1

σ(1−ρ) .
13In the absence of shocks, the economy is in the steady state: xt+1 = xt. In equilibrium

(point E): xt = Etxt+1 =. Therefore expectations are fulfilled: xt+1 = Etxt+1.
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a new (transitory) RE solution will materialize, i.e. point G. This process

will go on until the TV schedule reaches the original position, i.e TV(0). At

the end of the process the economy will go back to E.

The departure of output and the interest rate from the steady state is

temporary. Due to the auto-regressive nature of the shock, however, the

return to the steady state takes time, i.e. the shock is characterized by some

persistence. After the shock, in each time period an echo of the shock will

remain in the macrosystem, which will become fainter and fainter over time.

The initial recession will be replaced by smaller and smaller recessions until

the output gap is closed.

In the end, in the presence of RE, in equilibrium endogenous variables

are random processes, because they are (generally linear) functions of the

random exogenous processes which drive their dynamics. The stochasticity

of the exogenous variables is the source of uncertainty.14 If the agent knows

(i) the model of the economy, (ii) all the possible states of the world, (iii) the

value of the random variable(s) of interest (the realization) in each state of the

world, (iv) the probability associated to each state of the world, then she can

compute the RE equilibrium. In a nutshell, to compute the RE equilibrium

the agent needs “only” the model of the economy (at least in reduced form)

and the probability distribution(s) of the variable(s) of interest.

It is easy to show that in a RE context, forecast errors are white noise,

i.e. their average is zero (this is the unbiasedness property of RE). In fact,

from (4.10) it follows that the error the agent makes in forecasting the output

gap ext+1 := xt+1−Etxt+1 is proportional to the error made in forecasting the

14In the perfect foresight case, i.e. in the absence of uncertainty, the agent knows, in
each period t+s, the realization of the stochastic variable Rt+s. Therefore (4.7) becomes
xt = − 1

σRt + xt+1 i.e., the output gap is a random walk with a stochastic drift.
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interest rate eRt+1 := Rt+1 − EtRt+1:

ext+1 = − 1

σ(1− ρ)
(Rt+1 − EtRt+1) = − 1

σ(1− ρ)
eRt+1 (4.11)

From (4.9) follows that eRt+1 = εt+1. Hence ext+1 = − 1
σ(1−ρ)εt+1. In the end

therefore:

Ete
x
t+1 = − 1

σ(1− ρ)
Etεt+1 = 0 (4.12)

Since expectations formed rationally are unbiased, in such a world people

do not make systematic mistakes.

Notice that in the multi-period setting with rational expectations, we have

made the same assumption as in the static case in the presence of measurable

uncertainty (risk). In both settings, in fact, the true values of the (exoge-

nous) variables of interest are replaced by probability distributions. The RE

approach to expectation formation is the natural, i.e. most straightforward,

way to model expectations in a dynamic probabilistic (risky) setting in which

uncertainty may be reduced to the knowledge of a probability distribution.

We will meet again this notion in the overview of macroeconomic thinking

in section 4.5.

4.4 Adaptation in expectation formation

In rational choice theory behavioral rules derive from (constrained) opti-

mization. From the economist’s viewpoint, this Neo-classical view of human

decision making has the advantage of drastically reducing the number of sci-

entifically admissible behavioral rules: rules that do not derive from “first

principles” can and must be discarded.15 The main criticism to this approach

15Notice, however that there are many functional forms of the objective function and
many different ways of specifying the constraints. Therefore, the neoclassical approach
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is that the cognitive capabilities implicitly required to properly optimize do

not seem to be within the reach of real human subjects.16

The neoclassical view of human decision making has been challenged by

Herbert Simon, who has pioneered a line of research on the psychological

foundations of actual economic behavior which is now burgeoning under the

general heading of behavioral economics. We will elaborate on this in the

next chapter.

In Simon’s view human beings are characterized by bounded rationality

because their cognitive ability is limited, both in collecting and in processing

the relevant information. Following Keynes and Knight, we can trace back

bounded rationality to a condition of true uncertainty, i.e., a scenario in

which agents don’t have a clue as to the probabilities of unknown states of

the world.

In the presence of bounded rationality, agents adapt to the environment

and to the other agents’ behaviour. Adaptation is the process of adjusting

to changing external circumstances by following quick, computation-saving

heuristics. In this context, expectations may well be incorrect and errors

may be systematic.

The adaptive mechanism to form expectations (AE) – also known as the

error-learning hypothesis can be conceived of as a heuristic to form expec-

tations when the information and cognitive capabilities necessary to solve

optimization problems in the presence of uncertainty are not available to the

can generate many alternative behavioral rules for the same agent and the same problem
depending upon the specific functional form of the objective function and the number and
type of constraints.

16The Neoclassical approach can be defended on the basis of the “as if” argument
put forward by Friedman. According to this argument the realism of assumptions is not
necessary for a model to be valid, the truly important criterion for validity being whether
the model performs well or not in terms of forecasting capability. This argument has been
and still is fiercely debated. Methodologically, we do not agree with it.

83



agent. In the AE scheme, an agent updates her expectation of a certain

variable in the future (say period t+1) by a factor which is proportional to

her forecast error in the current period. Using the symbols introduced in the

previous section, the AE scheme can be represented as follows:

xet+1 = xet + ρext = xet + ρ(xt − xet ) (4.13)

where xet+1 is the (non rational) expectation formed in t of the variable x in

t+ 1 and ρ is a positive parameter, smaller or equal to one.

In the history of macroeconomics, Adaptive Expectations have been pro-

posed well before the RE revolution. In fact, the adaptive scheme was in-

troduced in the 1950s by Cagan and Friedman to study hyperinflations and

then adopted by Friedman in the debate on the Phillips curve in the ’60s.

Adaptive expectations have been heavily criticized in the ’70s. RE the-

orists, in fact, held that people cannot be so stupid as to make systematic

mistakes. For a decade or so, this assumption has gone unchallenged and RE

have been all the rage. Nowadays, however, there is a large literature which

departs more or less boldly from the RE assumption to account for the fact

– which has been corroborated by plenty of experimental evidence – accord-

ing to which people cannot be so smart as not to make errors on average.

Adaptive expectations, therefore are currently experiencing a comeback in

the light of the criticisms raised against the RE hypothesis (more on this in

the next chapter).
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4.5 Riding at full gallop through the history

of macroeconomics

In this section we will briefly overview the development of macroeconomic

thought in order to bring to the fore the role of models of expectation for-

mation.

4.5.1 The Neoclassical-Keynesian Synthesis

We start from the workhorse of the Neoclassical-Keynesian Synthesis, i.e.,

the IS-LM-Phillips curve (PC) framework which can be conceived as the

mainstream macroeconomic model in the ’50s and ’60s of the last century.

In this framework expectations do not play a role. The central role of ex-

pectations will be brought to the fore by Friedman’s criticism of the Phillips

curve. The development of ideas on expectation formation, therefore, can be

most clearly described as a sequence of variants of this framework in which

expectations are incorporated in different ways.

The IS-LM-PC framework consists of the following equations:

xt = − 1

σ
(it − πt)

µ = −1

φ
it +m(xt + πt)

πt = kxt

The first equation is the IS function. The output gap x is decreasing

with the real interest r = i − π, where i is the nominal interest rate and

π is inflation; σ is a positive parameter.17 The second equation is the LM

17The IS function considered in this subsection departs from the standard undergrad-
uate textbook version of the IS-LM model as it determines the output gap instead of the
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function. Money demand (on the RHS of the equation) is increasing with

nominal income (in growth rates), i.e. x+π and decreasing with the nominal

interest rate; φ,m are positive parameters. We assume φ > 1. Money supply

(LHS) grows at the exogenous rate µ. The third equation is the Phillips

curve, which associates inflation positively to the output gap; k is a positive

parameter.18 The Phillips curve can be conceived as a Keynesian Aggregate

Supply (AS) curve on the (x, π) plane. It incorporates nominal rigidity.19

Substituting the LM into the IS equation and setting m = 1 to simplify

notation (and without loss of generality) one gets the Aggregate Demand

(AD) schedule

xt = d0µ− d1πt (4.14)

where d0 := φ
σ+φ

and d1 := φ−1
σ+φ

. Since φ > 1, then d1 > 0.

The IS-LM-PC framework boils down to the the AD-AS system consisting

of equation (4.14) and the Phillips curve. Solving this system for x, π we get

xK =
d0

1 + kd1
µ

πK =
kd0

1 + kd1
µ

level of output as a function of the real interest rate. It is, on the other hand, a distant
relative of the consumption Euler equation (4.7). There are two differences: (i) the ex-
pectation of the future output gap is ignored (since the model of this subsection abstracts
from all the expectational variables); (ii) the real interest rate is defined as the difference
between the nominal interest rate and current inflation instead of being described by the
stochastic process (4.9). This definition makes room for monetary policy and for inflation
in the aggregate demand component of the model.

18The original Phillips curve associates inflation to the distance of the unemployment
rate from the natural rate of unemployment. This distance is negatively related to growth
through Okun’s law. Hence the formulation in the text.

19There are many ways of deriving the AS curve. For example, with perfect competition

and nominal wage rigidity, from equation (4.1) one gets P = W̄
α q

1−α
α . Taking logs and

differentiating one gets π = kx where k = 1−α
α , where we assume that the percent change

of output is measured from the natural level of output.
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Changes in the growth rate of money supply affect both nominal and real

variables.20 This is due to nominal rigidity.

When wages are perfectly flexible, the aggregate scale of activity is always

at the full employment level, so that

xF = 0

πF =
d0
d1
µ =

φ

φ− 1
µ

In this case, of course, changes in monetary policy affect only nominal

variables.

4.5.2 Expectations enter the scene

Friedman’s critique of the Phillips curve led to the Expectations Augmented

Phillips curve (EAPC), i.e.

πt = kxt + πet+1 (4.15)

where πet+1 is the expectation of inflation in t+1, taken in t.21 The IS-LM-

EAPC framework boils down to the system consisting of the AD and EAPC

20To complete the argument, notice that the IS-LM-PC model in structural form is a
system of three equations in three unknowns, namely the equilibrium levels of the output
gap, inflation, and the nominal interest rate. The reduced form of the model therefore

consists of xK , πK and iK = φ
[
(1 + k) d0

1+kd1
− 1
]
µ. It is necessary to assume that the

expression in brackets is negative, so that an increase of the quantity of money pushes
the interest rate down. At this point, however, we must re-interpret i as a component of
the nominal interest rate which can be positive or negative. For instance, we can denote
the nominal interest rate properly speaking with in = ī+ i where ī is a given benchmark.
Hence i turns out to be a component of the nominal interest rate which can be negative.
The Zero Lower Bound is hit when i is negative and equal to ī in absolute value.

21This can be conceived also as the equation of the expectations augmented AS curve
(EAS).
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equations, i.e., (4.14) and (4.15). Solving this system for xt, πt we get

xt =
a

k
µ− bd1πet+1 (4.16)

πt = aµ+ bπet+1 (4.17)

where a := kd0
1+kd1

, b := 1
1+kd1

. The reduced form of the AD-EAPC system

consists of the output gap equation (4.16) and the inflation equation (4.17).

Notice that the latter is a linear relationship between current and expected

inflation, given the growth rate of money supply. To close the model we

need a theory of expectation formation to be applied to the expectation of

inflation.

4.5.3 Adaptive Expectations

As anticipated in the previous section, Friedman proposed an adaptive heuris-

tic to model expectations formation. In the Adaptive Expectations (AE)

setting, expectations are updated according to the following rule:

πet+1 = πet + ρ(πt − πet ) (4.18)

where 0 < ρ ≤ 1. The expression in parentheses is the forecast error et :=

πt − πet . The product ρet is the “error-correction” mechanism.22 23

22Denoting with ∆e
t,t+1 := πet+1 − πet the change in expectations, the adaptive nature

of the updating rule emerges nicely if we rewrite (4.18) as follows: ∆e
t,t+1 = ρet. From

this expression it is clear that in an adaptive setting (i) expectations of inflation are
revised upward (downward) if inflation has been underestimated (overestimated); (ii) the
magnitude of this revision is proportional to the error made.

23When maximum weight is given to the forecast error, i.e., ρ = 1, we get static or
naive expectations. In this special case πet+1 = πt.
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Equation (4.18) can be rewritten as

πet+1 = (1− ρ)πet + ρπt (4.19)

i.e. the expectation of inflation in t+ 1 is a weighted average of the expected

and actual levels of inflation in t.24

The AD-EAPC system with adaptive expectations boils down to the out-

put gap equation (4.16), the inflation equation (4.17) and the AE updating

rule (4.19).

The system is recursive. We focus first on the subsystem represented by

the inflation equation and the updating rule. From (4.17) we get: πet+s =

(πt+s−1 − aµ)/b, s = 0, 1. Substituting these expressions into (4.19) and

rearranging we get a linear first order difference equation:

πt =
aρ

1− bρ
µ+

1− ρ
1− bρ

πt−1 (4.21)

The steady state of (4.21) is πAE = a
1−bµ. Thanks to the fact that b < 1,

steady state inflation is positive and the steady state is stable.25 Steady

state inflation is a multiple of the growth rate of money supply. Recalling

the definition of parameters, we get a
1−b = d0

d1
= φ

φ−1 . Hence we can rewrite

24Iterating (4.19), it is easy to infer that the expectation of inflation in t+1 is a weighted
average of past values of inflation with exponentially declining weights:

πet+1 = ρπt + (1− ρ)ρπt−1 + ... = ρ

∞∑
s=0

(1− ρ)sπt−s (4.20)

Notice that only the past values of the variable to be forecast play a role in the AE
mechanism. Additional information which may be relevant to forecast inflation is ignored.

25In fact b < 1 implies 1− ρ < 1− bρ.
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steady state inflation as follows

πAE =
φ

φ− 1
µ (4.22)

It is easy to see that in the steady state (the “long run” equilibrium),

expected inflation in every period is constant and equal to actual inflation:

πe = πAE (4.23)

i.e., expectations are fulfilled and the forecast error is zero.26

Substituting (4.23) for πet+1 into (4.16) we get the steady state level of

the output gap:

xAE = 0 (4.24)

(4.23) and (4.24) are the long run solution of the AD-EAPC model with

adaptive expectations.27

Stationarity implies fulfilled expectations but forecast errors are always

present out of the long run equilibrium, i.e. during the transitional dynamics.

To see this graphically, we proceed as follows. Updating (4.21) we get

πt+1 =
aρ

1− bρ
µ+

1− ρ
1− bρ

πt (4.25)

26From (4.20) assuming that the economy is in the steady state one gets πe =
ρπAE

∑∞
s=0(1− ρ)s where

∑∞
s=0(1− ρ)s = 1/ρ.

27Notice that the long run equilibrium with AE is exactly the same solution of the
AD-AS system with flexible wages, see subsection 4.5.1 above. Why? Because wages in
the AD-EAS system adjust to expected inflation. When expectations are correct, then
this adjustment is perfect. In other words, wages are perfectly indexed to inflation and
the real wage is at the full employment level.
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Substituting (4.17) into (4.25) and rearranging we get:

πt+1 =
a

1− bρ
µ+

b(1− ρ)

1− bρ
πet+1 (4.26)

(4.26) represents the True Value (TV) schedule on the
(
πt+1, π

e
t+1

)
plane (see

figure 4.2).

Figure 4.2: AE: effects of a permanent monetary shock

Expectations are correct when

πet+1 = πt+1 (4.27)

(4.9) represents the Fulfilled Expectations (FE) schedule which coincides

with the 45-degree line by definition.
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We determine the Fulfilled (or correct) Expectations Equilibrium (FEE)

solving the system consisting of (4.26) and (4.9). The solution provides the

coordinates of the intersection E between the TV and FE schedules in figure

4.2. It is easy to verify that the FE of π coincides with its actual value πAE.

The error et+1 := πt+1 − πet+1 is the vertical distance between the TV

and FE schedules. In the steady state the error is zero: stationarity implies

fulfilled expectations.

Suppose the economy has settled in E and has not experienced a shock

for a long time. Suppose that a monetary shock εT > 0 occurs in period

T. This shock generates a higher money growth rate µT = µ + εT . The TV

schedule shifts upwards as shown by TV (µ+ εT ) in figure 4.2. If the shock is

permanent (i.e. the rate of growth of money supply will be µT from T on),

the after shock equilibrium will be point F.

The expansionary monetary shock triggers a monotonically increasing

trajectory for inflation described by the difference equation (4.21). Infla-

tion increases until the economy reaches the new steady state πAE(εT ) =

φ
φ−1(µ+ εT ). During the transition from the lower to the higher steady state

inflation rate, agents make a negative error period after period, i.e., they

systematically underestimate inflation, as shown by the vertical distances in

bold between the new TV schedule and the FE schedule along the path of

increasing inflation betweeen E and F. However, these errors become smaller

and smaller until they disappear in F.

It is easy to see that the new steady state output gap is zero: xAE(εT ) = 0,

i.e., the change in money growth has no effect on real variables. In the long

run there is money super-neutrality.28

28Notice that we get the steady state value of inflation and therefore fulfilled expecta-
tions also imposing the condition πt = πet+1 in (4.17). This is somehow obvious because
in the steady state also the condition above occurs. In other words, in the steady state
current and future inflation are the same and equal to expected inflation.
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If the monetary shock is temporary, the economy will revert gradually

to the original long run equilibrium E as shown in figure 4.3. Therefore

there will be a fluctuation which will be characterized by persistence: both

inflation and the output gap will jump up due to the shock and go down

gradually to the original steady state over time.

Figure 4.3: AE: Effects of a temporary monetary shock

4.5.4 Rational Expectations

The adaptive heuristic proposed by Friedman to model expectation formation

was heavily criticized by Lucas, Sargent and the other intellectual leaders of

the New Classical Macroeconomics (NCM) (or RE school) essentially because

93



“in the real world” people do not make systematic errors.29 The RE school

has aimed at modelling a non-myopic process of expectation formation. In

order to present the RE approach in our simple setting, we must rewrite the

inflation equation (4.17).

First of all, with RE the expectation of inflation is defined as

πet+1 = Etπt+1 (4.28)

where Et is the expected value taken in t (and on the basis of the information

set available in t) of π in t+ 1.

Second, we have to introduce a source of randomness. The obvious can-

didate is the growth rate of money supply. Let us explore first the simplest

case:

µt = µ+ εt (4.29)

where εt is a monetary shock (or “monetary innovation”), a white noise

stochastic disturbance (zero mean and constant variance). In words, the (un-

certain) rate of growth of money supply in a given period t+s is a random

variable with constant expected value Et+sµt+s = µ for any s=0,1,2...and

constant variance, equal to the variance of the monetary shock.30 The mon-

etary shock can be conceived as the error the agents make in forecasting the

growth rate of money supply: eµt := µt − Etµt = εt. Thanks to the law of

iterated projections: Etµt+1 = µ.

29In the light of plenty of experimental evidence, there are good reasons to object to
this objection. In Learning To Forecast Experiments, in fact, real human subjects do make
systematic errors. See Hommes and Lux (2013).

30In this simple setting, there is within-period uncertainty. The agent does not know
in t the growth rate of money supply in the same period.
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Therefore, we can rewrite (4.17) as follows

πt = aµt + bEtπt+1 (4.30)

Since µt is stochastic, (4.30) is a LSDE. It can be represented by a sheaf

of TV schedules, one for each possible realization of the random variable

µt on the (Etπt+1, πt) plane. We assume that agents know both the LSDE

and the stochastic process governing µt. In other words, the information set

available to the private sector consists of the “true” model of the economy

(at least in reduced form) and the distribution of εt.

We can solve this LSDE using the method of “undetermined coefficients”.

One reasonable guess is that πt is a linear function of the random variable

µt: πt = α0 + α1µt where α0, α1 are undetermined coefficients. It is easy to

show that the guess is indeed verified.31 The solution of the LSDE is

πREt = aµt +
ab

1− b
µ (4.31)

From the equation above it follows that Etπ
RE
t = aEtµt+

ab
1−bµ = a

1−bµ so

that the error made in forecasting inflation (also called “price surprise”) is

eπt := πREt − EtπREt = a(µt − µ) = aeµt = aεt (4.32)

In words: the error made in forecasting inflation (price surprise) is propor-

tional to the error made in forecasting money growth (monetary innovation).

In the absence of monetary shocks (and therefore of price surprises), (4.30)

can be written as πt = aµ+ bEtπt+1. This is represented by the straight line

31From the guess follows that Etπt+1 = α0 +α1Etµt+1. But Etµt+1 = µ. Substituting
this expression in the LSDE we can infer that the guess is verified with α0 = ab

1−bµ and
α1 = a. Hence Etπt+1 = a

1−bµ.
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labelled TV (µ) in figure 4.4. Substituting µt = µ into (4.31) and rearranging

we get π∗ = a
1−bµ. Since a

1−b = φ
φ−1 we can write

π∗ =
φ

φ− 1
µ (4.33)

π∗ is the RE solution of (4.30) in the absence of shocks. Notice that, in

the absence of shock, πt = πt+1 = Etπt+1 = π∗.

The RE solution in the absence of shocks provides the coordinates of

the intersection E between the TV (µ) and FE schedules (see 4.4). In other

words, it is the Fulfilled (or correct) Expectations Equilibrium (FEE) in this

setting.

The RE solution is exactly the same as the AE solution. The AE solution

however is a long run equilibrium, i.e. the steady state of a dynamic process.

The RE solution instead is characterized by the absence of shocks.

Let’s consider now what happens when a shock occurs. Suppose the

economy has settled in E and has not experienced a shock for a long time.

Suppose that a monetary shock εT occurs in period T. This shock generates

a departure of the money growth rate from µ:µT = µ+ εT . As a consequence

the TV schedule shifts up as shown by TV (µ+ εT ) in figure 4.4. If the shock

is not anticipated (so that EtπT+1 = π∗) there will be a departure of inflation

from π∗. In fact πT = aµT + ab
1−bµ as shown by (4.31). Graphically the after

shock equilibrium is point F in figure 4.4.

Notice that the error is eπT = πT − a
1−bµ = a (µT − µ) i.e. the vertical

distance between the TV schedules (before and after the shock) measured at

the level of expected inflation. Hence

πRET = π∗ + (πT − ETπT ) = π∗ + a(µT − µ) = π∗ + aεT (4.34)
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Figure 4.4: RE: Effects of a monetary shock

This solution can be generalized to any time period:

πREt = π∗ + a (µt − µ) = π∗ + aεt (4.35)

Using the output gap equation (4.16), after some algebra we get:

xREt =
a

k
εt (4.36)

The policy implication of the RE setting is the so-called Policy Ineffective-

ness Proposition (PIP) according to which policy changes have real effects

only if unanticipated, i.e. only if they are the source of a price surprise. A

monetary innovation εt in fact, generates a price surprise aεt which makes
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both inflation and the output gap increase. Notice however that this is a

short lived jump. In fact, on average the price suprice is zero (unbiasedness

of RE). Immediately after the shock, the economy will move back from F to

E, leaving only a blip in the time series of inflation and output gap at the

time T the shock occurred.

Persistence

The fluctuation generated by a shock in the previous setting is short lived. In

order to introduce persistence, one can think of a different process governing

the random variable which drives the dynamics of the model. Suppose the

growth rate of money supply is described by the following autoregressive

process of order one:

µt = (1− ρ)µ+ ρµt−1 + εt (4.37)

where 0 < ρ < 1 and εt white noise.

The expected value is Et+sµt+s+1 = (1− ρ)µ+ ρµt+s−1 for any s=0,1,2...

Notice that, in the absence of shocks, the steady state of this process is

µt = µt−1 = µ. The monetary innovation is eµt := µt − Et−1µt = εt.

We use this definition of money growth to solve (4.30) using the method

of undetermined coefficients.32 The RE solution of (4.30) when µt is governed

by (4.37) is

πREt =
a

1− bρ
µt +

ab(1− ρ)

(1− b)(1− bρ)
µ (4.38)

32One reasonable guess is πt = α0 + α1µt where α0, α1 are undetermined coefficients.
From the guess follows that Etπt+1 = α0 + α1Etµt+1. But from (4.37) follows that
Etµt+1 = (1−ρ)µ+ρµt. Substituting this expression in (4.30) we can infer that the guess

is verified with α0 = (1−ρ)ab
(1−bρ)(1−b)µ and α1 = a

1−bρ .
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In the absence of shocks (and therefore of price surprises), (4.30) can be

written as πt = aµ+ bEtπt+1. This is represented by TV (µ) in figure 4.5.

Substituting µt = µ into (4.38) and rearranging we get

π∗ =
φ

φ− 1
µ (4.39)

π∗ is the RE solution of (4.30) in the absence of shocks. Notice that this

solution is exactly the same as above.

Figure 4.5: Persistence

Notice now that, in the present setting, expected inflation in t+1 is in-
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creasing with current inflation in t.33

Etπt+1 = π∗ + ρπt (4.40)

This is the EXpectation schedule in figure 4.5.

The RE solution in the absence of shocks provides the coordinates of the

intersection E between the TV (µ) and EX schedules. By construction it is

also the intersection between the TV and FE schedules. In other words, it is

the Fulfilled (or correct) Expectations Equilibrium (FEE) in this setting.

Let us now explore the consequences of a shock. Suppose the economy

has settled in E for a long time. A monetary shock εT occurs in T. The

money growth rate increases on impact: µT = µ + εT . As a consequence

the TV schedule shifts up as shown by TV (µ + εT ) in figure 4.5. The after

shock equilibrium is point F, which is the intersection of the new TV and

EX schedules. Point F does not belong to the FE schedule. Hence in point

F expectations are not fulfilled.

The auto-regressive process represented by (4.37) will gradually drive

inflation (and the output gap) down to the original level. For instance, in

period T+1 the TV schedule moves down (see the dotted line) and a new

(transitory) RE solution will materialize, i.e. point G. This process will go

on until the TV schedule reaches the original position, i.e TV (µ). At the end

of the process the economy will settle again in E. This process takes time,

i.e. it is characterized by persistence.

33In fact, from the guess it follows Etπt+1 = α0 + α1Etµt+1 = α0 + α1[(1− ρ)µ+ ρµt].
Adding and subtracting ρα0 and recalling that πt = α0 + α1µt we obtain (4.40).
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4.5.5 The New Neoclassical Synthesis

New Classical Macroeconomics has been all the rage in the ’80s of last cen-

tury. By the early ’90s a new approach had gained ground, which chal-

lenged the perfect competition/complete markets setting generally accepted

by NCM theorists. This approach goes under the name of New Keynesian

Economics (NKE). By the end of the ’90s a syncretic approach, the New Neo-

classical Synthesis, merged insights from both the NCM and NKE schools.

The workhorse of the New Neoclassical Synthesis, is the New Keynesian

Dynamic Stochastic General Equilibrium (NK-DSGE) model which, in our

simplified setting, boils down to the following equations:

xt = − 1

σ
(it − πt)

it = (1 + γ)πt

πt = kxt + βEtπt+1 + ut

The first equation is the IS relatiosnship between the output gap and the

real interest rate.34 The second equation is a monetary policy rule, namely

a Taylor rule (TR), which defines the policy rate as an increasing function

of inflation (γ > 0).35

34To be precise, the first equation of the standard NK-DSGE model is the so-called
“optimizing IS curve” which is essentally the consumption Euler equation (4.7) where the
real interest rate is endogenized as follows Rt = it − Etπt+1. Usually, a demand shock
is added to the equation. For simplicity and continuity of exposition, we adopt here a
simplified variant of the consumption Euler equation, identical to the one used in the
previous section. Notice moreover that we ignore demand shocks.

35The Taylor rule is an instrument rule, i.e., it is not derived from an optimization
problem (it is a rule of thumb, not an optimal rule). The Taylor Rule captures a change in
the way in which monetary policy has been carried out, from monetary targeting (whereby
the central bank sets the money growth and the interest rate is endogenous) to inflation
targeting (whereby the central bank sets the interest rate as a response to inflation and
the quantity of money is endogenous). The specific formulation we follow characterizes
a regime of strict inflation targeting whereby the interest rate responds only to inflation.
When the central bank reacts also to changes in the output gap, the Taylor rule charac-
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The third equation is the NK Phillips curve (NKPC), which associates

inflation positively to the output gap and expected inflation.36 The NKPC

plays the role of the AS curve in the NK setting.

Finally we introduce a source of randomness, namely a supply shock which

is appended to the NKPC. The supply shock follows the auto-regressive pro-

cess

ut = ρut−1 + εt (4.41)

where εt is white noise. Notice that Etut+1 = ρut. The NK-DSGE workhorse

in our simplified setting therefore is the system of IS-TR-NKPC equations

where the supply shock is described by (4.41).

Substituting TR into the IS equation one gets

xt = −γ
σ
πt (4.42)

(4.42) is the equation of the AD curve in the NK context. The NK model

boils down to the AD-AS system where the AS is represented by the NKPC

curve. Substituting (4.42) into the NKPC we end up with:

πt = aut + bEtπt+1 (4.43)

where a := σ
kγ+σ

, b := βσ
kγ+σ

. Notice that both a and b are positive and smaller

than one.

(4.43) is the inflation equation in the NK setting. It can be represented

by a sheaf of TV schedules, one for each possible realization of the random

variable ut on the (Etπt+1, πt plane).

As usual we will solve this LSDE using the method of “undetermined

terizes a regime of flexible inflation targeting (which we do not consider for simplicity).
36In the NKPC, expected inflation is weighted by the discount factor β which is smaller

than one. This is due to nominal rigidity.
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coefficients”.37 The solution of the LSDE is

πREt =
a

1− bρ
ut (4.44)

In the absence of shocks (and therefore of price surprises), (4.43) is rep-

resented by TV (0) in figure 4.6.

Figure 4.6: Effects of a supply shock in the NK-DSGE model

π∗ = 0 is the RE solution of (4.43) in the absence of shocks. Notice that,

in the absence of shock, πt = πt+1 = Etπt+1 = π∗.

In the present setting:

Etπt+1 = ρπt (4.45)

37The guess is πt = αut where α is undetermined. From the guess follows that Etπt+1 =
αEtut+1. But Etut+1 = ρut. Hence Etπt+1 = ρπt. Substituting this expression in the
LSDE we can infer that the guess is verified with α = a

1−bρ
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This is the eqaution of the EXpectation schedule in figure 4.6.

The RE solution in the absence of shocks provides the coordinates of the

intersection E between the TV (0) and EX schedules. By construction it is

also the intersection between the TV and FE schedules. In other words, it is

the Fulfilled (or correct) Expectations Equilibrium (FEE) in this setting.

Suppose the economy has settled in E and has not experienced a shock

for a long time. Suppose that a supply shock εT occurs in period T. As a

consequence, the TV schedule shifts up as shown by TV (εT ) in figure 4.6. If

the shock is not anticipated, graphically the after shock equilibrium is point

F, which is the intersection of the new TV and the EX schedules. Point F

does not belong to the FE schedule.

The auto-regressive process represented by (4.37) will gradually drive

inflation (and the output gap) down to the original level. For instance,

in period T+1 the TV schedule moves down (see dotted line) and a new

(transitory) RE solution will materialize, i.e. point G. This process will go

on until the TV schedule reaches the original position, i.e TV (0). At the end

of the process the economy will settle again in E. This process is characterized

by persistence.

4.6 The limits of Rational Expectations

There are at least three main reasons to criticize the Rational Expectations

hypothesis.

First of all, the burden of “rationality” imposed on agents in RE models –

in terms of content of the information set and computing capability – appears

to be out of the reach of real human beings, who are characterized instead

by bounded rationality as mentioned above (we will elaborate further on this
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issue in the next chapter).

Second, the assumption that agents will sooner or later discover the “true

model” of the economy simply begs another question: which model? In a RE

framework the true model must be the researcher’s model whose solution is

by construction consistent with expectations.38 Therefore, the model all the

agents “have in mind” is exactly the model built by the researcher.

Third, RE usually relies on the over-simplifying assumption of a repre-

sentative agent. In an heterogeneous agents setting, in order to have a RE

equilibrium all the agents must converge to the same rational prediction.39

In principle, however, different agents have different expectations and con-

vergence to RE (through rational learning) is not assured. The persistence

of heterogeneity in economic beliefs is in fact a well known fact of life.

These limits have provided the starting point for a complex web of lines

of research. As to the first and second points, for instance, a large literature

has developed on statistical or adaptive learning pioneered by Evans and

Honkapohja in the early years of the new century, in which agents learn the

numerical values of the parameters of the model by running regressions. In

simple cases statistical learning yields convergence to a Rational Expecta-

tions solution (rational learning): agents indeed learn the parameters of the

true model of the economy and therefore converge to (uniform) rational ex-

pectations. In more complex environments, however, learning may not yield

the RE equilibrium.

As to the third line, let us remind the vast literature on heterogeneous ex-

pectations and heuristic switching pioneered by Brock and Hommes (1997).

38This resembles the ontological argument put forward by Saint Anselm of Aosta, ac-
cording to which God must exist (in reality) simply because the idea of God as the perfect
being (in the mind of men) cannot lack the attribute of existence.

39See chapter 1 for a succinct discussion of Neoclassical models with heterogeneous
agents.
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In their setting, in forming expectations agents switch from one rule of thumb

to another (e.g. from adaptive to fundamental expectations) depending on

the relative “fitness ” of the rules. As a consequence, heterogeneous expec-

tations can survive and co-exist: the aggregate or average expectation is a

weighted sum of the individual expectations.

We will elaborate on these issues in depth in the next chapter. In the

following section we will provide a very simple introduction to the effects of

heterogeneous expectations in a macroeconomic setting similar to the one

discussed above. This discussion will pave the way to a brief introduction to

modelling expectations in macroeconomic ABMs.

4.7 Heterogeneous Expectations: A very sim-

ple introduction

4.7.1 Heterogeneous biased expectations

Suppose there is a continuum of agents of unit mass. Let’s denote with πeit+1

the expectation (the “belief” hereafter) taken in t of inflation in t+1 by agent

i, i ∈ (0, 1). We can model the individual expectation in very general terms

as follows

πeit+1 = f (πt, αi) (4.46)

where πt is the current value of inflation and αi is the individual bias. For

simplicity, we assume that the function f(., .) is the same for all the agents,

so that expectations are heterogeneous only because of the bias. We assume

the individual bias is distributed on the support (−αL, αH) with mean α and

variance σ2
α. In the following we will refer to α as the collective bias. By

construction, the average expectation < πeit+1 > – which we will denote with
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πet+1 hereafter – is:40

πet+1 ≈ f (πt, α) +
1

2

∂2f(πt, α)

∂α2
σ2
α (4.48)

The average expectation is a function of πt and of the mean and higher

moments of the distribution of αi.

(4.48) is the average EXpectation (EX) schedule on the
(
πt, π

e
t+1

)
plane.

The mean and the variance of the distribution of the bias are shift parameters

of the function.

For simplicity suppose that the function f(., .) is linear in πt and takes

the following simple form:

πeit+1 = πt + f(αi) (4.49)

We assume that if the bias is positive (negative), the agent expects inflation

in t+1 to be higher (lower) than inflation in t.41

The average expectation in this case is

πet+1 = πt + f(α) +
f”(α)

2
σ2
α (4.50)

(4.50) is the equation of the EX schedule in figure 4.7. The intercept of

this schedule on the x-axis is affected by the mean and the variance of the

distribution of the bias.

As usual, the True Value (TV) schedule is represented by the inflation

40We can linearize (4.46) around the average bias by means of a Taylor expansion:

πeit+1 ≈ f(πt, α) +
∂f(πt, α)

∂α
(αi − α) +

1

2

∂2f(πt, α)

∂α2
(αi − α)2 (4.47)

Taking the expected value of the expression above and recalling that E(αi − α) = 0 and
E(αi − α)2 = σ2

α we obtain (4.48).
41In symbols: f ′(αi) > 0, f(αi) > 0 if αi > 0, f(αi) < 0 if αi < 0, f(0) = 0.
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equation (4.17) which we report here for the reader’s convenience:

πt = aµ+ bπet+1 (4.51)

We now have a system consisting of (4.50) and (4.8). The solution of this

system yields equilibrium – i.e., consistency – between (i) the way in which

actual inflation is determined by average expected inflation according to (4.8)

and (ii) the way in which average expectations are determined according to

(4.50). However, individual expectations will not be model-consistent as we

will show below.

In equilibrium, actual inflation in the presence of heterogeneous expecta-

tions is

πH = π∗ + ψ

(
f(α) +

f”(α)

2
σ2
α

)
(4.52)

where π∗ = φ
φ−1µ and ψ = σ+φ

k(φ−1) . Therefore, expected inflation in equilib-

rium is

πeH = π∗ + (1 + ψ)

(
f(α) +

f”(α)

2
σ2
α

)
(4.53)

Actual and expected inflation do not coincide because of the bias. They

are the coordinates of the intersection H between the TV and EX schedules

(see 4.7). Since H does not lie on the FE schedule (the 45 degree line),

expectations are not fulfilled. More precisely, given our assumptions, they

are systematically greater than actual inflation.

Of course, this is only the starting point of the analysis, which may be-

come more interesting if one departs from the assumption that the bias is

given. The bias can be endogenized, for instance, by considering the complex

relationships between the bias and current inflation. This analysis, however,

is out of the scope of our introduction.
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Figure 4.7: Heterogeneous expectations

4.7.2 A convenient special case: Two types

In order to dig a little deeper into this issue consider an extremely simplified

setting in which the population consists only of two types of agents: “high”

and “low”. The high type holds a belief characterized by a positive bias +∆.

Symmetrically, the low type has negative bias −∆. Hence πeHt+1 = πt + ∆

and πeLt+1 = πt −∆.42

Let’s denote with ω the fraction of positively biased agents in the pop-

ulation. The collective bias, i.e. the weighted average of the optimistic and

the pessimistic bias is ω∆ + (1 − ω)(−∆) = ψ∆ where ψ := (2ω − 1). By

42In this simplified setting we assume that the expectation is linear in the bias. There-
fore, only the collective bias will play a role in determining the average expectation. Due
to linearity, higher moments of the distribution of the bias will not play any role.
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construction, the average expectation is

πet+1 = πt + ψ∆ (4.54)

(4.54) is the equation of the EX schedule in this simple example. It can

be represented as in figure 4.7 reinterpreting the intercept on the x-axis as

ψ∆ and assuming that ω > 0.5 (so that the intercept is positive).

Superimposing the usual TV schedule, one can compute the coordinates

of point H in this simplified setting. The solutions are

πH = π∗ + ψ∆ (4.55)

πeH = π∗ + (1 + ψ)∆ (4.56)

Expectations are always individually biased and the individual error is

constant and systematically negative (positive) for the positively (negatively)

biased individuals. If the fraction of positively biased agents were also con-

stant, then ψ would be constant and the aggregate bias would also be con-

stant. The economy would settle in H with actual inflation systematically

lower than expected inflation.

If we assume that agents can switch from a positive to a negative bias

and viceversa, however, the population of heterogeneous agents can change

over time. Suppose for instance that the fraction of positively biased agents

exceeds 0.5 (and becomes therefore the majority) if their bias has been con-

firmed, i.e. if actual inflation is greater than past inflation:

ω =
λ(πt − πt−1) + 1

2
(4.57)

In this case, it is easy to see that ψ = λ(πt − πt−1). Hence the average
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expectation equation becomes:

πet+1 = (1 + λ∆)πt − λ∆πt−1 (4.58)

Plugging the average expectation equation (4.58) into the inflation equa-

tion (4.17) we get the equilibrium inflation, which follows a first order law of

motion:

πt =
a

1− b− bλ∆
µ− bλ∆

1− b− bλ∆
πt−1 (4.59)

It is easy to see that the steady state of (4.59) is πH = π∗. Imposing the

following restriction: λ∆ < 1−b
b
< 2λ∆ the steady state will be stable.

When the economy is in the steady state, expectations are fulfilled when

averaged across agents. The individual bias, however is still present. How is

this possible? The reason is very simple: the composition of the population

in the steady state is such that the aggregate bias of the positively biased

individuals is offset by the aggregate bias of the negatively biased ones. In

fact in the steady state ω∗ = 0.5. Expectations are heterogeneous and biased

at the individual level but they are collectively unbiased.

Graphically, when ω = 0.5 the EX schedule coincides with the FE sched-

ule. Apparently people hold correct expectations, but this is true only on

average: half of the population is of a high type and half of the low type.

4.7.3 Heterogeneous adaptive expectations

Let’s now introduce heterogeneous adaptive expectations. As in subsection

4.7.1 we consider a continuum of agents of unit mass. The i-th agent updates

her expectation according to the following adaptive rule:

πeit+1 = ρiπt + (1− ρi)πeit (4.60)
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ρi is the individual error correction coefficient. We assume the individual

coefficient is distributed on the support (0, 1] with mean ρ. Averaging across

agents we get πet+1 = ρπt + πet− < ρiπ
e
it > where the last term is the ex-

pected value of the product of the individual coefficient and the individual

expectation in period t.

Notice now that < ρiπ
e
it >= cov (ρi, π

e
it) + ρπet where cov (ρi, π

e
it) is the

covariance between ρi and πeit. Hence, the average expectation equation can

be rewritten as

πet+1 = ρπt + (1− ρ)πet − cov (ρi, π
e
it) (4.61)

Heterogeneity is captured by the covariance between the individual ρi and

the individual πeit, but the latter is in turn defined as in (4.60) (lagged one

period). Hence the covariance of ρi and the individual πeit can be recast in

terms of variance and higher moments of the distribution of ρi and of past

values of inflation. Dynamics can indeed be very rich.

4.8 Heterogeneous expectations in ABMs

In a complex economy and in the presence of cognitive and informational con-

straints on individual rationality it is straightforward to assume that agents

hold heterogeneous expectations, i.e. they form expectations following dif-

ferent heuristics. This is the most obvious point of departure in building

expectation formation in ABMs.

In principle, there is no limit to the creativity of the researcher: since

the principle of full rationality is not disciplining economic theorizing, any

forecasting heuristic is in principle admissible. This is of course a drawback

of the AB methodology which goes under the name of wilderness of bounded

rationality.
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In our opinion, the consequences of this problem may be mitigated by

assuming that only few forecasting rules are actually adopted, as experi-

mental evidence suggests. The obvious candidates are Adaptive Expectations

(discussed in the previous section) and its variants. For example, one can

incorporate the inertia of the variable to be forecast into the expectation

formation mechanism by augmenting static expectation with the second dif-

ference of the variable:

πeit+1 = πt + λi(πt − πt−1). (4.62)

Depending on the magnitude of the tuning parameter in (4.62), we get:

• a “weak trend-following” rule if 0 < λi < 1

• a “strong trend-following” rule if λi > 1.

Along similar lines, following a well known behavioural insight one can

model expectations based on the “anchoring and adjustment heuristic”:

πeit+1 = λiπ
av
t + βiπt + (πt − πt−1) (4.63)

where πavt is a moving average of past values of π. Besides AE, other formu-

lations based on linear filters such as extrapolative/regressive expectations

have been used in the literature.

As an example, let us consider an agent-based macro-model in which, in

order to buy consumption goods, each household visits only a (small) subset

of firms – i.e. households do not explore the entire space of purchasing

opportunities – so that each firm has some market power on its own local

market. In other words, there are as many local markets as there are firms.
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The firm has to set individual price and quantity under uncertainty.43

The firm knows from experience that if it charges higher prices it will get

smaller demand but it does not know the actual demand schedule (i.e. how

much the consumers visiting the firm would buy at any given individual

price). The firm, in fact, observes only the current willingness to pay of

the visiting consumers, who change from time to time. Hence the firm is

unable to maximize profits setting the marginal cost (which is known) equal

to the marginal revenue (unknown). The best the firm can do consists in

setting the price as close as possible to the average price level – a proxy of

the price set collectively by its competitors44 – and production as close as

possible to expected demand in order to minimize involuntary inventories (in

case of excess supply) or the queue of unsatisfied customers (in case of excess

demand).

In t, the i-th firm must choose the individual price and desired output

for t+1
(
Pit+1, Y

∗
it+1

)
where desired output is anchored to expected demand

Y ∗it+1 = Y e
it+1. The firm’s information set in t consists of (i) the average price

level Pt and (ii) excess demand

∆it := Y d
it − Yit (4.64)

where Y d
it is actual demand and Yit is actual output in t. ∆it shows up as a

queue of unsatisfied customers if positive; as an inventory of unsold goods if

negative.

Notice that ∆it is a proxy of the forecasting error εit := Y d
it−Y e

it where Y e
it

is expected demand formed in t− 1 for t.45 If there is a positive forecasting

43In the following, we borrow heavily form Assenza (2015).
44As usual in a monopolistic competition setting, the single firm assumes its price is

weighted almost zero in the average price level
45∆it coincides with εit iff production plans are fulfilled, i.e. Y ∗it = Yit. Production
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error (i.e. under-estimation of demand), then there will be a fortiori excess

demand (a queue of unsatisfied customers). If there is a negative forecasting

error (i.e. over-estimation of demand), then there will be excess supply (in-

voluntary inventories) only if the negative error is greater in absolute value

than the discrepancy between expected demand and actual production. This

will be the case, of course, if the discrepancy is sufficiently small.46

Given this information set, a firm can decide either to update the current

price or to vary the quantity to be produced, not both.47

The decision process is based on two rules of thumb which govern price

changes and quantity changes respectively. These rules are represented by

simple adaptive algorithms. The price adjustment rule is:

Pit+1 =

Pit(1 + ηit) if ∆it > 0; Pit < Pt

Pit(1− ηit) if ∆it ≤ 0; Pit > Pt

(4.65)

where ηi is a random positive parameter drawn from a distribution with

support (0, η̄).48

The sign of ∆it and of the difference Pit−Pt dictate the direction of price

adjustment but the magnitude of the adjustment is stochastic and bounded

by the width of the support of the distribution. This is one of the main

sources of randomness in the CATS model. We also assume that the firm

plans, however, may not be fulfilled: actual production Yit can differ from desired quantity
Y ∗it if constraints on the availability of capital, labour and funding inhibit the attainment of
the desired scale of activity. In symbols: Yit ≤ Y eit. Therefore ∆it = εit + (Y eit−Yit) where
the expression in parentheses is a non-negative discrepancy between expected demand and
actual production.

46Notice that goods are not storable: involuntary inventories cannot be carried over
from one period to the next. Therefore they cannot be employed strategically to satisfy
future demand. They play, however, the very useful role of an element of the information
set available to the firm when setting the price and the quantity for the future.

47This is a simplifying assumption, which makes coding less cumbersome.
48The distribution from which the idiosyncratic parameter is drawn is the same for all

the firms and is time-invariant.
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will never set a price lower than the average cost (which includes not only

the cost of labour and capital goods but also interest payments).49

The firm sets the desired quantity Y ∗it+1 at the level of expected demand

Y e
it+1. Hence the quantity adjustment rule can be conceived also as an algo-

rithm for changing demand expectations:

Y ∗it+1 = Y e
it+1 =

Yit + ρ1[Pit>Pt]∆it if ∆it > 0

Yit + ρ1[Pit<Pt]∆it if ∆it ≤ 0

(4.66)

where ρ is a positive parameter, smaller than one.

1[Pit>Pt] is an indicator function equal to 1 if Pit > Pt, 0 otherwise. Analo-

gously, 1[Pit<Pt] is an indicator function equal to 1 if Pit < Pt, 0 otherwise.

The sign of ∆it and of the difference Pit−Pt dictate the direction of quantity

adjustment. Notice, however, that the magnitude of the adjustment is not

stochastic but determined by excess demand. If we assume that the discrep-

ancy between expected demand and desired production is negligible, so that

excess demand coincides with the forecasting error, we can interpret (4.66)

as a standard adaptive mechanism to update demand expectations. By iter-

ation, as it is well known, desired production in t+1 will be determined by

the weighted average of past quantities with exponentially decaying weights.

4.9 Conclusions

In this chapter we have focused on (i) the role of uncertainty in shaping

microeconomic behavior and (ii) the role of expectation formation in deter-

mining macroeconomic outcomes. As to (i), in a risky context, i.e. when

49While the attainment of the desired scale of activity is constrained by lack of capital,
labour or finance, there are no obstacles to setting the desired price provided the price
emerging from (4.65) is greater than the average cost.
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the environment is uncertain in a measurable way, agents replace the un-

known true value of variables (which are necessary to decision making) with

their probability distribution and carry on the usual optimization routines.

In a straightforward extension of this framework to a multi-period setting,

agents form rational expectations of future variables. The cognitive and in-

formational requirements of RE, however, may be out of the reach of agents

characterized by bounded rationality. In this case, an adaptive mechanism

may be a satisficing heuristic to form expectation.

As to (ii), in the history of macroeconomic thought, AE – proposed by

Friedman in the debate over the Phillips curve – have been rapidly wiped

out by the RE revolution. This methodological principle has been and still

is almost always respected, even if the debate has raged with alternating

successes between New Classical and New Keynesian economists. Of recent,

skepticism on the appropriateness of RE in macroeconomic models is gaining

ground both inside and outside the mainstream.

In a complexity setting, it is straightforward to assume that agents adopt

“satisficing” heuristics also when they must form epectations. AE are formed

on the basis of simple rules processing signals that come from the environ-

ment and the behavior of other agents. No effort in improving knowledge or

changing behavior is carried out. In building ABMs, researchers generally

adopt one sort or another of adaptive schemes. A natural extension would be

to imagine models whose agents explore their environment and modify their

behavioral rules, according to some learning process. This will be explored

in the next chapter.
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Chapter 5

Agents’ Behaviour and

Learning

Alberto Russo, Domenico Delli Gatti, Saul Desiderio and Ivo Vlaev

5.1 Introduction

The fundamental building blocks of every agent-based model are agents.

From a general point of view, in order to build an agent-based model, four

main issues need to be addressed: (i) the nature of the agents; (ii) the list

of variables describing their state; (iii) the list of the actions the agents can

perform; (iv) the structure of their interaction with other agents. In what

follows, we will discuss the first three points, while the last will be deeply

analyzed in the next Chapter.

A peculiar feature differentiating agents in agent-based models from those

of mainstream models is their autonomy of action. Indeed, agents in a

rational-expectations-cum-equilibrium model behave according to rules that

are not independent of what the others are doing: in any situation, their ac-
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tions depend on some variable that is determined by the behavior of the entire

system. In a typical market model, for instance, a firm must know the actual

market price (i.e. market-clearing price) in order to decide its production

level, and this price is determined by the interplay of all the agents populat-

ing the economy. Hence, agents’ actions are mutually dependent through the

equilibrium state or, differently stated, the actual implementation of actions

depends on the outcome of actions (outcome ⇒ actions). As this simple but

representative example clarifies, mainstream models are dynamically incom-

plete since no mechanism for out-of-equilibrium dynamics is provided. Thus,

the central problem characterizing a decentralized market economy, i.e. the

coordination problem, is left aside. On the contrary, the character of au-

tonomy in agent-based model consists in the existence of a set of behavioral

rules allowing agents to take decisions in any situation, independently from

what the others are doing and without a central Auctioneer intervenes as a

deus ex machina in determining some sort of equilibrium state. The imple-

mentation of actions is not dependent of the outcome of actions. Of course,

the final outcome generally will depend on the whole system of interactions

among the agents, implying the possibility of individual rationing in case of

coordination failures, but this is not an obstacle to the implementation of au-

tonomous decision-making. In fact, what makes this possible is that agents’

actions directly influence only other agents’ variables, and not also their own

variables. To clarify the point, let us imagine a consumer wanting to buy a

good from a shop. If the good has already been delivered, the consumer will

buy, otherwise it won’t. The outcome (purchase or not) of consumer’s ac-

tion clearly depends upon the action taken by the shop (deliver or not), but

the consumer’s very action (try to buy) does not: actions and outcomes are

separate, and this is exactly an instance of what out-of-equilibrium means
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(actions ⇒ outcome). The attribute of agents’ autonomy, therefore, makes

agent-based models the natural candidate to simulate the dynamical evolu-

tion of a decentralized, and not necessarily coordinating, market economy.

The dynamical evolution of the economic system depends on the behav-

ioral rules followed by agents. Where do behavioral rules come from? Agents

in real economies are intentional subjects, i.e. they have mental representa-

tions of the environment, have well definite objectives and act in the attempt

of achieving them on the basis of their information set and of their capabil-

ities. Behavioral rules in the real world, therefore, must be related to the

cognitive processes that guide actions. Accordingly, in this Chapter we focus

on agents’ rationality, behavioral rules and learning processes.

5.2 Full and bounded rationality

Since its first appearance in the works by Adam Smith, modern Political

Economy has basically configured as a theory aimed at understanding the

outcome of the interaction among self-interested agents operating under com-

petitive conditions. It is important to stress that the notion of rationality

embodied in this theory is simply related to a vague idea of “pursuance of

self-interest”, that is to a mere tendency towards the matching between pref-

erences and opportunities. Thus, no aspect of optimality was supposed to

characterize individual decision-making. Consequently, in giving explana-

tions of economic behaviors large place was found by psychological inquires

about human “moral sentiments”.

This early concern about psychological foundations of economic theory

started fading after the advent of Marginalism at the fall of XIX century. Fas-

cinated by the success of classical mechanics, marginalist school borrowed its
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analytical tools in the attempt of edifying a theory of a perfectly predictable

human behavior. Economics was then pushed in the direction of ever in-

creasing degrees of mathematical formalism, which eventually became the

centerpiece of economic disciplines, while any psychological content was lim-

ited to only few axioms, whose plausibility was all but undisputable. The

loose notion of rationality characterizing classical Political Economy mutated

in the so-called ’full rationality’ paradigm, which constrained the fickle and

inconsistent human being’s behavior in the straightjacket of the concept of

homo oeconomicus, a Laplacean demon provided with omniscience and in-

fallibility. Moreover, the same concept was applied with great ease not only

to human beings, but also to any other economic agent, being it a bank, a

manufacturing firm or a government.

The standard model of economic decision-making, therefore, rests on a

set of hypotheses that may be epitomized in the following three propositions:

1. agents are fully informed about the environment;

2. agents are consistent, in the sense that between two alternatives they

choose the best one (according to some criterion);

3. deciding agents encounter no limit of time and computational power.

In any model of rational choice, goals are given as a prior and are em-

bodied into a well-defined objective function (utility for consumers, profits

for firms), which allows the economic agent to always carry out consistent

choices. In addition, economic agents are supposed to choose, from all the

possible alternatives, the one entailing the achievement of the maximum of

their objective function; in a word, agents optimize. Moreover, the full ra-

tionality assumption is maintained even in the context of risky choice that is

investigated by the Subjective Expected Utility theory. To summarize, the
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full rationality perspective adopted by neoclassical economics reduces to the

following postulates:

1. preferences are well-defined;

2. information about events or probability of events is perfect;

3. agents optimize.

The well-known product of these assumptions is the picture of a suspi-

ciously smart individual. It is therefore natural to ask whether the above

claims are a good representation of human behavior when immersed in real

worlds - which by their very nature are complex systems because of multiple

interactions of many heterogeneous agents.

Since the second half of the XX century, Herbert Simon challenged the

neoclassical view of human decision making pioneering a line of research on

the psychological foundations of actual economic behavior, suggesting that

human minds are characterized by bounded rationality because they suffer

of some sort of cognitive limitation, both in the amount of available infor-

mation and in the ability of processing it in the correct way. In the wake of

Simon’s work, two strictly interdependent strands of investigation developed:

experimental economics, whose research is aimed at empirically testing neo-

classical theoretical predictions by means of laboratory experiments (from

theory to data), and behavioral economics, whose objective is to employ the

available empirical evidence about human behavior in order to work out new

and more realistic representations of economic decision-making (from data

to theory). More recent is the advent of neuroeconomics, which exploits the

modern techniques of brain scanning to derive new insights about human

economic behavior relating actions to brain activation areas.
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We have now to characterize the concept of bounded rationality in deeper

details, starting by a clarification of what it is not. In first place, bounded

rationality is not an “optimization under constraints”, and is not even an in-

ferior form of rationality: it is not a mistake or a deviation from theoretical

norms. Bounded rationality, in practice, must not be confused with the in-

telligence that may characterize irrational decision-makers. On the opposite,

it is the kind of rationality that necessarily characterizes real agents when

called to face problems in real environment. In fact, advocates of bounded

rationality focus their analysis on the procedural rationality, that is on the

very process of how agents materially make choices given their preferences

and the perceived opportunities offered by the structure of the environment,

while neoclassical theory ignores the actual implementation of the choice and

concentrates only on the prediction of the best outcome, which fully rational

agents are supposed to attain (substantial rationality). In other terms, to be

procedurally rational means to adopt a method to possibly find a satisficing

solution for a given problem (Simon, 1987), while to be substantially rational

means to know the best solution of the problem. But optimizing rational-

ity guarantees the correspondence of substantial and procedural rationality if

and only if all the consequences of alternative actions can be consistently con-

ceived in advance, at least in a probabilistic sense. In such an ideal situation,

optimizing behavior is sufficient to give a good representation of mental pro-

cesses, regardless of the actual implementation of decisions. But for complex

systems like real economies this possibility is generally ruled out, because

the dynamics produced by an interactive population gives rise to uncertainty

that can not be reduced to risk. As a consequence, in similar situations

real economic actors do not possess well-defined models of the environment

surrounding them, and the degree of rationality we can realistically ask our
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agents should decline.

In large complex economies, deductive means of reasoning are inapplica-

ble or ill-defined; instead, individuals build internal mental models to repre-

sent the world, learn from the outcomes of previous choices, and extrapolate

from the particular to the general. Simply stated, agents employ some form

of induction. Thus, in large interactive systems, individual decision pro-

cesses become unavoidably adaptive, that is adjusted in the light of realized

results, and the search for actions aimed at increasing individual perfor-

mance stops as soon as a satisficing solution has been found. Adaptation

is a backward-looking, sequential, path-dependent phenomenon and is based

on quick, resource-saving heuristics. Bounded rationality, consequently, is

the evocative term used to label decisional processes of ecologically rational

adaptation, that is processes of selective adaptation providing outcomes that

are not necessarily optimal, but which give the opportunity to survive most

of the times in a given environment.1

All in all, while the rational agent model “is about how to make good

decisions”, bounded rationality “is about trying to predict what people actu-

ally do”. Since there is only one way to be “fully rational”, while the ways of

not being fully rational are infinite, a complete theory of bounded rationality

does not exist and, consequently, many models of bounded rationality can

be generated. For instance, instead of assuming a given set of alternatives,

which the deciding agent picks from, one can postulate a process generating

the alternatives. Instead of assuming a given and known probability distri-

1Mainstream economics also recognized real agents’ cognitive limitations, but rejected
bounded rationality as irrelevant and still retained the full rationality hypothesis on the ba-
sis of Friedman’s notorious as-if argument, stating that the survival-of-the-fittest mecha-
nism would let only optimizing firms to survive at equilibrium. A simple counter-argument
to Friedman’s claims is based on the observation that in any environment individual full
rationality is not a necessary condition to survive; at most, it is only sufficient to be slightly
smarter than the others.
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bution of choice outcomes, one can introduce some mechanism allowing the

estimation of the probabilities or the deployment of some strategy to face the

uncertainty without assuming the knowledge of the probabilities. Finally, as

an alternative to the assumption that agents can maximize their utility func-

tion, one may postulate a decision strategy giving only satisfactory outcomes.

Models of bounded rationality cannot be, therefore, universal strategies to

be used as general-purpose tools, but rather they are unavoidably context-

dependent, fast and frugal heuristics. Nevertheless, some regularity exists as

the literature on experimental and behavioral economics show.

5.2.1 Empirical microfoundations of individual behav-

ior

While discussing the concept of bounded rationality we have already pointed

out how major contributions in detecting failings of neoclassical theory came

especially from cognitive psychology, behavioral and experimental economics,

and recently from neuroeconomics. Agent-based modelers can benefit from

the results of these disciplines that contribute to the development of alterna-

tive schemes for the representation of bounded rational individual decision-

making.

Cognitive psychology is principally concerned about the activities of judg-

ment and choice, assuming that at the basis of human decision-making two

different cognitive processes coexist: intuition and reasoning. While reason-

ing is a voluntary, slow, controlled, serial and effortful cognitive process, on

the opposite intuition is a fast, associative and effortless mechanism produc-

ing automatically spontaneous judgments (or thoughts) just as if they were

perceptions. The neoclassical picture describing economic decision-making

is uniquely based on reasoning, while in reality most of decisions (and the
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economic ones are not an exception) are typically based on intuitive judg-

ments, with reasoning simply relegated to the task of monitoring the quality

of judgments produced by intuition. Thus, cognitive psychology offers a

strong empirical support to the bounded rationality arguments, offering at

the same time useful bases for constructing alternative behavioral models.

One of the central assumptions for economic theory is that of well-defined

preferences, which can be considered a valid hypothesis whenever preferences

are independent of the context. But several experiments by cognitive psychol-

ogists demonstrated that often the opposite is true because of the so-called

framing effect. As we will see, framing effects are pervasive and cause prefer-

ences to be in many cases ill-defined, or dependent on the context in which

they are originated.

Intuitive judgments depend on accessibility, that is the easiness with

which particular mental contents come to mind (Higgins, 1996). Accessibil-

ity, on its turn, is a feature of human mind influenced by the framing of the

object being observed. Changes in the framing may induce the accessibility

of different intuitive judgments, which consequently trigger a different evalu-

ation of the problem. Thus, framing effects (Tversky and Kahneman, 1981)

make preferences context-dependent, and constitute a violation of the ’pref-

erence invariance’ property (Arrow, 1982; Tversky and Kahneman, 1986),

which basically states that preferences are not affected by variations of irrel-

evant features of options and outcomes. How the context may imply differ-

ent preference structures by affecting accessibility will be illustrated below

through a series of examples. Each example at one time shows both a failure

of neoclassical assumptions and a possibility for alternative bounded rational

behavioral models.
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Framing effect. Many experiments have demonstrated that people actu-

ally evaluate risky decision outcomes framing the problem in terms of gains

and losses, showing that the carriers of utility are changes in wealth and not

levels of wealth as assumed by subjective expected utility theory. When a

problem of risky choice is stated (framed) in terms of changes, people show

clear risk aversion, but when the same problem is represented in terms of

levels, a weak attitude to risk-taking emerges. On the basis of the evidence

that changes are relatively more accessible than absolute values, Kahneman

and Tversky (1979) proposed a model of risky choice called Prospect The-

ory. It states that individual preferences are described by a value function,

which is increasing and concave with respect to gains, decreasing and convex

with respect to losses and zero at the origin, where it also displays a kink.

Alternative theories of risky choice aimed at relaxing or removing the orig-

inal axioms of expected utility theory are the weighted utility theory (Chew

and MacCrimmon, 1979), the expected utility without the independence ax-

iom (Machina, 1982), the regret theory (Loomes and Sugden, 1982), and

rank-dependent expected utility (Quiggin, 1982, 1993).2

Reference points. Another powerful example of framing effect is given by

the case of reference-dependent evaluations in risky contexts. Human per-

ception is biologically designed to favor the accessibility of changes and dif-

ferences instead of levels (Palmer, 1999). Hence, reference-dependence means

that perception is usually based on an anchoring reference value that is used

as vantage point: the perceived attributes of a focal stimulus reflect the con-

trast between that stimulus and a context of prior and concurrent stimulus.

A simple example is the following one. Consider three buckets of water char-

2See also: Chew et al. (1987) and Yaari (1987).
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acterized by different temperatures: the left one contains cold water, the

middle one contains tepid water, and the right one contains hot water; con-

sider that the left hand of a person is immersed in the hot bucket and the

right hand in the cold one; after initial intense sensations of cold and heat,

these sensation wanes; when both the hands are immersed in the middle

bucket, the experience is heat in the left hand and cold in the right hand.

The violation of the rationality axiom of ’irrelevance of irrelevant alterna-

tives’ constitutes further evidence of the importance of reference points in

decision-making. There are in fact cases in which decision is a problematic

task because the options at stake differ by features that are not easily com-

parable - that is the decision cannot be taken because of a lack of reference

points. In the first step of a classic experiment conducted by Tversky, under-

graduate students are called to decide between renting room A, cheap but

far away from the university, and renting room B, expensive but close to the

university. The choice is not so obvious because the characteristics of the

rooms (cost and proximity to the university) are difficult to compare with

each other, and in fact the sample of students splits equally between A and

B, signaling an objective difficulty in deciding. In a second step, A and B

are flanked by a third option, room C. The characteristic of room C is to be

patently worse than A, because more expensive and more distant from the

university. According to neoclassical precepts the addition of C should be

irrelevant, but Tversky discovered that most of the students now prefer room

A, whose attributes are more easily comparable with those of C. Since most

of respondents find hard to opt between A and B, adding option C induces

students to implicitly restate the problem into a choice between A and C only.

Hyperbolic discounting. Another example we show, witnessing how ref-
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erence points may have a role in shaping individual preferences, is the phe-

nomenon of time-inconsistency detected in the intertemporal choice problem.

In mainstream models where agents are called to trade off costs and bene-

fits that occur at different periods, usually it is assumed that future events

are discounted by the exponential factor 1/(1 + r)t, where r is a constant

rate. Such a formulation assures preferences being always consistent along

time since same time windows exhibit same discounting factors, regardless

of their absolute position in time. However, since the first experiments by

Thaler (1981), also confirmed by later studies (e.g. Benzion et al., 1989;

Holcomb and Nelson, 1992; Pender, 1996), a hyperbolic time discounting

function, at a rate 1/(1 + kt), has proved to fit experimental data better

than the exponential model. The main property of hyperbolic discounting

is to have a discount factor r, which is decreasing in time. In fact, same

time windows show different discounting according to their absolute position

in the time horizon; for example, discounting between period t and t+1 is

larger than discounting between k+t and k+t+1 with k > 0. This char-

acteristic entails, therefore, time-inconsistency in people’s preferences since,

when future become near future (i.e. the time window approaches the mo-

ment of decision taking), its discounting becomes more and more dramatic,

producing an “immediacy effect” according to which present time is dispro-

portionately preferred. Thus, people with hyperbolic discounting have the

systematic tendency to change their mind as the time goes by.

Mental accounting. The next example of framing effect (Tversky and

Kahneman, 1981) constitutes a violation of the neoclassical prediction ac-

cording to which wealth is ’fungible’, a property making irrelevant the source

of the wealth. In the experiment a group of consumers had to suppose of
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having purchased in advance the tickets for a theater show at the price of 10

$, later discovering, at the time of the show, to have lost them. A second

group of consumers, instead, had to imagine of losing a 10 $ bill while going

to the theater to buy the tickets. Then, the components of both groups were

asked to declare whether they would have attended anyway the show. Ac-

cording to the full-rationality theory, the two groups should have given the

same answer, since losing a 10 $ worth ticket is equivalent to losing a 10 $

bill because the effect on the budget constraint is equivalent. Nonetheless,

almost all the people from the group supposing the loss of the ticket replied

that they would have not gone to the show, while the 88 % from the other

group announced that they would have attended the show in spite of the loss

of the 10 $ bill. The authors explained such result introducing the concept of

“mental accounting”, according to which people are incline to organize their

expenditures in mental categories such as ’food’, ’entertainment’ or ’general

expenses’. For the two groups the economic value of the loss (10 $) is the

same, but its framing is different. In fact, it is likely that those people losing

the tickets behave as if they debit the loss into the mental count ’entertain-

ment’, while the others to the count ’general expenses’. Hence, for the first

group the loss of the ticket makes the cost of the show to rise from 10 to

20 $, a cost which many respondents find excessive, while for the others it

remains to 10 $.

Risk attitude. A famous instance of framing effects is given by the ’Asian

disease problem’, which offers a striking example of violation of the prefer-

ence invariance property assumed by neoclassical economics. The problem is

stated as follows (Tversky and Kahneman, 1981):

“Imagine that the United States is preparing for the outbreak of an un-
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usual Asian disease, which is expected to kill 600 people. Two alternative

programs to combat the disease have been proposed. Assume that the exact

scientific estimates of the consequences of the programs are as follows:

If Program A is adopted, 200 people will be saved;

If Program B is adopted, there is a one-third probability that 600 people

will be saved and a two-thirds probability that no people will be saved.

Which of the two programs would you favor?”

If the problem is presented in this version, most of respondents are in

favor of program A, indicating risk aversion. The same dilemma is then

submitted to another sample of respondents in an alternative but logically

equivalent form:

“If Program A’ is adopted, 400 people will die;

If Program B’ is adopted, there is a one-third probability that nobody

will die and a two-thirds probability that 600 people will die.”

A neat majority of respondents now prefers program B’, showing risk-

proclivity. Although the two versions of the problem bear exactly the same

informative content (A=A’ and B=B’), they evoke different ideas and emo-

tions and induce opposite choices. The reason resides in the difference of

framing that causes the problem to allow for a dissimilar accessibility of

judgments in respondents’ mind. In fact, since certain options are generally

over-weighted because their outcome is easier to evaluate, program A will be

disproportionately attractive and preferred to program B because it makes

easily accessible the positive image of saving 200 people for sure. Besides,

for the same reason of over-weighting of certain outcomes, program B’ is

preferred because program A’ calls to mind the negative image of a condem-

nation to sure death for 400 people; as a consequence, respondents accept

the gamble embodied in program B’ in the hope of avoiding a grim fate to
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400 people. According to the full-rationality paradigm, if A is preferred to

B, then A’ must be also preferred to B’. But, as experimentally proved, this

is not the case. Therefore, even though far from being a proof of irrationality

of people, this example shows how preferences may even be reversed by the

particular accessibility of sentiments and intuitions triggered by the framing

of the context.

5.2.2 Agents’ behavior and heuristics

Even when preferences are well-defined, not always people show the kind

of rationality that is supposed by neoclassical economics to characterize hu-

man behavior. This is true in at least two meanings. As already stated,

in complex environments adaptive behaviors based on “rule of thumbs”, or

heuristics, become the standard. As is logical, this is true in the judgment

process too. Kahneman and Tversky (1974) in fact argue that people rely

on a limited number of heuristic methods to overcome the operational com-

plexity of tasks such as assessing probabilities and deducing environmental

features. But there is also another difficulty that weakens the descriptive

ability of the full-rationality paradigm: people display the tendency to er-

roneously interpret the facts that are relevant to a problem of choice, and

often their errors are systematic. Generally, heuristics are efficient because

they represent quick and parsimonious decisional rules that help to survive

in every-day life and, in this sense, they are ecologically rational. But when

used in more complex problems or when the available decisional time is mini-

mal, they are often misleading and incorrect. Kahneman and Tversky (1974)

identify some practical rules used in judgment:

• The first one is “availability”. In general people estimate the frequency

of an event on the basis of the ease with which analogous events are
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remembered. Experiments show that people are inclined to deem the

cases of killings more frequent than the cases of suicide not because

killings actually are, but because they strike people’s mind much more.

Consequently, killings are more available to memory.

• The second heuristic is “representativeness”, which works when people

are called to estimate conditional probabilities. The task of estimating

P (sampleA ∈ classB) is carried out simply on how well the sample

represents the class, without considering how large the class is. Suppose

to evaluate whether a shy man is a seller or a librarian. Since librarians

are shy more often than sellers, one is more inclined to say that the shy

man is a librarian. But this evaluation is likely to be incorrect because

it does not consider that in the population there are many more sellers

than librarians. The heuristic of representativeness is then at the root

of the so-called base rate fallacy3.

• The third heuristic is “anchoring”, a widespread strategy used in eval-

uating a given situation which consists in choosing an initial reference

point and then in adjusting the evaluation as new information becomes

available. The principal drawbacks of anchoring are that the reference

point may be totally independent from the object of evaluation, or that

the final judgment tends to be too much closely related to it.4

Furthermore, some contributions (Damasio, 1994; Loewenstein et al.,

2001; Slovic et al., 2002) highlight the role of emotions in shaping agents’

behavior and thus economic choices. For instance, Slovic et al. (2002) intro-

duce “affect heuristics” to describe how the decisional process is affected by

3This mistake simply amounts to confound conditional with marginal probabilities.
4The most common biases produced by these heuristic of judgments are non-regressive

prediction, neglect of base-rate information, overconfidence and overestimates of the fre-
quency of events that are easy to recall.

134



the emotions associated with objects or the mental images of those objects.

The influence of particular feelings/affective reactions or moods are typically

experienced at the unconscious level and may shape agents’ behavior with-

out them are aware of it. Through repeated interactions, agents may learn

how to automatically react to stimuli and can develop a set of automated

(and implicit) actions, thus resulting in fast decisions (as opposed to more

elaborated and slow decisions based on logical reasoning).

In order to develop a consistent set of behavioral rules followed by a

bounded rational agent, who try to make inferences from the real world un-

der constraints of limited time, limited knowledge, and limited computational

capabilities, it is useful to discuss the notion and the content of a specific vi-

sion of bounded rationality proposed by Gigerenzer et al. (1999), the adaptive

toolbox, which collects a set of heuristics based on three premises (Gigerenzer

and Selten, 2001b):

• Psychological plausibility. The aim is to develop a model of the actual

behavior of humans (or animals) based on their cognitive, emotional,

and behavioral characteristics.

• Domain specific. The toolbox provides a collection of heuristics that

are specialized rather than general (as in the case of Expected Utility

Theory).

• Ecological rationality. The success of heuristics is based on adaptation

to the structure of the environment (both physical and social).

Heuristics are composed of building blocks with three main functions: search

a direction, stop search, and make a decision. In more details, we have the

following rules whose combinations give rise to heuristics:
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• Search rules. Searching information or alternatives is modeled as an

adaptive procedure that is repeated until it is stopped.

• Stopping rules. They terminate searching procedures whenever a sat-

isfactory condition is reached, preventing search rules from wasting

limited resources.

• Decision rules. Once search is stopped and a certain amount of in-

formation has been gathered, a simple decision rule is applied. It may

include the adoption of social norms, cultural habits or well-established

conventions.

For example, think about a population of firms and workers that interact

in a spatial labor market:

• Consider that the worker j has a reservation wage wj and visits firms

from the nearest to more distant firms; this is a search rule.

• The agent visits a certain number of firms in her neighborhood until

the distance is not larger than 100 Km; this is a stopping rule.

• Based on previous rules, the worker j has a list of firms, each offering

a given wage; now, two cases can be considered in the decision rule:

1. there is at list one firm for which the offered wage is higher than

the reservation wage plus transport costs (tc); then, the worker

j decides to accept the wage wi paid by the firm i for which the

difference wi− (wj + tc) is the highest in the list of observed firms;

2. in the other case, the worker j prefers to be unemployed, given

that the offered wage by firms does not cover the reservation wage

augmented by the transport costs.
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The combination of the three rules – search, stopping and decision rules

– gives rise to a heuristics that guides the behavior of an agent who wants

to be employed by a firm in her neighborhood, gaining a wage that is above

the reservation wage and also cover the transport costs.

5.3 Learning

In general, learning is the object of study by different disciplines such as

psychology and pedagogy but, in recent years, it is more and more capturing

the attention of economists. For our scopes, it is necessary to understand

when learning gains a prominent role for economic theory, what are the

objects of learning and how it can be embodied in economic models.

As already stated, once the hypothesis of perfect information is removed,

some sort of bounded rationality becomes the normal status and, conse-

quently, artificial agents have to be modeled with some sort of limitation

in their cognitive and decisional capabilities. Moreover, agents may be al-

lowed to change their attitude and their knowledge through some learning

mechanism.

As a consequence of limited information, the typical situations where

learning may occur are those in which:

• agents have a limited or even a wrong comprehension of their environ-

ment;

• they master only a subset of all the actions that can be conceived in

order to face a given situation;

• they have an imprecise understanding of their own goals and prefer-

ences.
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From this categorization it immediately follows how theoretical models may

tackle the issue of learning formalization. Their scope of investigation in-

volves the exploration of world state-spaces modeling the learning process at

different levels of abstraction. We can classify the objects of learning in the

following order:

1. models of the world : learning is modeled as a search for more satisfac-

tory representations of the functional structure of the environment in

which the agent is operating;

2. parameters within a given model : in this narrower case, it is assumed

that the model of the world is given in its functional structure, and that

learning amounts to an inferential process on the true value of some

unknown parameter, as in Bayesian or statistical learning;

3. actions : learning assumes a constant or even irrelevant representation

of the world, and amounts to choose from a list of different possible ac-

tions those conveying more satisfaction, as in simple stimulus-response

models of learning;

4. realized outcomes : the process of learning is modeled in a reduced form

being just represented as a dynamic process in the space of realized out-

comes (as in models of economic growth with technological progress).

The order of classification reflects different degrees of abstraction in the way

of modeling the learning process. Instance (1) is the deepest representation

of learning since it deals with the very agent’s cognitive process. Of course

it may imply the other three cases, because learning in the space of world

representations involves also the possibility of parameter estimates or the

choice of actions. Finally, instance (4) is the most abstract representation of
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learning since it is assumed that the problem of modeling the actual cognitive

processes is already solved from the start, and learning is simply represented

in a reduced form.

Given the underlying object of learning, we can trace another distinction

of learning processes according to the restrictions imposed on the domain in

which learning dynamics can occur. A closed learning process takes place

whenever the assumption of a ’Small World’ is retained, that is when agents

are supposed to hold in mind from the start a finite and complete list of

all the things that are possible objects of learning. This is the case of an

adaptive learning, which typically finds its representations in evolutionary

games. Conversely, more realistic open-ended learning dynamics become the

norm in truly evolutionary environments, where not only adaptation but also

discovery and persistent emergence of novelties are involved.

So far we have shown when learning becomes a relevant issue for eco-

nomic theory and what its manifestations are. Hence, it is now necessary to

understand how learning could be actually implemented in economic mod-

els. In the literature on agent-based models several kinds of representation

of human learning process have been employed. Most of these learning cri-

teria have been developed as optimization tools in uncertain environments,

where the maximization of very rugged objective functions could not be at-

tained through ordinary differential calculus. However, it must be empha-

sized that the relationship between learning theory and agent-based modeling

is twofold:

• from one side, an agent-based model can be used as a computational

laboratory in order to test the effectiveness and the implications of

learning rules;

• on the other side, learning mechanisms can be implemented in agent-
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based models as agents’ behavioral rules in order to increase their de-

gree of realism.

The way in which agents learn depends on the amount of information

and on their ability to process it. Therefore, the choice for the most suit-

able representation of their forma mentis has to be based on environmental

and agents’ characteristics. If the model contemplates a situation of perfect

information, then nothing hosts that agents can be conveniently supposed

to be ’optimizers’; on the contrary, if the environment is a poor supplier of

information and agents are unsophisticated, the best way to represent their

learning behavior will be necessarily simple and adaptive. As recommended

by behavioral and experimental economics, in order to make a good choice

it is fundamental to take into account the results emerging from laboratory

experiments with human beings and minding, in particular, the discrepancies

between them and the predictions of mainstream economic theory.

Since agents can learn individually on the basis of their own past history

only, or they might be involved in some social learning process occurring

when interaction is at work, in what follows two kinds of individual learning

will be reviewed, both applicable in agent-based models: statistical learn-

ing, recently developed in the bosom of mainstream economics, and fitness

learning, whose first appearance can be traced back to 1920s Skinnerian psy-

chology. Afterwards, a section is devoted to a brief sketch of social learning.

Finally, a comparison between individual and social learning is provided.

5.3.1 Individual learning 1: statistical learning

The statistical learning literature suggests to incorporate a learning behav-

ior in expectation formation in order to limit the hyper-rational intelligence

of agents (Evans and Honkapohja, 2001). The starting point is to assume
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bounded rationally agents allowed to learn the parameters of the model by

acting as econometricians who run regressions to improve their knowledge

when called to forecast unknown variables. In this way the forecasting rule

must be explicitly expressed as a dynamical econometric model representing

the Perceived Law of Motion (PLM) of the forecast variables. Recalling the

above categorization of learning, this is precisely an example belonging to

the second type. The second step is to allow adaptation of expectations as

soon as new data become available to agents. In formal terms, the prediction

pet is supposed to be a function of a data set Xt

pet = Φ(Xt, θt−1),

where function Φ(·) is the PLM and θt−1 is a vector of previously estimated

unknown parameters. Finally, the specification of an updating rule for the

estimates θt−1 – like, for instance, recursive least squares – completes the

adaptive forecasting apparatus. At least in simple cases of closed learning

dynamics, statistical learning leads models to converge to some Rational

Expectations solution, thus providing a sort of asymptotical justification to

rational expectations. Besides, it can help in solving the problem of multi-

plicity of equilibria. For example, in the cobweb context, if agents estimate

prices by computing the sample mean from past values, it is possible to show

that learning expectations will converge over time to their RE counterparts.

Obviously, the statistical learning approach raises several questions. Even

if we affirm that agents are in origin bounded rational, we must admit that

they can learn from their own mistakes, possibly behaving as a rational agent

at the end of a learning process. But we must also note that an easy criticism

to these learning procedures is that they usually require that the agents own

the high skills of an econometrician. Another question is the following: are
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we sure that learning procedures always promote convergence to the same

equilibrium of the perfect foresight assumption? Departing from the case of

simple linear systems, the answer is often negative as, for example, showed

Bullard (1994). He considers a quite simple and standard two periods OLG

model and shows how even the assumption that the agents are able to use a

least square regression to estimate an unknown value of a parameter; such an

assumption is not enough to always ensure convergence to the perfect fore-

sight equilibrium. He calls this kind of learning dynamics, which is different

from the convergence to the rational steady state, as Learning Equilibria, be-

cause they are exclusively generated by the adopted learning mechanism. In

other words, what Bullard shows is the possibility of self-fulfilling mistakes.

Learning equilibria can also emerge as consequences of further relaxing

the degree of rationality. For example, once it is assumed that agents behave

as econometricians, they may well face the same kinds of problems in choos-

ing the most appropriate specification of their statistical representation of

the “real” world, with the consequence that this model may be wrong. This

is an instance of learning of the first type, where agents need to learn the

model of the world. One major problem in choosing the model is the proper

consideration of all the variables that are actually relevant to the process

being forecast: agents start by using a particular conditional mean for the

predicted variables, and can change it if it is rejected by data, but nothing

makes it sure the correctness of the variable choice. This depends on the ini-

tial conditions of the forecasting procedure: when agents start predicting a

process with an over-parameterized model that includes more variables than

necessary, they can learn over time to get rid of the irrelevant ones. But

if, on the contrary, they are estimating the conditional mean of the process

employing a model which disregards some of its relevant variables, agents
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are in general not able to detect the misspecification of the model because

the regression residuals are orthogonal to the variables included in their in-

formative set, and they might induce the model to converge towards what

is called restricted perception equilibrium (RPE). In econometric jargon this

is a problem of endogeneity, which can be also determined by other forms

of model misspecification. A particular type of RPE is one that character-

izes a situation in which a non-linear process underling the dynamics of the

economy is predicted by means of a linear model. When the mean and the

correlations in the data generated by the true non-linear process coincide

with those predicted by the linear model, the equilibrium is reached.

5.3.2 Individual learning 2: fitness learning

Within the fitness learning approach, two broad classes of learning proce-

dures can be identified (Duffy, 2006): reinforcement models and evolutionary

algorithms.

Reinforcement models

Rooted in Skinnerian behaviorist psychology and first appeared in math-

ematical psychology studies, reinforcement, or stimulus-response, learning

finds its rationale in the so-called Thorndike’s ’law of effect’, which basically

states that actions that in the past have proven to be relatively more (less)

successful have higher (lower) probabilities to be played again in subsequent

periods. An agent that employs reinforcement learning is therefore called to

experiment how much utility he can gain from the use of different possible

actions, attaching to each of them a probability of reutilization that increases

with the acquired payoff. As a by-product, actions that are not sufficiently

experimented from the beginning are then less likely to be played over time.
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An important feature of reinforcement learning is that it requires from agents

very low levels of rationality, since no information about other agents’ be-

havior or environmental characteristics is demanded: only knowledge of a set

of actions and of individual past history is necessary. From an optimization

viewpoint, reinforcement learning is therefore able to attain local optima if

the environment is stable, since iterated experimentation correctly reveals

actions’ payoffs.

One of the first applications of reinforcement learning procedures to the

modeling of economic behavior is Arthur (1991). In this model, agents are

supposed to be endowed with a fixed set of possible actions. To each action i

at time t a “strength” sit, or fitness, or propensity, is assigned; this strength

is the cumulated of all past payoffs earned by action i and determines the

probability pit of playing action i according to the formula pit = sit/Ct, where

Ct is a normalization factor tuning the speed of learning. Whenever action

i brings a relatively higher payoff, its probability of reuse increases through

the strength sit; therefore, this payoff-based increase of probabilities is inter-

preted as if the agent were understanding the goodness of action i.

Numerous variants of reinforcement learning procedures have been pro-

posed and applied in order to match different experimental data. For in-

stance, Roth and Ever (1995) borrow from Arthur the general apparatus

with the exception of the probability-updating rule, which is given by the

linear relation

pi =
si∑
j sj

where j denotes all the actions different from i. Other versions instead employ
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the exponential choice rule

pi =
exp si∑
j exp sj

.

More sophisticated approaches include the possibility for agents to learn

actions’ payoffs by observing other agents’ behavior as well, or to use more

advanced inductive techniques as Q-learning,5 which is closely related to dy-

namic programming.

The work by Brock and Hommes (1997) represents a cross point for

bounded rationality, expectations and reinforcement learning, since it is one

of the first examples of modeling heterogeneous expectations as the endoge-

nous outcome of a decision problem in which agents, in a cobweb context,

have to choose a predictor, i.e. a function of past history, from a set of al-

ternatives on the basis of costs and benefits.

Reinforcement learning in the brain

Models from computer science have demonstrated to be useful in modeling

how biological decision making systems learn to assign values to actions. Re-

inforcement learning theory has also been informed by recent mechanistic

approaches in cognitive neuroscience, which searches for a formal model of

how organisms acquire complex behaviors by learning to obtain rewards and

to avoid punishments (Dickinson and Balleine, 2002; Glimcher et al., 2009;

Rangel et al., 2008; Sutton and Barto, 1998). In behavioral and cognitive

neuroscience, reinforcement learning has been employed as a theory of mo-

5See Section 5.3.2.
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tivated action, i.e. actions resulting from computation of ’value’, and also a

model how the brain ’decides’ what actions to take. In contrast to economic

theories assuming the existence of a unitary system for estimating the value

of alternative actions, models of reinforcement learning posit the existence of

three competing systems for action control. Modern versions of reinforcement

learning specify how different action control systems, which are embodied in

contrasting neural networks and functions, can be independently or jointly

activated to control action (see Vlaev and Dolan, 2015).

Researchers have identified three control systems for action: a goal-directed

(or “model-based”) controller, a habitual (or “model-free”) controller, an in-

nate (or “Pavlovian”) controller. The key insights is that in contrast to a

unitary-utility approach, the utility of competing actions need not be inte-

grated across systems to form a unitary estimate prior to the initiation of

action: rather each system can itself initiate action.

Goal-directed actions require the most complex information processing,

because they are based on an explicit model of the structure of the environ-

ment, which requires a representation of the contingency between the action

and the outcome(s) and a representation of the value of each outcome. Goal-

directed actions require three core computational processes:

• valuation (costs and benefits) of outcomes (outcome value),

• probabilistic estimation of the contingency between the action and the

outcome (action-outcome contingency learning), and

• planning which incorporates those calculations and engages in model-

ing and searching through decision trees containing sequences of state-

action-outcomes in order to calculate the optimal sequence of actions

(i.e., involves representing explicit models of the world or the organ-
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ism).

Therefore, goal-directed action control learns the transition structure of the

environment separately from the outcome values (the latter makes goal-

directed actions sensitive to the current motivational state of the organism).

There are different of ways a model-based system could operate. For example,

Daw et al. (2005) offer a possible implementation. In such models, learning

is modeled as a Markov decision processes, in which experience is structured

as a set of trials, with a set of end or terminal states where a decision episode

can end. This process is also represented as a decision tree system. Usually,

outcomes (rewards) are delivered only in terminal states. Choice in such tree

systems depends on scalar values that represent predictions of the future

utility of executing a particular action at a given state. Thus, for example, if

the outcome is devalued, the tree system can use that information to guide

action at distal states, because action values are derived by considering what

future states would result. Note that the agent may start without knowing

the exact marking process, and this process can also change over time; which

is why those models are known as ’reinforcement learning’ i.e. the agent has

to learn the process and find the optimal course of action. Therefore, key

difference between this computational approach and the standard Expected

Utility is that the former acknowledges that fully optimal choice in unknown

Markov decision process is computationally intractable; and therefore may

rely on approximations.

In computational terms, according to Daw et al. (2005), a Markov decision

process comprises sets S of states and A of actions, a ’transition function’

T (s, a, s′) ≡ P (s(t+1) = s′|s(t) = s, a(t) = a) specifying the probability that

state s’ will follow state s given action a, and a ’reward function’ R(s) ≡

P (r(t) = x units | s(t) = s) specifying the probability that reward is received
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in terminal state s. The state-action value function Q(s, a) is the expected

probability that reward will be received, given that the agent takes action a in

state s and chooses optimally thereafter. This process is formally represented

with a recursive function:

Q(s, a) ≡

R(s) s is terminal(a = �)∑
s′ T (s, a, s′) ·maxa′ [Q(s′, a′)] otherwise

Habitual actions are stimulus-response associations learned through re-

peated practice and rewards in a stable environment. Habits are instrumental

responses based on adaptive state-action contingencies or associations (also

known as operant conditioning), thus avoiding the need to compute the ex-

pected outcomes. Habitual model-free learning is most often described with

temporal difference equations. Basically, the habitual system needs to solve

two problems (e.g., see Rangel et al., 2008). First, given a policy π (it spec-

ifies the action that the animal takes in every state), it needs to compute

the value of taking every action a in every state s. This is given by a model

known as Q-learning:

Qπ = E[rt+ γrt+1 + γ2rt+2 + γ3rt+3 . . . |st = s, at = a, at+1 = π(st+1, . . .)]

where rt+k denotes the reward that is received at time t + k and γ > 0

is the discount rate (this equation can also be written in a recursive form of

course). In order to learn Qπ(s, a), the habitual system uses Q̂(s, a) as an

estimator of Qπ(s, a). To make sure that Q̂(s, a) becomes a good estimate of

the value function, the models define a prediction error:

148



δt = rt + γ ·maxa′ [Q̂(st + 1, a′)]− [Q̂(st, at)]

that measures how close the estimate is to satisfying the equation for

Qπ(s, a) above. If δt > 0 the value of the action is overestimated; if δt < 0

the value is underestimated. One can then use the prediction error to update

the estimates of the action values as follows:

Q̂(st, at)← ˆQ(st, at) + ηδt

where η is a number between 0 and 1 that determines the learning rate/speed.

This model guarantees that, under specific technical conditions, the esti-

mated action values converge to the values produced by the optimal action

policy (i.e., the agent can learn the optimal choice policy by following the

algorithm and selecting the actions with the largest values).

It is important to note that similarly to the tree system, habitual con-

trol depends on scalar values (predictions of the future utility of a particular

choice/action at a particular state); but contrary to the tree system, if an

outcome is devalued, the habit system’ values are insensitive to such changes

because the values are stored scalars. In this sense, habitual learning is

model-free, because the agents do not need to know the transition function

or the reward function. Habit learning explains various behavioral condition-

ing phenomena (see Dolan and Dayan, 2013), such as blocking, overshadow-

ing, inhibitory conditioning, and also disorders of compulsivity (Voon et al.,

2015). The beauty of those models is their computational simplicity, given

that the agent does not need to keep track of long sequences of rewards to

learn the value of actions.

Innate actions are evolutionarily appropriate responses to specific prede-
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termined stimuli, although associative learning allows organisms to deploy

them in response to other stimuli – such behaviors are also known as un-

conditioned and conditioned Pavlovian responses respectively (Mackintosh,

1983). Thus, Pavlovian learning of state-outcome contingencies allows or-

ganisms to learn the predictive value of a state/cue, which reflects the sum

of rewards and punishments expected to occur from it (see Seymour and

Dolan, 2008). Such value expectancies can instigate two fundamental types

of evolved reactions:

• approach (designed to decrease the distance between the organism and

a feature of the environment using responses such as locomotion, grab-

bing, consumption, fighting, mental approach/focusing), and

• avoidance (responses aim to increase the distance by moving away,

flight, freeze, mental avoidance).

Note that even though some of those specific actions can be employed in

goal-directed behaviors (e.g. animal defending a held resources may employ

cost-benefit planning), the signature of innate actions is their automaticity

regardless of whether or not they lead to immediate reward in the given situ-

ation. Such innate actions can underpin a surprisingly wide range of human

behaviors that have important consequences, such as overeating, addiction,

obsessive-compulsive behaviors, and opting for immediate smaller rewards at

the expense of delayed larger rewards (see Dayan et al. (2006)).

Formally, the value of Pavlovian action (approach or avoidance) is the

value of the state v(t), i.e. it requires learning of the Pavlovian contingency,

the predictive value of the state i.e. the mean reward, learned as v(0) = 0,

and
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v(t+ 1) = v(t) + η(r(t)− v(t))

where r(t) is the reward delivered on trial t, and η is a learning rate. This

is an instance of the Rescorla and Wagner (1972) rule, which is also found in

temporal difference learning (Sutton, 1988). Note that Pavlovian also does

not really refer to a way of doing computations as much as the flexibility

permitted in learned relationships between stimulus, action, and outcome

(action is often innately determined) (see Dayan and Berridge, 2014, for a

model/tree-based version of Pavlovian values).

There is also emerging evidence about the neural interactions between

habits and goal-directed control (Dayan et al., 2006). Habits require ex-

tensive experience including schedules of reinforcement involving single ac-

tions and single outcomes, which implies that behavior must be initially

goal-directed and gradually becomes habitual over the course of experience.

This view is supported by explicit evidence for the transfer from dorsome-

dial to dorsolateral over the course of training (see Dolan and Dayan, 2013,

for review). This is further supported by evidence that instrumental learn-

ing tasks always involve model-based and model-free processes (Collins and

Frank, 2012).

In contrast to a unitary-utility approach, the utility of competing actions

need not be integrated across systems to form a unitary estimate prior to

the initiation of action: rather each system can itself initiate action. A good

demonstration of this is that innate and instrumental systems can come into

conflict, and in animals there is a limitation to the extent that evolution-

arily incongruent actions can be reinforced. For example it is not possible

to fully condition pigeons instrumentally to withhold a key peck in order to

gain access to a visible food reward: they continue to peck the key, being
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unable to withhold the innate pecking response despite the fact that it is

never reinforced (Williams and Williams, 1969). By contrast, although the

three systems are theoretically capable of producing action independently

and according to their own criteria, they are not mutually exclusive, for ex-

ample where Pavlovian and instrumental conditioning are congruent there is

evidence that appetitive conditioned stimuli strengthen instrumental behav-

ior, an effect known as Pavlovian Instrumental Transfer (Talmi et al., 2008;

Dickinson and Balleine, 2002).

The interaction between the three-systems adds considerable explanatory

power over and above a unitary decision process, accounting for a greater ar-

ray of real-world choice phenomena (Dolan and Dayan, 2013; Story et al.,

2014; Vlaev and Dolan, 2015). The three-system approach is therefore ca-

pable of uniting the interpretation of a variety of additional effects with

relevance to economic choice.

Less common than reinforcement learning are the belief-based learning

algorithms. The major difference is that in the latter case agents recognize

they are engaging in a game with other players. Actions are then a best

response to their beliefs, which must be updated according to past histories.

The need of considering other players’ data makes belief-based models more

demanding as far as agents’ memory is concerned, and this may explains why

they are less frequently used in agent-based models, where huge collections

of data are usually generated.

In general, both reinforcement and belief-based learning models have

proven to be better predictors of human behavior than is the concept of

static Nash equilibrium.
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Evolutionary algorithms

A shift of perspective, from the individual to the collective, is the charac-

teristic of the second class of learning procedures. Inspired by biological

principles, they are aimed at discovering the process of diffusion of a set of

strategies inside a population of agents. Therefore, evolutionary algorithms

are best suited to model the collective behavior of a population of agents

than individual behaviors and, in fact, the most conspicuous shortcoming is

their difficult interpretation.

Widely used in game-theoretic literature, the simplest class of evolution-

ary algorithms is that of replicator dynamics. The focus is not on how an

individual makes practice with a fixed set of strategies, but on how their

use spreads across the population. The idea informing replicator dynamics

is basically the same behind reinforcement learning: strategies whose fitness

is above average see their proportion in the population increase according to

some recursive updating rule. As an example, consider the following differ-

ential equation:

ẋi = xi[fi(x)− φ(x)], φ(x) =
n∑
j=1

xjfj(x)

where xi is the fraction of type i in the population (the elements of the

vector x sum to unity), x = (x1, . . . , xn) is the vector containing the distri-

bution of the different types that composes the population, fi(x) provides

the fitness of type i, and φ(x) is the average fitness of the population (given

by the weighted average of the n types’ fitness).

Originally developed by Holland (1975) as optimization stochastic tools,
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genetic algorithms have become more and more popular in modeling hu-

man behavior in multi-agent systems after their implementation by Sargent

(1993). In spite of a great variety of algorithms, a typical structure can be

identified:

• the objective function, whose optima have to be searched by the genetic

algorithm, must be specified, together with the parameters and their

admissible values;

• the possible parameter vectors are defined as strings of length L: thus,

each element of the string represents a particular value for a parame-

ter. Since in principle the number of possible strings could be infinite,

generally researchers work with a finite N -sized population of strings;

• the performance of each of the N strings of length L is evaluated using

the objective function;

• finally, mimicking biological processes, N new strings are generated

from the old ones until some criterion is satisfied.

The final process of generation is the characterizing element of genetic

algorithms and needs some clarification.

• First, imitating the Darwinian survival-of-the-fittest, a sample of N

strings is randomly drawn from the initial population, with the only

condition that its average performance is above the average perfor-

mance of the population.

• Second, pairs of strings are randomly picked from the sample, which

then undergo two operations, typical of DNA:

– crossover, which cuts and recombines two strings in order to get

two new strings,
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– and mutation, which randomly changes the value of some element

of the strings in order to add new information.

• Finally, the recombined and mutated new N strings are then evaluated

using the objective function.

Genetic algorithms, as well as their close relative genetic programming

(Koza, 1992), are affected by a general ambiguity of interpretation. For ex-

ample, the N individual strings may be thought as representing the actions of

N interacting individual agents. Alternatively, one can imagine a single agent

experimenting different possible decisions that are represented by the strings.

Another typology of evolutionary algorithms is given by the classifier

systems (Holland, 1986). At half way between reinforcement learning mech-

anisms and genetic algorithms, classifier systems are best interpreted as mod-

els of individual learning. Their basic structure consists of four parts (Duffy,

2006):

1. a set of if-then decision rules (the classifiers);

2. an accounting system devoted to assessing the strength of classifiers;

3. an auction-based system determines which classifiers are to be used;

4. a genetic algorithm which is used to introduce new classifiers.

For some examples on genetic algorithms and classifier systems (see Booker

et al., 1989).

5.3.3 Social learning

By introducing genetic algorithms, we have already noticed their ambiguous

interpretation, as they can be also thought as a whole population trying
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to collectively learn some optimal behavior, rather than as an individual’s

learning process.

In this Section we deal with collective, or social, learning from the stand-

point of the individual agent: we mean that social learning is intended as

the process through which single agents elicit information from the others,

determining the spreading of private information to the whole population.

Within this context, social learning requires a particular form of interaction

among agents (see next Chapter): observation. The immediate consequence

of observing others’ behavior is a process of information transmission among

individuals (observational learning). This kind of interaction usually takes

place in a network structure, where agents directly interact with each other;

in other cases it is an average behavior or information to be observed (mean-

field type interaction).

Observational learning can take many forms:

• The strongest, but also the least realistic, especially in a competitive

market environment, is that of directly observing others’ private infor-

mation: as an example, a firm may come to knowledge of the prof-

itability of a new technology from its competitors, if they know.

• More plausible than this is the observation of the signals received by

others : in the same example, a firm may observe realized profits of

those competitors that have adopted the new technology.

• Finally, the simplest and most likely form of observation is the mere

watching of the actions undertaken by others : if competitors are adopt-

ing the new technology, the firm may deduce that it is convenient to

do so.

Observation of actions can logically lead to imitation, or to its oppo-
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site: contrarianism). When agents face “strong” or Knightian uncertainty,

in the sense that risks related to different scenarios cannot be calculated,

they tend to conform to the opinion of the “rest of the world”, according

to the presumption that it is better informed; in this way, the behavior of

a society of individuals, each of which trying to imitate others, leads to

a sort of “conventional” view (Keynes, 1937).6 Though imitative behavior

shapes individuals’ decisions in many situations, this does not exclude that

agents can follow a contrarian (or anti-coordination behavior) resulting in

more profitable actions. Indeed, we should consider that contrariety is per-

vasive in human experience and that, as stressed long ago by Niels Bohr,

contraria sunt complementa, i.e. contraries are complement (Kelso and En-

gstrom, 2006). Therefore, while some forces may act to coordinate actions,

anti-coordination behaviour may also arise and influence collective dynam-

ics. Moreover, while imitation leads to homogeneity, the presence of both

imitation and contrarianism preserves the heterogeneity of agents’ behavior.

Far from being an irrational individual attitude, imitation naturally emerges

under strong uncertainty. In the context of limited information and bounded

rationality, imitation can be interpreted as an ecologically rational rule-of-

thumb for saving time and costs in decision-making. In spite of this, imitation

can give rise to herding, an inefficient collective behavior where the rate of

social learning is generally low. The most extreme case of herding is given by

the so-called informational cascade, a pathological process of blind imitation

where no one is learning anymore. Herding and informational cascade have

often been proposed as explanations for the emergence of irrational specula-

tive bubbles in financial markets (Banerjee, 1992; Bikhchandani et al., 1992;

6Recent advances in neuroscience have highlighted the neural basis of imitation
through the discovery of “mirror neurons” in monkeys (Rizzolatti et al., 1988) and in
humans (Rizzolatti et al., 1996).
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Welch, 2000).

In contexts where uncertainty can be reduced to risk, as in a game the-

oretic framework, the rational learning of an unknown state of nature is

generally based upon a Bayesian updating of beliefs. In contexts of true un-

certainty, as in agent-based models, observation itself becomes an individual

choice: agents must be endowed with rules for deciding who to observe and

how to exploit the observed information. As an example, the agents may

observe a subset of the population and then imitate the behavior of the one

attaining the best relative performance (imitate-the-best). Imitation can be,

therefore, not only a consequence of observational social learning, but also a

very deliberate activity of the agents within their behavioral strategy.

5.3.4 Individual vs. social learning

Consider the following example of a standard Cournot oligopoly game (Vriend,

2000). There are n firms producing the same homogeneous goods and com-

peting in the same market. The only decision variable for each firm i is

the quantity qi to be produced. Production takes place simultaneously for

all the firms and, once firms sell the output in the market, in the aggre-

gate Q1 =
∑

i qi, the price P is determined based on the (inverse) demand

P (Q) = a+ bQc, where a, b, and c are positive parameters. Assume that the

production costs are such that there are negative fixed costs K, whereas the

marginal costs are k. We can imagine that firms happen to have found a well

where water emerges at no cost, but each bottle costs k, and each firm gets

a lump-sum subsidy from the local town council if it operates a well. Given

these assumptions, each firm might be willing to produce any quantity at a

price greater or equal to k. A firm wants to produce a level of output that

maximizes its profit. If the firm does not know the level of optimal output,
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it can try to learn a level of output which is ’good’. As suggested by Vriend

(2000), we can employ a genetic algorithm in two ways:

• social or population learning : the genetic algorithm is a rule that char-

acterizes the population of firms which look around, tend to imitate,

and re-combine ideas of other firms that appeared to be successful;

the more successful these rules were, the more likely they are selected

for the process of imitation and re-combination, where the measure of

success is given by the profits associated to each rule;

• individual learning : instead of being characterized by a single output

rule, each firm now has a set of rules in mind, where each rule is again

modeled as a string, with a fitness measure of its strengths or success

(the profits generated by that rule when it was activated) attached.

Each period only one of these rules is used to determine the output

level actually supplied to the market; the rules being more successful

in the recent previous periods are more likely to be chosen; this is

also known as a Classifier System (as already seen above). Therefore,

instead of looking how well competitors with different rules were doing,

a firm now checks how well it had been doing in the past by using these

rules itself.

As for the results of the computational exercise proposed by Vriend (2000),

social learning quickly converges to a higher and less volatile level of output,

while individual learning leads to lower and more volatile output. Due to

a “spite effect”, the population of firms tends to converge to the Walrasian

output (that emerging for a “very large” n). Under social learning, in fact,

given that if the output is below the Walrasian level it happens that the rules

of firms producing at the higher output levels are selected to be reproduced,
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while the rules of firms producing at the lower output levels are selected

when output is above the Walrasian level. Instead, in the case of individual

learning, the different production rules that compete with each other do not

interact, given that each firm actually applies only one of the production

rules, and the spite effect does not affect social learning at the level of the

population.

However, individual and social learning represent two extreme forms of

learning, while various intermediate levels of learning are possible: for in-

stance, a population can be characterized by different types of agents that

interact with each other but that learn only from agents of the same type.

5.4 Conclusions

In this Chapter we discussed some basic issues regarding the nature of agents,

the variables that shape their state, and the actions they can perform. The

relatively recent wave of studies in cognitive psychology, behavioral eco-

nomics, experimental economics and neuroeconomics highlights the falseness

of mainstream economics in assuming full rationality as a guide to individual

behavior. Bounded rationality can be considered as an alternative behavioral

paradigm for economic agents, as opposed to the neoclassical hypothesis of

constrained maximization. Indeed, in a complex environment in which infor-

mation is limited and incomplete, the behavior of agents tends to be based

on heuristics, that is relatively simple rules of decision that agents use to try

to reach a satisfying choice. Moreover, agents may learn from their behav-

ior and from the interaction with other agents and the environment. When

we consider the economy as a whole, we must consider that agents can di-

rectly interact with other agents when taking decisions or learning about the
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working of the economy. The interaction of heterogeneous agents can lead

to complex dynamics at the level of the whole system. For this reason, the

macro level can be different from the simple sum of micro entities. This is

the topic which we will discuss in the next Chapter.
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Chapter 6

Interaction

Alberto Russo, Gabriele Tedeschi and Giorgio Fagiolo

6.1 Introduction

It is a fact of life that the preferences, information, and choices – hence the

behavior – of an agent affect and are affected by the behavior of the agents

she interacts with. In fact there is a two-way feedback between individual and

aggregate behavior: agents’ interaction affects the evolution of the system as

a whole; at the same time the collective dynamics which shape the social

structure of the economy affect individual behavior.

For example, consider the case of the adoption of a new technology by

initially uninformed consumers. Each agent, based on her preferences, may

have some ex-ante evaluation about the quality of new products introduced

in the market. However, by interacting with their peers, agents may gather

fresh information about the new product and, eventually, they may decide

whether to buy it or not. This influences the adoption rate of the product,

which can be in turn exploited by other consumers as a parameter to be
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employed when subsequently considering whether to buy the product or not.

Therefore, individual decisions may be affected by agent interactions, then

impact on the aggregate state of the system, which can in turn feed back to

individual behaviors.

Traditionally, economic theory has largely overlooked the importance of

interactions among economic agents. In standard economic theory, interac-

tions are treated as externalities or spillovers. In general equilibrium theory

(GET), the presence of externalities is often treated as a pathology of the

model, leading to possible non-existence of equilibria. Therefore, in the model

is often assumed that externalities do not simply exist, i.e. that agents only

interact indirectly through a non-agent, that is prices, whose role is to aggre-

gate individual information. Hence, in GET agents are totally disconnected,

dots living in a vacuum without any connections (links) between them.

To appreciate the importance of externalities in mainstream economics,

one has to resort to game theoretic models. In this setup, agents interact

directly with all the other agents in the game. Interactions are captured via

strategic complementarities: the payoff of any single agent depends directly

on the choices made in the game by all the N−1 other agents. This configures

a scenario completely at odds with the one portrayed in GET, namely one

where agents live in a fully connected world, where they are linked with

anyone else.

In reality, however, interaction structures may be very distinct from the

ones employed in these two extremes. Agents may indeed interact with sub-

sets of all the other agents, and these sets of ’relevant others’ may be strongly

constrained by geography (i.e., interacting with your neighbors) or social

norms. Interactions may also change across time, both exogenously (e.g.,

because agents change their geographical or social location) or endogenously
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(i.e., agents may decide not to interact with others anymore). Understanding

how this dynamics is intertwined with that describing the state of the system

becomes therefore critical in order to gain a better knowledge of economies.

In this chapter, we will examine the relationships between agents estab-

lished by their interactions – a distinctive feature of ABMs which we have

emphasized in chapters 2 and 3. We will go in depth in dissecting the vari-

ous ways and means of interaction among agents in section 6.2. In sections

6.3 and 6.4 we will present and discuss some modeling building blocks using

network theory, which is a powerful set of formalisms that are particularly

well suited to model interaction structures in ABMs.

6.2 Modeling interactions

Different approaches may be adopted to describe the connections among

agents: interaction may be local or global, static or dynamic, direct or indi-

rect, deterministic or stochastic, exogenous or endogenous.

Local interaction characterizes models in which agents interact with a

neighborhood consisting of a subset of the agents’ population. This may be

due to transaction costs, geographical distance – as in the locational model by

Gabszewicz and Thisse (1986) – or closeness in characteristics, as in Gilles

and Ruys (1989) (see Kirman, 1994). When these costs become negligible,

interaction becomes global: individual behavior depends on the behavior of

the entire population. In such a case, before taking a decision, agents may

collect information about each and every distinct decision made by the other

agents in the population, or, more often, respond to some average behavior

of all the other agents.

When interaction is local, there are at least two ways to model interac-
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tion structures. On the one hand, if agents can be assumed to be able to

potentially reach any other agent in the population, but only interact with a

few of them in any period, one may use the metaphor of a random graph. In

a random graph, as in Kirman (1983) and Ioannides (1994), the partner(s)

of an agent are picked at random. This may describe a case where agents do

not have preferred partners with whom to interact, and simply make random

encounters or phone calls to other agents in order to gather the information

they need.

On the other hand, local interaction may be constrained by geography or

social norms. In that case, a stochastically or deterministically determined

subset of the population will form a neighborhood of the agent.1

The rule defining the set of interacting agents (the structure of interac-

tions) can be exogenous – when agents cannot change the interaction over

time – or endogenous, e.g. when an agent is able to choose to interact with a

specific neighbor or not. When interaction rules are exogenous, the modeler

can choose to describe them in a deterministic or stochastic way.

In deterministic case, the more convenient way to model local interactions

is via a lattice structure. Agents can be placed on the nodes of a lattice,

i.e. a homogeneous and regular graph where each node has a fixed number

of links. Lattices are characterized by their dimension. One dimensional

lattices are simply lines, where nodes are connected only with their left and

right neighbors.

In order to avoid the fact that agents at the boundaries of the line would

only have one neighbor, one may connect the left and right boundary of the

lattice obtaining a circle, whee all nodes have exactly two neighbors (see

1In Chapter 2 we have shown the effects of local interaction in Schelling segregation
model. In a complex environment, where information and cognitive capabilities are scarce
(i.e. in a bounded rationality setting) local interaction is a more realistic modeling device
than global interaction.
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Flexibility of ACE/EV Paradigm (4/5)

• Interactions
� Interaction structure described by a graph

� Lattices

Figure 6.1: Left: A one dimensional boundary-less lattice. Right: A two-dimensional
lattice with boundaries.

Figure 6.1, left). In a one-dimensional lattice, interaction structures can

only differ by their size. Indeed, one can assume that instead of interacting

with left and right neighbors only, each agent has indeed a certain radius

of interaction even larger than one. In this way, one can suppose that each

node can interact with, say the k agents to the left and to the right in the

circle, thus allowing for a larger overlap of agent interaction sets. Of course,

when k becomes larger or equal than N/2 (N being the number of nodes)

one recovers a situation where each agent interacts with all the others.

Two dimensional lattices are instead checkerboard-like structures, where

each node is connected to its four nearest neighbors (north, south, east and

west), (see Figure 6.1, right). This of course does not apply to nodes on the

edges and on the corners, who have respectively three and two neighbors. In

order to solve this problem, one can think to fold the east and west side of

the lattice together, thus obtaining a cylinder-like object, and then join the

two circle-shaped edges of the cylinder to obtain a torus, see Figure 6.2.

The case where agents interact with their north, south, east and west

neighbor is called a Von-Neumann neighborhood. This is equivalent to the
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Figure 6.2: From a two-dimensional lattice with boundaries to a two-dimensional
boundary-less lattice (torus).

Flexibility of ACE/EV Paradigm (4/5)

• Interactions
� Lattice useful to describe local (spatial) interactions
� Playing with different neighborhood structures

Figure 6.3: Von Neumann (left) vs Moore (right) neighborhoods in a two-dimensional
lattice.

introduction of a Manhattan norm on the lattice – where the distance be-

tween any two nodes is given by minimum number of edges that must be

travelled in order to go from one node to another one – assuming that agents

only interact with partners that lie 1 step away. More generally, one can de-

fine Von-Neumann neighborhoods by assigning a certain interaction radius

r ≥ 1 and assume that agents interact with partners lying not farther than

r, see Figure 6.3.

An alternative way to model neighborhoods in a two-dimensional lattice

is to assume Moore neighbors. This starts from the definition of a norm

where the distance between any two nodes is equal to the minimum differ-
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ence between their x (horizontal) and y (vertical) coordinates. A Moore

neighborhood is then defined assuming that agents only interact with other

agents distant less than a certain radius r. In case r = 1, one has that each

agent will interact not only with its north, south, east and west partners as

in the Von Neumann case, but also with agents located north-east, north-

west, south-east and south-west, thus leading to a 8-person neighborhood,

see Figure 6.3. Note that Moore neighborhoods have larger overlaps, whilst

Von Neumann sets are largely much more non-overlapping.

When local interactions are modeled stochastically, on the contrary, one

can assume that agents, in each time period, may choose a certain set of

others with whom to interact, but they do so with a certain probability. For

example, agents may draw in each time period a number k = 1, 2, . . . , N−1 of

other agents completely at random, or based on some exogenous information

about the structure of the economy and their state (i.e. with probabilities

inversely depending on the geographical distance between agents, or on some

variable that measures the similarity or dissimilarity between agents accord-

ing to some socio-economic characteristics).

Another important distinction is between direct and indirect interactions.

Direct interaction occurs when the choice of each agent is affected by the be-

haviors of other agents – for instance because payoffs change as a consequence

of the choices made by other agents, or via expectations thereof; or alterna-

tively through a search and matching mechanism in a fully decentralized

market setting. Agent interactions are indirect when they are mediated by

a variable or a mechanism which transmits the effects of agents’ behavior,

e.g. the price mechanism, via aggregation of individual actions. In the Gen-

eral Equilibrium model, for instance, interaction is only indirect as agents

(buyers and sellers) exchange information with all other agents (at no cost)
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through the Walrasian auctioneer during the tatonnement process. Trans-

actions among agents will be carried out only when the “price vector” is

consistent with market clearing; transactions at “false prices” (that is, prices

that do not clear the market) are ruled out by construction. The Walrasian

auctioneer guarantees the general equilibrium of the economy through a cen-

tralized mechanisms of information elaboration and dissemination.

Finally, the structure of interactions is static when the set of neighbors is

determined once and for all, or dynamic, when it evolves over time depending

on model assumptions, as in the case of endogenous evolving networks. It

must be noted that in the dynamic interaction case, the structure of inter-

actions can change exogenously (e.g., because the modeler introduces some

exogenous shocks or rule that changes from time to time the relationships

among the agents), or endogenously, when within the model it is assumed

that agents hold some behavioral rules that allow them to decide whom to

interact with on the basis of the status of the system.

The “best” approach to model agents’ interaction simply does not exist:

“the choice of a model should depend on ’circumstances’ to be modeled in

a broad sense, and on the purpose of the model.” (Vriend, 2006). In the

following we will overview the most popular interaction structures.

6.2.1 Local exogenous interaction

We start describing the mechanisms of interaction when the structure of

inter-linkages is local and exogenous, i.e. agents interact with a subset of all

the others, and interactions are determined ex-ante and not modifiable by

the agents. We begin with cellular automata, a useful metaphor that illus-

trates how complex behavior can arise from simple rules and basic interaction

structures. We then introduce local games on lattices. Finally, we discuss

170



applications of local interactions in economics.

Cellular Automata

A cellular automata (CA) is perhaps the simplest as possible dynamic model

of interaction between agents that can be conceived (Wolfram, 2002). In

its basic implementation, it describes a population of N agents or cells, dis-

tributed on the nodes of a 1-dimensional lattice without boundaries (i.e. a

circle). Time is discrete and agents can be in one out of two possible states,

say “on” or “off”. Each cell only interact with two neighbors, the one at

its left and the one at its right. At time t = 0, each cell is initialized in

one of the two possible states. From then on, at each time t > 0 every cell

has the option to update its status, independently on all the others, using a

deterministic behavioral rule. A rule is simply a map that transforms cur-

rent local configurations, i.e. the state at time t − 1 of the agent that is

called to update its choice and the states at time t− 1 of its two neighbors,

into the next state of the agent itself. Rules are therefore lookup tables that

associate a response to each possible local configuration. In the setup just

described, a rule is therefore a map that to each of the possible 23 = 8 local

configurations, associates either “on” or “off”. Thus, the space of all possible

rules in this case is 28 = 256. It is easy to see that the cardinality of this

space explodes if we allow cells to be in S > 2 states and to interact with

S > 2 nearest neighbors. Simulation of this simple model easily generates

complex behavioral patterns. Indeed, there exists a large region of the space

of rules where the long run behavior of the system, i.e. the configuration of

cell states in the lattice, evolves in a way that is neither chaotic nor simple,

and produces unpredictable patterns that lie at the edge of chaos. Hence, the

take-home message of this class of models is that complex aggregate behav-
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ior can be generated by a very simple model where agents behave myopically

and directly interact with their neighbors.

Local Games on Lattices

The cellular-automata model introduced in the last section is an extremely

streamlined description of a dynamic system populated by agents that take

decisions and interact. Indeed, behavioral rules are simply mechanistic maps

that convert local configurations in a response. No strategic considerations

are made by the agents when making their decisions. To allow for more

strategy in a context where agents interact dynamically with their nearest

neighbors, one may simply assume that agents are still placed over a lattice

but they play non-cooperative bilateral games with each neighbor (Fagiolo,

1998). More precisely, suppose that a 2 by 2 symmetric stage-game payoff

matrix is given, for example that of a coordination game where agents must

choose between two actions, say A and B, knowing that their payoff will be

larger if they play the same action of their opponents. One may therefore

assume that agents are initially endowed with either A or B, and from then

on they are matched with their neighbors to play the bilateral game just

described. Agents may then decide which action to actually perform in the

current period by best replying to the current local configuration, i.e. they

may choose A or B depending on which one delivers the total maximum payoff

against the actions played at time t − 1 by each of the neighbors. Suppose

that in each time period only one agent may possibly revise its choice. It

will change only if by doing so it better coordinates its action with those of

its neighbors, otherwise it will stay put. It is therefore instructive to study

which one will be the long run state of the system. Will the system converge

to a coordinated equilibrium where everyone will play A or B, or are mixed
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equilibria likely to emerge? The answer to this question depends on both

the stage game payoffs, assigning the reward that agents get if they play A

(resp. B) if their opponent plays B (resp. A) and the way payoff ties are

resolved, i.e. which action is chosen if the total payoff to A from interacting

with the neighbors is exactly equal to that of B. Indeed, if ties are resolved

by tossing a coin, i.e. choosing at random between A or B, it can be seen

that the system will surely converge to a state where everyone play either

A or B. However, which action will be selected in the long run depends on

its risk efficiency, i.e. on the average payoff it delivers against itself and the

opposite action. The action that does best on average will be selected.

Economic Applications

In economics, earlier contributions on how to model interactions among a

large number of heterogeneous agents are based on a stochastic approach,

which has originally been proposed to assess the role of direct interaction in

a General Equilibrium framework. As noted by Hommes (2006), stochastic

interaction may lead to complex collective dynamics.

Exogenous local interactions have been introduced in a pioneering con-

tribution by Föllmer (1974), who studies the dynamics of an exchange econ-

omy in which agents have stochastic preferences as proposed by Hildenbrand

(1971). The novelty of Follmer’s approach with respect to Hildebrand is

that the probability law that governs individual preferences depends on the

behavior of agents in a neighborhood which is defined ex ante and is not

changing over time. In such a framework, local interactions may propagate

through the economy and give rise to aggregate uncertainty causing large

price movements and even a breakdown of equilibria. Agents in the Föllmer

model are placed on lattices and interact with their nearest-neighbors in a
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homogeneous (i.e. all agents have the same number of neighbors and they

are spread uniformly across the space) and symmetric way (i.e. if agent i

affects agent j, also j affects i).

In a stylized model of a supply chain, Bak et al. (1993) show that small

shocks can cause large fluctuations when producers hold inventories of goods

and they locally interact with each other. In this case, agents are located on

trees or chains, describing different layers of the economy (i.e. from producers

of basic goods to consumers) and interactions are asymmetric. Agents in bot-

tom layers are affected by the choices of upstream agents (i.e. their suppliers)

but they do not affect them, as they only influence the choice of downstream

agents (i.e. whom they sell to). However, even though interactions natu-

rally go from upstream to downstream sectors of the economy, small shocks

that are originated downstream (e.g. at the level of final demand) may well

crawl up and be diffused throughout the whole economy via the amplifying

effect of local interactions. Indeed, if interactions structures are deep enough,

small shocks that can initially affect a smaller number of agents and then die

away, may resonate through the system and trigger mechanisms lead more

and more agents to eventually revise their state, thus generating avalanches

that can potentially affect the whole system. Interestingly enough, the size

of such avalanches is unpredictable in the model and can range from very

small to very large magnitudes. In particular, very large avalanches are not

exponentially rare, but their probability decays with a power-law shape, a

pattern that we have encountered (and will encounter) many times in this

book.

Stiglitz and Greenwald (2003) show that local interaction among produc-

ers may lead to a financial collapse. In their simple model, firms are located

on a circle and each firm sells an input to her neighbor: hence firm i is at
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Figure 6.4: The network structure of the economy in Delli Gatti et al. (2006): downstream
firms (circles), upstream firms (triangles) and banks (squares).

the same time a downstream firm with respect to firm i-1 and an upstream

firm for firm i+1. A bank provides credit to all the firms in order to finance

production. If an upstream firm cannot repay the loan, also the downstream

firm may go bankrupt and so on, in a vicious circle of defaults.

Delli Gatti et al. (2006) build on this framework in a model (see Figure

6.4) where downstream firms (producers of consumption goods) are con-

nected to upstream firms (producers of intermediate goods) through “trade

credit” (whereby the latter finance the provision of intermediate goods to

the former), all firms are connected to banks through “bank credit” (to fi-

nance labor costs), and banks are connected through the “interbank market”

(to manage liquidity). Credit interlinkages spread financial distress and may

facilitate bankruptcy avalanches.

In the case of global interaction, each agent can interact, or is likely to

interact, with all other agents. For instance, Feldman (1973) describes an

economy in which agents may make Pareto-improving transactions through

pairwise interactions generated by random matching, without a central price

signal. A “static equilibrium” can be computed for this class of models.
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In the model of Diamond (1989) a multitude of buyers and sellers interact

through pairwise transactions and the “law of one price” no longer holds; on

the contrary, a distribution of prices emerges. The absence of a Walrasian

auctioneer generally prevents the attainment of a Pareto optimum.

In the presence of externalities, the interaction among different agents

may affect aggregate results leading to complex collective dynamics. This is

the case of herding. For example, in the game-theoretic model proposed by

Banerjee (1992) agents are located on a segment and make decisions sequen-

tially. Each agent makes her choice on the basis of a “private” signal and a

“public” signal which consists of the previous choices made by other agents.

The Nash equilibrium of this game can be socially inefficient if the popula-

tion is large enough: for example, all clients end up at the worst restaurant.

Bikhchandani et al. (1992) notice that, after a while, cumulated actions con-

tain so much information that the single agent has an incentive to ignore

his own information and an “informational cascade” starts. Kirman (1993)

observes a similar dynamic pattern in the evolution of two strands of opin-

ion in a population. Other examples of global interaction over an exogenous

network structure can be found in models describing the adoption of new

technologies when the profitability of a technology depends on the number

of firms that already adopted it (David, 1985; Arthur, 1990).

Some typical structure emerging out of exogenous interaction, as the star,

the circle or a “small-world”, will be explored in Section 6.3. Let us now

discuss endogenous interaction.

6.2.2 Endogenous interaction

There are different ways of describing endogenous interactions in ABMs

(Vriend, 2006). In a multi-agent setting markets may be characterized by pro-
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curement processes (Tesfatsion and Judd, 2006) which generally take the form

of decentralized search and matching. Procurement processes are market-

specific and can take the form of auctions, negotiated markets or pairwise

bargaining markets, characterized by different buyer-seller relationships (see

Kirman, 2010). Due to the absence of any exogenously imposed market-

clearing mechanism, the economy may self-organize towards a spontaneous

order, which is generally characterized by emerging properties such as self-

sustaining growth and fluctuations, endogenous crises, persistent involuntary

unemployment, unsold production, or credit rationing. In what follows, we

survey a few examples of endogenous interaction patterns in ABMs. These

range from Schelling segregation model to self organization of trade in actual

markets, all the way to artificial societies like the Sugarscape, and ABMs of

the labor and credit market, and of the macroeconomy.

Residential patterns in Schelling’s model. Schelling (1971) proposes a pi-

oneering ABM – succinctly presented in Chapter 2 – in which residential

patterns (with neighborhood segregation) emerge from agents’ interaction.

There is a finite number of agents located on a bounded lattice (a grid).

Each cell can be occupied by only one agent at a time and each agent can

interact only with the agents located in the eight cells around it (Moore

neighborhood). The agent’s preferences are defined by the number of similar

or dissimilar neighbors where similarity is defined according to a predeter-

mined criterion, e.g. race or ethnicity. For instance, we can assume that

the agent is satisfied with her position if at most 50% of her neighbors are

dissimilar. Starting from an initial spatial allocation of agents, all unsatisfied

agents (in a random order) move to the nearest empty location looking for

a satisfactory position. After a time step, a new list of unsatisfied agents is

compiled and the whole process of searching preferred locations is iterated
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again. Iteration goes on until no agents want to move anymore. The final

outcome is a steady state spatial allocation which exhibits a segregated resi-

dential pattern: segregation emerges from agents’ interaction which, in turn,

is influenced by the dynamic evolution of agents’ locational choices.

Interaction-driven macroscopic patterns in Sugarscape. Imagine a very sim-

ple artificial economy in which sugar is the only commodity and agents need

sugar to survive. The spatial dimension of Sugarscape (Epstein and Axtell,

1996) is a torus, i.e. a lattice without bounds. Each cell can be occupied by

only one agent at a time and each agent can interact only with the agents

located in the four cells around it (von Neumann neighborhood). At each site

sugar grows at a given rate (up to a maximum). An agent which occupies

a site increases its wealth by accumulating the sugar available at that site.

She has a given “information set”, i.e. she can observe how much sugar is

present in different sites, up to a limit. Moreover, agents are characterized by

heterogeneous metabolic rates which determine how much sugar each agent

needs per time step, that is consumption. As a consequence, if an agent has

enough sugar to consume it survives, otherwise it dies (because of negative

wealth). For each time step, agents are randomly ordered and they decide

to move around looking for sugar according to this stochastic list. As in the

case of the residential pattern in Schelling’s model, also in Sugarscape the

overall configuration of agents’ locations evolves over time as agents decide

to move around.

In a slightly more complex environment in which spice is added to sugar,

trade enters the scene. In this case agents directly interact with neighbors

through trade (according to the marginal rates of substitution implied by

agents’ utility functions). Epstein and Axtell (1996) show that decentralized

(bilateral) bargaining among different agents may lead to “market clearing”,
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that is price dispersion decreases over time (without the intervention of an

auctioneer). Many other characteristics may be added to this simple com-

putational framework such as credit, mating, spreading of diseases, combat,

cultural transmission, so building up a complex artificial society.

The self-organization of markets. Kirman and Vriend (2001) provide a model

of the evolving structure of an actual market inspired by an empirical analysis

of the Marseille wholesale fish market. They focus on two features: price

dispersion and buyer-seller loyalty. Before the market opens, sellers purchase

the fish they want to sell during the day, though demand is uncertain. When

the market opens, buyers choose a seller, so forming various queues in the

market hall. Then, sellers sequentially make a “take-it-or-leave-it” offer to

buyers at given posted prices. When all queues have been handled, the

(morning) market is over. In the afternoon session, unsatisfied buyers may

choose other sellers, forming new queues, and the process is repeated. Since

fish is perishable and therefore non-storable, when the market closes sellers

get rid of the unsold stock of fish.

In such a framework, sellers follow alternative rules of behaviors based

on their relative fitness (that is, the actual payoff realized when using a

certain rule): better rules are more likely to be used again. The interaction

structure is endogenous because the seller-buyer networks evolve based on

agents’ choices. These choices, in turn, are influenced by the evolution of the

interaction structure. For instance, loyalty can emerge endogenously from

interaction if the fitness of the involved buyer and seller is higher when they

form a partnership.

Vriend (1994) adopts a computational approach to the analysis of buyer-

seller networks based on communication, that is the information agents have

on possible trading partners. Sellers (firms) produce commodities without
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knowing the demand for their products. Then, they (randomly) send (costly)

messages to potential partners. Buyers (consumers) have three options: shop

around randomly, stay loyal to the current supplier or follow one of the

information signals they receive.

Interaction is endogenous because firms choose to reach a target network

of potential partners by advertising. Moreover, consumers may or may not

follow the information signals they receive (depending on the success of past

decisions), so influencing firms’ profit which, in turn, is a signal firms use to

revise their production and advertising strategies. Finally, agents learn from

experience and modify their behavior accordingly, shaping the evolution of

the buyer-seller network. Depending on the distribution of information, a

certain pattern of agents’ interaction prevails and markets emerge as self-

organized structures.

Howitt and Clower (2000) provide another example of market self orga-

nization. Traders follow simple behavioral rules and transactions are coordi-

nated by specialist trading firms that bear the costs of market disequilibrium.

Starting from an initially autarkic situation (in which there are no institu-

tions that support exchange), simulations show that a fully developed market

economy will emerge spontaneously. Moreover, in virtually every case where

a market economy develops, one of the commodities traded will emerge as

a universal medium of exchange (commodity money), being traded by every

firm and changing hands at every transaction.

Economic growth in open-ended economies. To study the determinants of

economic growth in a simple production economy, Fagiolo and Dosi (2003a)

develop the so-called “island model”. In this model, the economy is popu-

lated by a set of stylized entrepreneurs (firms) that produce a homogeneous

good under increasing returns to scale in the number of exploiters of a given
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technology. Technologies are randomly distributed in an infinite lattice and

can be thought as islands with mines on them, from which entrepreneurs can

dig the homogenous product. Each firm can exploit one island in each time

period, but each mine can be exploited by many entrepreneurs simultane-

ously, who therefore produce using increasing returns to scale. Interactions

in this models occur at different scales. First, firms using the same technol-

ogy interact via returns to scale. Second, firms can decide to leave the island

they are exploiting and start exploring the sea (i.e. nodes of the lattice with-

out islands) in search of other, new technologies. During this journey, firms

can receive signals sent by firms working in other islands. If they do so, they

can decide to follow the signal, move towards the island from which the sig-

nal was sent, and start producing there. Finally, when explorers find a new

island, its new productivity (i.e. the amount of product per firm that can

be produced) will increase the more productive the worker was in the past,

which depended also on how many other firms were producing there, i.e. a

sort of interaction from the past. The model is able to produce simulated

time series for the aggregate output that are statistically similar to those

observed in the real-world. Furthermore, the long-run performance of the

economy (i.e. in terms of long-run average growth rate) depends on the rate

of interactions between agents, as well as on other parameters. In general,

there needs to be a balance between the extent to which agents exploit exist-

ing resources in the model and that at which they explore in search of new

technologies in order to attain a high long-run performance. If agents exploit

or explore too much, the economy slows down into a stagnating pattern.

ABMs of the labor market. In ABMs of the labor market – see for instance

Russo et al. (2007) – firms set their demand for labor (and post vacancies

accordingly) on the basis of their desired level of production. Unemployed
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workers send out job applications to firms posting vacancies. Firms may

select applications focusing on some characteristics of the applicants, such as

skill, specialization, productivity, or emphasizing loyalty. Once an applicant

is selected, the worker and the firm bargain over the wage and when they

reach an agreement a match occurs. If job applications are not enough to

fill all the vacancies, the firm hires all the applicants but employment and

production will be set below the desired scale. If, on the other hand, vacancies

are not enough to satisfy all the applications, the firm can reach the desired

scale of activity but some applicants will stay unemployed (Fagiolo et al.,

2004a; Richiardi, 2006; Russo et al., 2007; Neugart, 2008).

ABMs of the credit market. In ABMs of the credit market the key issues

are the determination of the interest rate on loans and the total size and

allocation to borrowers of credit extended by lenders. In some models of a

fully decentralized credit market (see Gaffeo et al., 2008; Grilli et al., 2012,

for example, borrowers contact a given number of randomly chosen lenders

to get a loan, starting from the one which charges the lowest interest rate.

Each lender sorts the borrowers’ applications for loans in descending order

according to the financial soundness of borrowers, and satisfy them until all

credit supply has been exhausted. The contractual interest rate is determined

using an optimization strategy (Delli Gatti et al., 2005) or a rule of thumb

(see Delli Gatti et al., 2008). Along these lines, Delli Gatti et al. (2010)

propose a model to analyze a credit network composed of downstream (D)

firms, upstream (U) firms, and banks. The production of D firms and of

their suppliers (U firms) is constrained by the availability of internal finance

– proxied by net worth – to D firms. The structure of credit interlinkages

changes over time due to an endogenous process of partner selection which

leads to the polarization of the network. As a consequence, when a shock
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hits a significant group of agents in the credit network and agents’ leverage

is critically high, a bankruptcy avalanche can follow. This mechanism can

be regarded as a “network-based financial accelerator”.

ABMs of the Stock market. In ABMs of the Stock market, agents can place

market orders or limit orders for arbitrary quantities (see Chiarella et al.,

2009; Tedeschi et al., 2009). Limit orders are stored in the book and executed

when they find a matching order on the opposite side of the market. A market

order is filled completely if it finds enough capacity on the book, partially

otherwise. The order-driven market mechanism avoids the limitations of the

market maker approach in which there is no explicit trading mechanism.

In fact, the market maker, who is typically risk neutral and endowed with

unlimited liquidity, absorbs excess demand and makes trading always viable,

regardless of its size. For relevant contributions in this field (see Lux and

Marchesi, 2002; Hommes, 2006; LeBaron, 2006).

ABMs of the macroeconomy. Delli Gatti et al. (2011) and Riccetti et al.

(2014) propose a “macroeconomic ABM”characterized by decentralized search

and matching i.e. a macroeconomic framework in which a relatively large

population of heterogeneous agents (households, firms, banks, the govern-

ment and the central bank) interact in four markets (credit, labor, goods

and deposits) according to a decentralized search and matching mechanism.

Agents follow (relatively) simple rules of behavior in an incomplete and asym-

metric information context. Households shop for goods visiting firms and

start buying from the supplier posting the lowest price. Firms set the price

and the quantity to produce on the basis of expected demand. If desired

employment is higher than the actual workforce, they post vacancies. Unem-

ployed household members search for a job visiting firms that post vacancies.

If they need external funds, firms ask for a loan at a bank starting from the
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bank that offers the lowest interest rate.

For instance, in Riccetti et al. (2014) in each of the four markets two classes

of agents interact, on the demand and the supply sides respectively. They

obey the following “matching protocol”: (i) A list of agents is picked at ran-

dom from the population of agents on the demand side – firms in the credit

and in the labor market, households in the goods market and banks in the

deposit market. (ii) The first agent in the list observes a random subset of

potential partners and chooses the one posting the lowest price. (iii) The

second agent on the list performs the same activity on a new random subset

of the updated potential partners list. (iv) The process is repeated till the

end of the list of agents on the demand side. (v) A new list of agents is picked

at random from the population of agents on the demand side and the steps

(i) to (iv) are repeated. 2 The matching mechanism goes on until either one

side of the market is empty or no further matchings are feasible. The pat-

terns of agents’ interaction change as agents made their choices and collective

dynamics feed back to individual decisions, including the choice of the best

partner(s). Accordingly, the pattern of interactions is fully endogenous.

Dosi et al. (2010) explore a different scheme of endogenous interaction in

a context in which innovation is embodied in capital goods. Capital-goods

producers send “brochures” with information on new vintages of machine

tools to a subset of potential customers, i.e producers of consumption goods

who use capital as an input. The latter choose whether to buy new capital

goods or use the existing machine tools of a previous vintage. The two way

2For example, in the labor market, firms (on the demand side) enter the matching
process and have the possibility to employ one worker (on the supply side). In the first
step of the procedure, the first firm on the list of firms, say F1, observes the reservation
wage of a subset of the list of workers and chooses the worker asking for the lowest wage,
say worker H1. The list of potential workers is updated eliminating worker H1 and the
process is iterated.
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feedback between the adoption of new technologies and the volume and com-

position of demand generation suggest the presence of two distinct “regimes”

of growth (or absence thereof) characterized by different short-run output

and employment fluctuations.

Finally, a spatial structure of interaction can be incorporated in a macroe-

conomic ABM. For example, in Dawid et al. (2012) consumption goods are

sold at local market platforms (malls), where firms store and offer their prod-

ucts and consumers come to buy goods at posted prices. In this model, while

market demand for consumption goods is determined locally in the sense that

all consumers buy at the local mall located in their region, supply is global

because every firm might sell its products in all regional markets of the econ-

omy. Labor markets are characterized by spatial frictions determined by

commuting costs that arise if workers accept jobs outside their own region.

Finally, households and firms have access to all banks in the economy and

therefore credit markets operate globally. Accordingly, different assumptions

on the local or global dimension of agent interaction can be explored in order

to understand the interplay between local/regional/global market dynamics.

6.3 Networks: basic concepts and properties

It is always possible to represent, at least theoretically, agents’ interactions

by means of a network or graph.3 Therefore network theory is a useful tool

in order to have an analytical description of the interaction structure in a

multi-agent framework.

There is an obvious link between the conceptual framework of ABMs

3In this book we will use the words “graph” and “network” as synonyms. Graph is
the term mainly used in the mathematical literature (see, for instance, Bollobas, 1998
or Chung, 1997). Among physicists network is more popular (Caldarelli, 2007; Newman,
2010).
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and network theory. Consider for instance a financial or credit network in

which agents are linked by borrowing/lending relationships. In this type of

network it is important to understand how the interaction structure affects

the way in which defaults spread through connections (financial contagion).

Network theory is key in understanding this phenomenon as it provides the

basic mathematical concepts needed to describe the set of interactions among

agents, as well as the tools to analyze the collective, emerging properties of

this set. Interaction patterns, in turn, affect the state and control variables

of the agents.

In fact, one may claim that each ABM maps onto one or more networks

(since the structure of interactions could be either fixed or changing over

time), and the mathematical properties of these networks can be used to an-

alyze and eventually forecast, at least for some variables, the behavior of the

agents in the ABM. For these reasons, the quest for a deeper integration with

network theory has become an important topic in the research agenda of the

ABM literature, with a growing amount of research effort especially devoted

to problems of interaction over fixed networks (Wilhite, 2006) and of endoge-

nous network formation (Vriend, 2006). So far, however, the ABM and the

network literatures have grown along different trajectories. In his well know

book on networks - especially tailored for the economics profession - Jack-

son (2008) makes only a marginal reference to ABMs, while Vega-Redondo

(2007) is entirely silent on the subject in his monograph more oriented to-

wards the physics community. Among the few systematic efforts to better

integrate the two approaches, it is worth mentioning the ambitious theoreti-

cal framework proposed by Potts (2000), which is explicitly geared towards

multi-agent simulation modeling, and relies heavily on network theory. Ac-

cording to Potts (2000), there is an evolutionary common ground shared by
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the different heterodox economic schools, in which evolution is to be under-

stood in its broadest meaning as a process of self-transformation of agents.

In this ever changing process what matters most are connections, since the

latter determine the dynamical behavior of the system as a whole.

When the modeler wants to observe what happens to model dynamics

given an exogenous structure of interaction, a static network may be sufficient

to characterize the local or global interaction among agents. In this case, one

can investigate the impact of the given network topology (or of alternative

topologies) on model results. On the other hand, when the modeler wants to

capture the partners’ choice, an evolving network must be explored. In this

case agents decide with whom they want to interact. Their choices affects

aggregate dynamics and, at the same time, macro properties influence the

social structure of the economy giving rise to a co-evolution of the network

and macro variables.

Two remarks are in order. First, it must be noted that some of the inter-

action structures already introduced in this chapter easily fall in a network

framework. For example, one or two dimensional lattices are particular types

of networks, namely regular networks invariant to roto-translations. They are

regular as all nodes hold the same number of links. They are invariant to

roto-translations as the way in which we move the graph in a higher dimen-

sional space does not change its properties. Second, a distinction must be

made between models of network evolution and the use of network theory

within ABMs. A large literature, mostly grounded in physics, has developed

simple stochastic models attempting to describe and explain how networks

evolve and reach stable equilibrium states as time goes by (Newman, 2010).

Similarly, game-theoretic models have been developed in order to understand

which type of network is going to have efficient properties where agents on
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it must bargain or split a certain amount cooperatively (Jackson, 2008), or

whether some equilibria may be reached when agents play non-cooperatively

and are placed on endogenous or exogenous networks (Vega-Redondo, 2007).

On the contrary, a network formalism can be used in ABMs to micro-found

the structure of agent interactions and their evolution. However, agents in

economic ABMs are typically more sophisticated than simple players in the

game or anonymous nodes in cellular automata. They typically behave in

richer ways, interacting in different markets and performing a number of dif-

ferent tasks (e.g., deciding how much to produce, form expectations, react to

system-level inputs, etc.). Therefore, network theory is an extremely useful

tool in ABMs but can never replace agent-based modeling as such.

Let us now start with some preliminary notions. A network – denoted by

G – is a mathematical object composed by nodes (or vertices, denoted by V )

connected by links (edges, E). In symbols: G = (V,E), where V is typically

assumed to be a subset of N, while E ⊂ N × N can eventually map onto

any subset of RN . For example, let V = {1, 2, ..., n} represent a finite index

set mapping onto individuals connected by acquaintance. Then, we can use

V to represent individuals in a graph, and consequently we represent two

individuals being acquainted by adding to E one element (i, j) with i, j ∈ V

if the corresponding individuals are connected.

In the social sciences, nodes may represent different agents: women, men

(distinguished by age, nationality, wealth etc.), households, banks, firms,

countries etc. Links may represent different social classes, friendship or

professional acquaintance, assets, liabilities etc. Links could have different

weights which represent the strength of the relationship among nodes.4

4The most typical networks have a well-established and codified treatment in graph
theory. Therefore we will introduce only those concepts and terms that are strictly nec-
essary for our purposes and will not get systematically into the details of graph-theoretic
concepts and terminology. A number of rigorous and readable books are now available
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track of which links are present.

While the focus on 0-1 links is restrictive, it is still of significant interest for at least

two reasons. First, much of the insight obtained in this framework is fairly robust, and

so this is a useful starting point. Second, the fact that the value and costs that are

generated by links may differ across links already allows for substantial heterogeneity

and admits enough flexibility so that a large number of interesting applications are

captured.

A network g is a list of which pairs of players are linked to each other. A network

is then a list of unordered pairs of players {i, j}.
For any pair of players i and j, {i, j} ∈ g indicates that i and j are linked under

the network g.

For simplicity, write ij to represent the link {i, j}, and so ij ∈ g indicates that i

and j are linked under the network g.

For instance, if N = {1, 2, 3} then g = {12, 23} is the network where there is a link

between players 1 and 2, a link between players 2 and 3, but no link between players

1 and 3.

! ! !
1 2 3

Let gN be the set of all subsets of N of size 2. G = {g ⊂ gN} denotes the set of all

possible networks or graphs on N .

The network gN is referred to as the “complete” network.

Another prominent network structure is that of a “star” network, which is a network

where there exists some player i such that every link in the network involves player i.

In this case i is referred to as the center of the star.12

A shorthand notation for the network obtained by adding link ij to an existing

network g is g + ij, and for the network obtained by deleting link ij from an existing

network g is g − ij.

Let

g|S = {ij : ij ∈ g and i ∈ S, j ∈ S}.

Thus g|S is the network found deleting all links except those that are between players

in S.

(2001, 2001b), Goyal and Moraga (2001), and Page, Wooders, and Kamat (2001).
12This definition follows Jackson and Wolinsky (1996). Subsequently, this term has been used to

refer to a number of variations on such a structure.

6

Figure 6.5: Network among 3 nodes.

For this more general setting a functional representation seems straight-

forward. Let li,j be a function whose arguments are vertices and having a

suitable co-domain. For instance with li,j → {0, 1} we represent the relative

frequency of interaction (or any ex-ante probability measure on a suitably

defined interaction space) between i and j. li,j = 1 if the edge between i and

j is in E, otherwise li,j = 0. Moreover, we assume that li,j ≡ lj,i. In this

case, V = {1, 2, 3} with l1,2 = l2,3 = 1 and l1,3 = 0 yields the graph shown in

figure 6.5.

Within this setting, a convenient representation of a graph is given by

the connectivity or adjacency matrix, C. Each element ci,j of this matrix

stores the image of li,j associated to each point (i, j) of its (finite) domain.

The matrix showed in Table 6.1 reproduces the same network showed in

Figure 6.5.

1 2 3
1 0 1 0
2 1 0 1
3 0 1 0

Table 6.1: Adjacency matrix for the graph of figure 6.5.

Three remarks are in order. First, the elements of the main diagonal in

our example are zero, i.e. no agent links with itself or, in network jargon, the

graph has no self loops. This is not necessarily the best option in all cases.

(Caldarelli, 2007; Goyal, 2007; Jackson, 2008; Newman, 2010; Vega-Redondo, 2007), along
with the classical presentation of Bollobas (1998).
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Second, the off diagonal elements in our example are either zero (the

nodes identified by the corresponding row and column are not linked) or one

(nodes are linked). Some models require multiple edges, which would mean

that the elements of the matrix can take on values (represented by integers)

larger than 1. In this case we talk of a multigraph.

Third, edges in the graph shown in Table 6.1 are undirected. The adja-

cency matrix is therefore symmetric since li,j ≡ lj,i for each i, j ∈ V . An

edge, however, may be directed. A directed edge can be thought as a one-

way road between two points and be represented graphically by an arrow.

A graph characterized by directed edges is referred to as a digraph and is

represented by an asymmetric adjacency matrix.

For instance, by adding to the graph of our example a directed edge

between 1 and 3 – i.e. setting l1,3 = 1 but l3,1 = 0 – we generate a digraph.

The corresponding adjacency matrix is

1 2 3
1 0 1 1
2 1 0 1
3 0 1 0

Table 6.2: Adjacency matrix for a digraph

The context must dictate which representation is to be preferred, since

there are plenty of examples of both symmetric and asymmetric relationships

in the real world. For example, a network representing email messages is

unavoidably directed, since each message goes just in one direction. Instead,

a network representing parental relationships is undirected since two agents

in this network are either related to each other (they are the mother and

father of a child) or not.
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As mentioned above, links can be weighted. Their weight mirrors the

strength of relations among the connected nodes. Returning to Fig. 6.5,

suppose the three nodes represent banks. In this case, the weight of links

can represent the overall value or number of transactions between banks i

and j in a given day. We can define, thus, the weighted adjacency matrix

W , whose elements wi,j represent daily value of transactions among linked

banks. Echoing the matrix setting, we define W of the bank network as

Wi,j =

wi,j if li,j = 1

0 if li,j = 0,

(6.1)

where li,j is the link between banks and wi,j its weight.

So far, we have discussed situations where only one type of relationship

among agents is described. More generally, agents may entertain different

types of interactions at the same time. Going back to the case of social

interactions, individuals may exchange information using different means,

such as personal encounters, phone calls, emails, different direct messaging

services, as well as online social networks. Each distinct interaction channel

would require a different graph to be formally described in terms of networks.

However, all these different linkages may be modeled simultaneously in terms

of a multi-layer network (MLN). A MLN is simply a collection of different

layer networks where nodes remain the same in each different layer. Layers

represent different interaction types and one can think to links in each layer

as having a different color. By aggregating all the layers together, a MLN

representation envisages a graph where between any two nodes there can exist

many (weighted, directed) links, each with a different color, representing the

different interaction types coexisting in the social system.

Going back to a simple network, a network is said to be sparse when
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there are few edges with respect to the number of nodes. Real networks are,

almost without exception, sparse, since the capacity of agents to interact

doesn’t grow proportionally with the dimension of the system. Models of

complex networks generally display this feature, assuming that the expected

number of vertices connected to a given one remains finite as the size of the

network tends to infinity.

In a sparse network, heterogeneous local structures become very impor-

tant in determining the properties of the network. This feature is captured by

the key notion of neighborhood (a notion which we have already encountered

in the previous Sections). The neighborhood ψ(i) of the i-th agent is the

set of agents with whom i has a direct link. Neighborhoods find ubiquitous

application in network theory, especially within the social and economic do-

main. In social-economic systems, individuals tend to link with people they

are close to. A clear manifestation of this phenomenon is shown in the iden-

tification of groups inside the network. These groups can mirror friendship,

loyalty, cooperation or segregation.5

The cardinality of the neighborhood ψ(i) which we denote with ki is the

degree of the i-th agent, the simplest measure of connectivity:

ki =
∑
j∈ψ(i)

li,j = |ψ(i)| (6.2)

In digraphs we must distinguish between in-degree, i.e. the number of edges

pointed to some vertex, and out-degree, i.e. the number of edges pointing

5Pioneering research on this subject has been carried out by Jacob Moreno in the
1920s and 30s on the friendship patterns within small groups. Anatol Rapoport (1961)
was one of the first theorist to stress the importance of the friendship graphs of school
children. Milgram’s experiments on the “small-world effect” originated the popular notion
of “six degrees of separation” (Milgram, 1967).
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away from it. In-degree kini and out-degree kouti are defined respectively as

kini =
∑

j∈ψin(i)

lini,j = |ψin(i)| kouti =
∑

j∈ψout(i)

louti,j = |ψout(i)| (6.3)

All networks may be conceived as the outcome of a generative process,

which mathematically takes the form of an algorithm. At this point it is con-

venient to introduce a fundamental distinction between deterministic graphs

and random graphs. The former are the outcome of a deterministic sequence

of steps, while the latter’s development involves one or more stochastic pro-

cesses.

The most important deterministic network structures in economic appli-

cations are

• complete networks : each vertex is connected to all the other vertices;

• star networks : every link ends in a certain agent (the star node);

• wheel networks : agents are arranged as [i1, ..., in] with l2,1=l3,2= ...=

ln,n−1= l1,n=1 and there are no other links.

Panels (a) (b) (c) in figure 6.6 represent these typical network structures

when there are 4 agents. Panels (a) and (b) represent undirected graphs so

that the in-degree is equal to the out-degree. In panel (a), for each node i,

ki = 3; in panel (b) the star node 1 has a degree 3, whereas the other nodes’

degree is equal to 1. Panel (c) represents a wheel i.e. a digraph such that for

each node i, kini = kouti = 1.

If a network is random, all the observables defined over it, including the

degree, are random variables, which take their values in agreement with a

specific probability measure. Therefore we can define the probability degree
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A component of g, is a subset C ⊂ N and the set of all links between the members of C

in g, with the property that for every distinct pair of players i and j in C I have j
g−→ i,

(equivalently, j ∈ N(i; g)) and there is no strict superset C ′ of C in g for which this is

true. A network g is said to be minimal if the deletion of any link increases the number of

components in g. We can also say that a network g is connected if it has a unique component.

If the unique component is minimal, g is called minimally connected . A network which is

not connected is referred to as disconnected. A network is said to be empty if N(i; g) = {i}
and it is called complete if Nd(i; g) = N\{i} for all i ∈ N . We denote the empty and the

complete network by ge and gc, respectively. A star network has a central player i such that

gi,j = gj,i = 1 for all j ∈ N\{i} and there are no other links. A wheel network is one where

the players are arranged as {i1, ..., in} with gi2,i1 = .... = gin,in−1 = gi1,in = 1 and there are

no other links. The wheel network is denoted gw. Figure 2 presents these networks for a

society with 4 people.
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Figure 2c

Wheel

Two networks g ∈ G and g′ ∈ G are equivalent if g′ can be obtained by a relabelling of

the players in g. For example, if g is the network in Figure 1, and g′ is the network where

players 1 and 2 are interchanged, then g and g′ are equivalent. The equivalence relation

partitions G into classes: each class is referred to as an architecture. For example, there

are n possible ‘star’ networks, all of which come under the equivalence class of the star

architecture. Likewise, the wheel architecture is the equivalence class of (n − 1)! networks

consisting of all permutations of n individuals in a circle.

We shall say that a network graph is regular if all individuals have the same number of

neighbours, Nd(i; g) = k, for some k ∈ {0, 1, 2..., n−1}. In this case the number of neighbours

is referred to as the degree of the network.

8

Figure 6.6: Different networks’ topologies.

distribution p(k) as the probability that a vertex chosen uniformly at random

has degree k. In the applied network literature, it is usual to represent

networks by means of the decumulative distribution function (DDF) or –

less frequently – by means of the cumulative distribution function (CDF)

corresponding to p(k).

As we will show, different network topologies have different degree distri-

butions. A well-established stylized fact of real-world networks, however, is

that the degree distribution is generally right-skewed, i.e. it is characterized

by a long right tail of values that are far above the mean. In other words,

there are few nodes with many links (hubs) and many links with few nodes.

Networks whose degree distribution is approximately shaped as a power law

are called scale free.

This property is displayed at best by plotting the DDF. Consider, for

example, the DDF of the in-degree (lender bank) and out-degree (borrower

bank) for the Italian interbank market in 1999 and 2002 (see Iori et al., 2008)

shown on a double logarithmic scale in figure 6.7. The plots show that the

degree distribution is right skewed in both periods since the values follow an

approximately straight line.

There are many properties closely related to the degree distribution.

Resilience, clustering, community structure and assortative mixing can be

counted among the most frequently used in social sciences.

Resilience denotes the robustness of the network’s structure to the re-
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Figure 6.7: DDF of degree for incoming (black dotted) and outgoing (red-solid) links in
1999 (left) and 2002 (right).

moval of nodes. When a vertex i is removed from a network, the average

distance among nodes increases. As this process goes on, ultimately some

nodes will be disconnected. Nodes can be removed in many ways. They may

be attacked randomly or according to some of their intrinsic properties (such

as their degree). Depending on the rules used to remove nodes, the network

shows different levels of resilience.6

Clustering denotes the organization of the network in neighborhoods,

cliques or motifs. In many social networks we find that if node i is linked

to node j and node j to node h, then there is a fairly high probability that

i and h are also linked. This property, therefore, measures the number of

triangles in the network. In the jargon of social sciences, clustering answers

to the question whether a friend of my friend is also my friend. This notion

can be quantified by means of a clustering coefficient ci:

ci =
2

ki(ki − 1)

∑
j,h∈ψ(i)

lijlihljh (6.4)

6For instance, Albert et al. (2000) show that social networks, usually characterized as
scale-free, are remarkably robust to random attacks but extremely vulnerable to attacks
targeted at nodes with the highest degree (hubs). To prove this claim, the authors remove
nodes in decreasing order of connectivity, showing that, as a small number of hubs are
removed, the average distance of the scale-free network increases rapidly.
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Then the average clustering coefficient

C =
1

N

∑
i

ci (6.5)

is an overall statistical measure of the density of interconnected vertex triplets

in the network.

The concept of community provides a powerful extension of the notion of

clustering, by looking at groups of vertices such that there is a higher density

of links within groups than between them.7 The presence of subsets of highly

interconnected nodes is a key feature of empirically observed social networks.

Usually these communities, which are sparsely interconnected, reflect agents’

preferences and choices. As an example, one might imagine a social network

representing friendship relationships; in this case communities describe how

agents choose their friends, eventually forming distinct social groups among

individuals sharing some common characteristics. Within social networks’

theory, this kind of selective linking, based upon similarity, is called assor-

tative mixing. A classic example of assortative mixing is given by the study

of school integration and friendship segregation in America. Many studies

have shown that students are more likely to become friends of other students

belonging to their own ethnic group (Catania et al., 1997).

One of the characteristics shared by connected agents can be degree itself.

Positive assortativeness (or assortativity), defined as positive degree-degree

correlation, has been detected in many social networks (Newman, 2003a,b).

In this case assortative mixing can be detected by means of the correlation

between some node i’s degree and the average degree of its neighbors, where

7The field of community oriented research is quite heterogeneous and rapidly growing.
For a recent review the reader can refer to Fortunato (2010).
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the latter is defined as

knn,i =
1

ki

∑
j∈ψ(i)

kj (6.6)

If knn(k) = {knn,i|ki = k} increases (decreases) with k, there is assortative

mixing (disassortativity), that is high-degree nodes are more likely to be

connected to high-degree (low-degree) nodes.8

6.4 Static and dynamic networks

In this section, we present and discuss different network formation mecha-

nisms. First, we deal with several stochastic processes generating the link

formation mechanism. In this context, we assume that links, after their cre-

ation, do not change over time, so
δli,i
δt

= 0. In this case, the network is

static. Then, we move to describe dynamic processes of link formation. In

this context, the evolution of the link structure is dependent on agents’ ex-

perience from using their active edges, so
δli,i
δt
6= 0. In this case, there is a

continuous feedback mechanism between agents’ behavior and network evo-

lution: agents learn and adapt to a changing environment and this in turn

leads to an evolution of the network structure which, then, feeds back into

the incentives of individuals to form or sever links. In this case, the network

is dynamic.

6.4.1 Static networks

The simplest way to introduce networks within ABMs is to think that the

environment acts as a constraint on interaction, and that agents must learn

how to behave within this constraint. The issue at stake, then, is how eco-

8For a more rigorous treatment in terms of conditional probability see Caldarelli (2007,
par. 1.3)
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nomic outcomes are affected by network structures over which agents make

their decisions. By keeping the interaction environment (here represented by

the network) fixed, we can analyze, either analytically or with the help of

simulations, how state variables9 evolve within that environment. This view

of the environment is common in the sociological literature, where a great

emphasis is put on the networks in which agents are “embedded”(White,

1981; Granovetter, 1985). The relevance of this approach for economics was

outlined by the early study of Baker (1984), who showed that the volatility

of option prices depends on the structure of the communication network in

the market. Many recent contributions have confirmed this findings, ana-

lyzing the many different ways in which network structure affects economic

behavior.10

Random interactions: the Poisson model

Thanks to its simplicity and mathematical tractability, the binomial or Pois-

son model is one of the most popular models of network formation. The

network structure generated by the model is defined random network.

The model is initialized with a set of N isolated vertices. Each pair of ver-

tices is then connected with a given probability q. It is easy to see that,

according to the model, a graph having m links appears with probability

qm(1 − q)M−m, where M = 1
2
n(n − 1) is the maximum possible number

of links for an undirected graph.11 Since, for each vertex, links are added

through N − 1 independent draws with common parameter q, the degree

9State variables may represent many economic indicators, such as agents’ wealth,
knowledge, firms’ output and many more.

10There are models of network structure in foreign exchange markets (Kakade et al.,
2004), in labour markets (Calvo-Armengol and Jackson, 2004), communication and infor-
mation (DeMarzo et al., 2003), to name just a few.

11If the graph is directed, the maximum number of links is M = n(n− 1).
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follows a common binomial distribution:

p(k) =

 N − 1

k

 qk(1− q)N−1−k (6.7)

where p(k) is the probability that a randomly chosen node has degree k. As

it is well known, in the limit where N → ∞, the Binomial distribution is

well approximated by the Poisson Distribution with fixed parameter z:

p(k) =
zke−z

k!
. (6.8)

Of course, in both formulations agents on average have the same degree

value:

z =
qN(N − 1)

N
= q(N − 1) ∼ qN (6.9)

The mathematical simplicity of the model comes with a cost. The Poisson

model, in fact, does not feature many properties which are routinely detected

in real networks. For example, the clustering coefficient C is low12 and equal

to q = z
N

. Therefore C tends to zero as the system gets larger and larger.

Moreover community structure and assortative mixing are absent in a random

graph.

On the other hand, one of most well known properties of the Poisson

model is the occurrence of a phase transition in connectivity when q in-

creases beyond a threshold. In fact, at a critical value for q the system

passes from a state in which there are few links and components are small,

to a state in which an extensive fraction of all vertices are joined in a sin-

gle giant component (see Figure 6.8). Crossing the threshold therefore has

12This is because in a random graph the probability of a link between two nodes is
given. Therefore it will not increase if the nodes in question are already neighbors of
another agent
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dramatic effects on whichever interaction process is taking place over the

network, favoring for example coordinated/homogeneous outcomes over un-

coordinated/heterogeneous ones.

Figure 6.8: Poisson random graph with 50 nodes below the phase transition (left) and at
the phase transition (right).

The interaction mechanism underlying the Poisson model is inherently

symmetric. It may be translated in ABM jargon as follows: in every period,

each agent interacts – i.e. she exchanges information, broadly speaking – with

a set of other agents chosen at random from the population. This mechanism

could be interpreted as a stochastic collection of information. The dynamics

generated by this process is not easy to predict. 13

The “Small-World” Model

We have seen that Poisson networks are essentially devoid of local structure.

13When agents interact in complex systems their outcomes are difficult to predict. For
example Ellison and Fudenberg’s (1995) present a model in which random local interaction
generate an inefficient outcome (inefficient conformism)
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This conclusion is easily extended to the broader class of “generalized random

graphs”introduced by Newman (2003c), which fall outside the scope of the

present book. On the other hand, local structure, for instance under the form

of high average clustering coefficient, is a distinctive property of real-world

social networks. Milgram (1967) designed an experiment in which people

would attempt to relay a letter to a distant stranger by giving the letter

to an acquaintance, having the acquaintance give the letter to one of his or

her acquaintances, and so on. He found that, for the letters that made it

to their target, the median number of intermediate acquaintances was five.

This result became the source of the popular notion of the “six degrees of

separation” between any two individuals in the world.

Milgram’s result implies that in real social networks, distances between

individuals are as low as in a random network, notwithstanding the fact that

most of the interactions, contrary to what happens in random graphs, are

local and high clustered. The so-called “small-world” model of Watts and

Strogatz (1998) explains this paradox with the help of network theory. In

order to describe the model, we must introduce the notion of average path

length Λ as the average geodesic (i.e shortest) distance between node pairs

in a network:

Λ =
1

1
2
n(n− 1)

n∑
i>j

di,j, (6.10)

where di,j is the geodesic distance from node i to j. In the terminology of

network theory, small-worlds exist when a network exhibits both high average

clustering coefficient and low average path length.

The starting point of the “small-world” model is an r-dimensional lattice

with periodic boundary condition 14. If r = 1, this network can be repre-

14A lattice (with periodic boundary condition) is a deterministic network where each
node has a fixed (and equal) number of neighbors, whose value is determined by a distance
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sented as a ring whose vertices are connected to their z closest neighbors, as

shown in figure (6.9-a).

Figure 6.9: Regular graph with n = 25 nodes and z = 3 (left a). Small World graph with
n = 25 nodes and z = 3 created by choosing at random a fraction p of edges in the graph
and moving one end of each to a new location, also chosen uniformly at random. (right
b).

The small-world model is then created by taking a small fraction of the

edges in this graph and “rewiring” them. The rewiring procedure involves

going through each edge in turn and, with probability q, reconnecting that

edge to a new one chosen uniformly at random from the lattice, except that

no double edges or self-edges are included. With probability 1− q, thus, the

edge is not reconnected. When q = 0, the small-world network is obviously

coincident with the original lattice. In this case the clustering coefficient

is C = (3z − 3)/(4z − 2), which tends to 3/4 for large z, which means

that average clustering is non vanishing in the limit of large network size.

The regular lattice, however, does not show the small-world effect, since the

average geodesic distance grows linearly with n. In fact, in this case the mean

geodesic distances between vertices tend to n/4z for large n. When q = 1,

every edge is rewired to a new random location and the graph is almost a

random graph, with typical geodesic distances on the order of log n − z ∼

log n, but very low clustering C ∼ z/n. Via numerical simulation, the authors

threshold d̄. If d̄ = 1, the lattice can be depicted as a grid spanning a r-dimensional space.
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have proved that, between the extremes p = 0 and p = 1, there is a region

in which clustering is high and average path length is simultaneously low. In

this region, a ’small-world’ network configuration finally emerges.

The small-world effect has important implications for the dynamics of

processes taking place on networks. In particular, any coordination process

will be facilitated, thus increasing the likelihood of a coordinated outcome,

since communication across the entire set of agents is made simpler by low

average distances, even if interaction is mostly local. Following this idea, Wil-

hite (2001) has built a simple bilateral search and trade model, comparing by

simulation alternative network configurations with respect to their ability to

deliver a single equilibrium market price under the same trading mechanism.

In this framework, the small-world network is seen as a intermediate config-

uration between purely global (i.e. equivalent to a complete network) and

purely local interaction. Simulation results show that, although the complete

network converges more rapidly to equilibrium than any other configuration,

the small-world network is able to reach equilibrium with a significant sav-

ing of search efforts. Thus small-world networks emerge as a more realistic

configuration for market exchange, since they take into account the fact that

economic agents are willing to economize on search efforts, while on the same

time retaining the efficiency of global interaction.

6.4.2 Dynamic networks

In economics the assumption of static network is satisfactory only as an initial

approximation, since what is most important is the mechanism underlying

link formation, i.e. network evolution. Why do different individuals interact

with each other? Which motivation pushes agents to communicate with

particular individuals and, perhaps, to follow their indications?
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Some agents may prefer to trade with some others according, for instance,

to their geographical position, their loyalty or their popularity. In general,

this means that there is some variable which affects linking probabilities,

introducing a deviation from symmetric models like the Poisson network:

some agents are preferred as partners because of some quality, which may

be network-related or not. In both cases, this quality may be interpreted as

a fitness measure of the agent over the network in question. To illustrate

this idea, in this subsection we are going to present the well known model

of preferential attachment, which employs degree itself as a fitness measure,

along with its generalization to arbitrary fitness measures.

Fitness networks

A classical example of network formation is given by the work of Price

(1965) on citations among scientific publications. In this study nodes are

represented by articles, and a directed edge indicates that article i cites

article j. Let p(k) be the fraction of vertices with in-degree k, i.e. with k

citations. According to the model, new nodes are continually added to the

network. Each new vertex has a certain out-degree (number of cited papers),

which is fixed permanently at the creation of the vertex. The out-degree may

vary across nodes but its average value z is constant over time. The model

finally dictates that the probability of a new article linking to an existing one

is proportional to the in-degree k of latter:

p(k) =
k

Din

(6.11)

where Din stands for the sum of in-degrees across agents, which acts as

a normalization constant. It is possible to show that, under this assump-

tion, the in-degree follows a power-law distribution p(k) ∝ k−a (e. g. Vega-

Redondo, 2007: pp. 67-70), which is a good descriptor of the empirical degree
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distribution found in citation networks, as well as in many other domains.

For instance, Simon (1955) found that the power-law distribution of wealth

could be explained as a consequence of a “rich get richer” process which is

similar to the Price model. Barabasi and Albert (1999) applied an equiva-

lent “preferential attachment” scheme to an undirected network in order to

obtain a growth model for the Web, which has become a widely employed

benchmark in the field of complex networks. Other models, like Dorogovtsev

and Mendes (2001), have removed some of the constraints of the original

Price’s model, e. g. by allowing the addition of new out-going edges from

incumbent nodes or the deletion/rewiring of existing links.

An important generalization of the preferential attachment scheme is pro-

vided by Bianconi and Barabasi (2001). In their model, each newly appear-

ing vertex i is given a fitness value fi that represents its attractiveness and

hence its propensity to accrue new links. It is worth to underline the dif-

ference between preferential attachment and fitness: when one considers a

fitness algorithm it is true that the larger the fitness the larger the degree,

but the converse implication does not hold anymore, since the larger degree

becomes only a consequence of an intrinsic quality. It is easy to see that

fitness based linking lends itself more naturally to economic interpretation

than preferential attachment. For instance, it seems reasonable to expect

that agents entering some market will observe incumbents’ performance or

reputation, and they will accordingly decide to communicate with and/or

conform with the most successful ones.

A simple example of fitness algorithm is implemented by Tedeschi et al.

(2012). In this model, directed links are created and deleted by agents seeking

advice from a single other agent, who is selected as advisor on the basis of
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a fitness parameter given by its wealth. Agents start with the same initial

wealth Wt, but some agents may become richer than others as time goes

by. Agents’ fitness at time t is defined as their wealth relative to the wealth

Wmax
t of the wealthiest agent:

f it =
W i
t

Wmax
t

. (6.12)

Each agent i starts with one outgoing link with a random agent j, and

possibly with some incoming links from other agents. Links are rewired at

the beginning of each period in the following way: each agent i cuts its

outgoing link with agent k and forms a new link, with a randomly chosen

agent j, with the following probability

pir =
1

1 + e−βi(f
j
t−fkt )

(6.13)

Otherwise, he maintains its existing link with probability 1 − pir. The

rewiring algorithm is designed so that successful agents gain a higher number

of incoming links. Nonetheless the algorithm introduces a certain amount of

randomness, and links with more successful agent have a positive probability

to be deleted in favor of links with less successful agents. This randomness

helps unlocking the system from the situation where all agents link to the

same individual.

In table (6.3), left side, we plot one snapshot of the configuration of

the resulting network. The graph shows that few rich agents co-exist and

compete for popularity. Moreover the network is very centralized, with a

small number of rich agents. The topology of the network is different from

that of a Poisson random graph, which would require degrees to follow the

Binomial (or Poisson) distribution, but closer to the topology of real world
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networks, where some agents are found to have a disproportionately large

number of incoming links while others have very few. In fact, Table. (6.3),

right side, shows that the decumulative distribution function (DDF) of the

in-degree follows a power-law distribution.
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Table 6.3: Network configuration (left side). The decumulative distribution function
(DDF) of the in-degree (right side).

It is important to emphasize that in this model links are re-updated every

time step via the agents’ fitness. In this way, the network topology evolves

and changes during the simulation. This mechanism of links formation allows

authors to study under which assumptions a successful agent endogenously

rises and falls over time, and how imitation affects the network structure and

the agents’ wealth. The evolutionary dynamics is clearly shown in Figure

6.10, where the authors plot the index of the current winner (black solid

line), the percentage of incoming links to the current winner (red dotted

line) and his fitness (green dashed line), as function of the time.
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Figure 6.10: The index of current winner (black solid line), the percentage of incoming
link to current winner (red dotted line) and fitness of current winner (green dashed line).

In fact, as the successful agent acquires an increasing number of links

(red line), one or more of his followers may become richer than the winner

himself, as signalled by the fact that the fitness (green line) of the winner

becomes, at times, smaller than 1. As other agents become rich they start

to be imitated more and more and eventually one of them becomes the new

successful agent.

6.5 Conclusions

Understanding the influence that socio-economic systems has on agents and

the generation of complex environments by heterogeneous individuals re-

quires an exploration of the phenomena which emerge when different types

of agents interact and the influence that the system has on the mechanisms

driving agent interaction. In other words, agent interaction becomes a cru-

cial point to understand how a macro coherent behavior may emerge from
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individual behavior. Since interaction depends on differences in information,

motives, knowledge and capabilities, this implies heterogeneity of agents and

externalities. Thus economic organization may be achieved in a way that

is parallel and distributed (that is, without a devise acting as a central co-

ordinator). Self-organization, i.e. a process where a structure appears in

a system without a central authority or external element imposing it, is a

possible description of the invisible hand or of spontaneous order. The anal-

ysis of agents’ interaction becomes, thus, the ingredient to understand the

bijective mapping between individuals and environment.

Network theory deals with the structure of interaction within a given

multi-agent system. Consequently, it is naturally interested in the statistical

equilibrium of these systems, to be defined as the stability of probability dis-

tributions of observables, which implies “a state of macroscopic equilibrium

maintained by a large number of transition in opposite directions” (Feller,

1957 356). Following this path, we come close to the idea, championed by

Aoki and Yoshikawa (2006), of reconstructing macroeconomics under the

theoretical framework of statistical physics and combinatorial stochastic pro-

cesses. Not surprisingly, the same methods (which were originally developed

to study systems made of large numbers of interacting micro-units by means

of a set of macro state variables) are now of fundamental importance in the

field of network theory and, for the same reasons, they are expected to take

an increasing role in ABM.
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Chapter 7

The Agent-based Experiment

Jakob Grazzini, Matteo Richiardi and Lisa Sella

7.1 Introduction

This chapter deals with the problem of analysing the behaviour of an agent-

based (AB) model. The problem is similar to the one faced by any modelling

methodology: the researcher sets up the rules of the game, but does not know

in advance the implications of those rules. Actually, it is in this a-priori un-

certainty about the model outcomes, and the relationship between the model

outputs and the model inputs, that rests the value of developing a model.

However, the techniques to gain understanding about the model behaviour

differ substantially across modelling methodologies, and they remain quite

under-explored in the AB literature. In nuts, in a simulation model only in-

ductive knowledge about its behaviour can be gained, by repeatedly running

the model under different samples from the parameter space.

The analysis of this inductive evidence has to confront with the a priori

unknown stochastic properties of the model. The easiest case is when, for
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any values of the parameters, the model is stationary and ergodic: in these

circumstances it is generally possible, with a reasonable number of experi-

ments, to characterize both the equilibrium properties of the model and the

adjustment dynamics to the equilibria. On the other hand, non-stationarity

renders the analytical concepts of equilibrium and adjustment dynamics in-

applicable, while non-ergodicity might hinder the same possibility of fully

describing the behaviour of the model. A preliminary analysis to discrimi-

nate between these cases is therefore necessary, and it can only be done by

statistical testing. In the chapter we provide examples of the tests that can

be used to detect both stationarity and ergodicity.

These properties in turn affect the types of subsequent analyses that can

be performed, and the interpretation of the results. The techniques that

are used to describe the relationships between the different variables of the

model are referred to in general terms as sensitivity analysis (SA). Although

a complete survey of these techniques is outside the scope of this chapter, we

briefly describe them and offer an example of how they can be applied to a

specific AB model.

The chapter is structured as follows. Section 7.2 introduces the notion

of statistical equilibria, and discusses the effects of non-stationarity. Our

starting point is the input-output transformation (IOT) function that we

derived in chapter 3

yt = gt(Z0,θ). (7.1)

which relates the initial conditions Z0 = {X0, s} (the initial state of the

system X0 and the random seed s) and the parameters θ to the outcome of

interests y. Section 7.3 surveys the main techniques to gain understanding

of this function, that fall into the broad discipline of SA. Finally, section 7.4

offers our conclusions.
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To proceed in this analysis, a first step is to choose the outcome variables

y to focus on, and the time period. In order to understand the behaviour of

the system, we have to characterize its regularities.

7.2 Long-run and transient equilibria

7.2.1 Definitions

As we have seen at the beginning of this book, in chapter 2, one important

difference between analytical models and AB models lies in the definition

of equilibrium. In analytical models, equilibrium is defined as a consistency

condition in the behavioural equations: agents (whether representative or

not) must act consistently with their expectations, and the actions of all the

agents must be mutually consistent. This is the methodological prescription

of rational expectations which we have examined in chapter 4, and logically

operates at an individual level before action (and interaction) takes place.

Like a man standing on one foot who gets pushed away but manages to

remain poised on his one leg, the system is always in equilibrium, even during

a phase of adjustment after a shock has hit. AB models, on the other hand,

are characterized by adaptive expectations, according to which consistency

might or might not arise, depending on the evolutionary forces that shape the

system. An equilibrium can therefore be defined only at the aggregate level

and only in statistical terms, after the macro outcomes have been observed.

Definition For each statistics yt(Z0,θ), a statistical equilibrim is reached,

in a given time window (
¯
T, T̄ ), if yt is stationary.

Stationarity of yt implies that each observation carries information about

some constant properties of the data generating process (DGP). By station-
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arity, here and in the rest of the chapter, we mean weak stationarity. A

stochastic process yt is (weakly) stationary if E(yt) = µ, that is, its expected

value is independent of t, and if Cov[yt, yt+h] exists, is finite and depends only

on h and not on t. Note the difference between weak and strict stationarity.

Strict stationarity requires that yt has the same distribution for every t, and

the joint distribution of (yt, yt+1, yt+2, ..., yt+h) depends only on h and not on

t. Note that strict stationarity does not necessarily imply weak stationarity,

as finite variance is not assumed in the definition of strong stationarity. An

example of a stationary process is white noise yt ∼ WN(0, σ2), with

Cov[yt, yt+h] =

σ
2 if h = 0

0 if h 6= 0

White noise is stationary but may not be strictly stationary.1 Examples

of non-stationary series are the returns in a stock market, where there is

clustered volatility (the variance changes over time); trend stationary series

that can be transformed to stationary series by subtracting a function of time,

and difference stationary series that can be transformed into stationary series

by first differentiation.

The statistical equilibrium can then be described by the mean of yt be-

tween
¯
T and T̄ , which we denote as µ∗:

µ∗ = E[yt|t ∈ (
¯
T, T̄ )] = g∗(Z0,θ) (7.2)

We then distinguish between two types of statistical equilibria: long-run

equilibria and transient equilibria.

1A Gaussian white noise, where yt is identically independent distributed (i.i.d.) Gaus-
sian yt ∼ N(0, σ2), is strictly stationary.
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Definition A simulation model is said to reach a long-run statistical equi-

librium if yt(Z0,θ) is stationary in (
¯
T,

¯
T + τ), τ → ∞. On the other hand,

a statistical equilibrium is said to be transient if yt(Z0,θ) is stationary in

(
¯
T, T̄ ) but is no longer stationary in (T̄, T̄ + τ), τ > 0.

Long-run equilibria are stable regularities of the system: once the system

is in a long-run equilibrium, it cannot move out. Because the system is deter-

ministic, for any given value of the initial conditions (including the random

seed) and the parameters, there can be at most one long-run statistical equi-

librium y∗. However, there might be many transient equilibria: for instance,

a model can oscillate between two (or more) transient statistical equilibria.

A hypothetical example of a long-run equilibrium is the “natural” unem-

ployment rate in a model of the labour market, while an example of a tran-

sient equilibrium could be the (supposedly constant) speed of adjustment

to this long-run steady state. Once the model is in the long-run equilib-

rium, period-to-period deviations from the natural unemployment rate are

mainly due to noise, and no further adjustment can be detected: the tran-

sient equilibrium has vanished. Alternatively to the case of a constant speed

of adjustment, long periods of sustained unemployment might take place,

before the unemployment rate eventually sets to its long-run level. If the

unemployment rate were approximately constant during those periods, they

would define (possibly many) transient equilibria. Finally, we might have a

model where the unemployment rate can be either low or high, with random

switches from one (transient) equilibrium to the other. Note that a model can

display both transient and long-run equilibria (as in the speed of adjustment

example), only transient equilibria (the multiple unemployment regimes), or

only a long-run equilibrium (one long-run steady state, but variable speed of

adjustment).
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7.2.2 Uniqueness and multiplicity of equilibria

The condition under which the model, irrespective of the initial conditions,

will always converge to the same statistical equilibria µ∗(Z0,θ) = µ∗(θ)

is ergodicity of the time series yt. Intuitively, this means that the model

will always exhibit the same type of qualitative behaviour, irrespective of

the initial conditions: therefore, if a (long run or transient) equilibrium is

reached, it will be the same in all simulation runs, given the same values of

the parameters θ. Starting from a different initial state X0 or employing a

different seed s might change the timing of the equilibrium, that is the period

of time over which yt is stationary, but it would not change the equilibrium

level µ∗.

On the other hand, non-ergodic models are sensitive to the initial con-

ditions, including the random seed. This is due to strong persistence in

the underlying processes: the random seed representing the legacy from the

past. Run the model twice, with the same values of the parameters and the

same initial state but different seeds, and the model will display different

transient equilibria, and finally set to different long run equilibria (long-run

steady-state levels).

To continue with our previous example, non-ergodicity implies multiple

unemployment regimes, but in a fundamentally different way from the mul-

tiple transient equilibria of our ergodic example. In the ergodic case, the

model is able to endogenously switch between different regimes (hence the

equilibria are transient) while in the non-ergodic case each regime defines a

parallel universe, with no possibility of travelling across different universes.

Multiple long run equilibria are possible only in non-ergodic models. This

can be an interesting feature of the model, that can open up new possibilities

for policies (which might be able to provide appropriate “reset” events and
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exogenously move the system away from one “bad” equilibrium to a “good”

one).

More technically, ergodicity is a property that concerns the memory of

a process. An ergodic process is characterized by weak memory, so that as

the length of the time series we observe increases, our understanding of the

process increases as well. In a non-ergodic process, by converse, persistence

is so high that little information is provided by analysing a sub-sample of the

process, no matter how long this time series is.

Ergodicity is sometimes defined as

lim
n→∞

1

n

n∑
k=1

Cov(yt, yt−k) = 0 (7.3)

which means that events far away from each other can be considered as

almost independent. This implies that if some event can happen, by waiting

for long enough it will happen, regardless of what has happened in the past

or what will happen in the future.

If yt is ergodic, the observation of a unique time series provides infor-

mation that can be used to infer about the model IOT function (7.1): the

process is not persistent and in the long run different time series (produced

by the same IOT function) will have the same properties. If the number

of observations of one single time series increases, the information we have

about the IOT function increases as well.

Note that stationarity and ergodicity are different concepts, and one does

not imply the other. A typical example of a stationary non-ergodic process is

a constant series. Consider a process that consists in the draw of a number y1

from a given probability distribution, and remains constant thereafter: yt =

y1 for every t. The process is strictly stationary (yet degenerated since yt is
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extracted from a distribution with mean y1 and variance 0), and non-ergodic.

Any observation of a given realization of the process provides information

only on that particular process and not on the IOT function. An example

of a non-stationary but ergodic process, that will be discussed below, is

yt = yt−1 + ut, ut ∼ N(0, 1).

An implication of the uniqueness of the long-run equilibrium in ergodic

models is that, if the expected value and the variance exist and are finite, the

simulated mean m(θ) converges, both over time and over the replications s

of the simulation, to the theoretical limiting expected value of the underlying

IOT conditional on the parameters used for the simulation, µ∗(θ):2

lim
t→∞

mt(θ) = lim
s→∞

ms(θ) = µ∗(θ) (7.4)

The properties of the time series generated by the model are constant both in

time and across replications: therefore, they can be inferred from the sample

moments. In other words, the simulated mean of y, computed either over

time or over replications, is a consistent estimator of the theoretical limiting

expected value. On the contrary, if yt is stationary but not ergodic, different

long-run equilibria are obtained, for the same values of the parameters, de-

pending on the initial conditions. This can be regarded as a case of multiple

statistical equilibria.

Moreover, the transient equilibria, if any, are also independent on the

initial conditions. However, since the transient equilibria are defined over a

finite period of time, they will inevitably differ when computed for different

initial conditions, and convergence over time is simply not defined. Con-

sider again our example of a constant speed of adjustment to the long-run

2If yt is strictly stationary, any simulated moment —not only the mean— converges
to its theoretical counterpart, if it exists.
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equilibrium. Here yt is the period-to-period speed of adjustment, defined

as yt = |ut−ut−1

ut−1
|, with u being the unemployment rate, while m(yt) is the

average speed of adjustment between
¯
T and T̄ .

If we run the simulation for different initial conditions Z0, we obtain

different average speeds of adjustment, irrespective of whether the model

is ergodic or not, simply because each of these averages are computed over

a limited number of simulated observations (the limited length of the ad-

justment process T̄ −
¯
T ). However, if the model is ergodic, the differences

between different runs are not statistically significant, so that we can in-

crease our knowledge of the theoretical limiting moment of the underlying

DGP conditional on the parameters used for the simulation, µ∗(θ), by aver-

aging over the moments ms computed for different seeds (more in general,

for different initial conditions):

lim
s→∞

ms(θ) = µ∗(θ). (7.5)

The simulated moments are consistent (over the replications) estimators of

the theoretical limiting moment.

Note how flexible and powerful this descriptive apparatus is. For in-

stance, a model can show a long-run statistical equilibrium for, say, GDP.

This means that after an initial adjustment period up to
¯
T , the GDP series

becomes stationary, with constant mean and variance. If the system receives

a transitory shock, it moves away from the statistical equilibrium. However,

once the shock has passed, if the model is ergodic it comes back to the pre-

vious steady state, after an adjustment phase. If we re-run the model and

shock it 100 times, it would always come down to the same equilibrium: we

will say in chapter 9 that this means that the model is well suited for estima-

tion. Moreover, it might happen that during the adjustment process some
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other transformation of the state of the system, for instance the speed of

adjustment to the equilibrium level of GDP, becomes stationary. This new

regularity breaks down when GDP reaches its steady state: it is therefore a

transient statistical equilibrium.

It is possible that a model displays no absorbing equilibrium for a given

variable of interest. To continue with our example, think of the evolution of

GDP, with business cycle fluctuations of different amplitude and duration,

and intermittent crises. This is an interesting case for many AB modellers,

who essentially see the world as a disequilibrium process. Even in such

situations however, it might be possible to find long-run statistical regulari-

ties with respect to some other variable, for instance the distribution of the

length and depth of recessions. Moreover, there might be other regularities

which are only transient, and vanish as the simulated time goes by (think for

example of the effects of fiscal policies on GDP growth, which are very differ-

ent depending on whether the economy is close to full employment or not).

Again, if they are stable enough across different replications, they might be

used to characterise the behaviour of the model (hence for estimation, see

chapter 9). If, on the other hand, the model exhibits no regularities whatso-

ever, no matter how the data are transformed, then one might argue that it is

of limited explanatory (not to say predictive) help: “everything can happen”

is hardly a good theory. So, when AB researchers speak of disequilibrium

or out-of-equilibrium analysis, what they have in mind is really transient

statistical equilibrium analysis of some sort.

To recap, understanding whether a simulated time series produced by the

model is stationary and whether it is ergodic is crucial for characterizing the

model behaviour. The prescription therefore —following Hendry (1980)—

can only be “test, test, test”.
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A number of stationary tests are available and can be performed on the

simulated time series. In the Appendix, we describe as an example a non-

parametric test for the stationarity of given moments of a simulated time

series. Non-parametric tests are in general more suited for AB models, as

they do not impose structure on the IOT function of the model, which at this

stage of the analysis is still largely unknown. Moreover, the limited power

of many non-parametric tests can in principle be overcome by increasing at

will the length of the artificial time series, something that cannot obviously

be done with real data.3

On the contrary, ergodicity is in general not testable in the real data, as

we typically have only one historical time series available. This of course does

not mean that the issue must be ignored in empirical applications: if the real

world (“Nature”) is non-ergodic, using the observed data to make inference

about the real world IOT function, or about the structure of the underlying

DGP, is more problematic. Indeed, it is difficult to claim that Nature is in

facts ergodic and that present events are not affected by (at least some) event

of the past. All the researcher is left with in this case are statements about

the true DGP that are conditional on the realization of these past events.4

In an AB model, the function to be described is the model IOT function;

fortunately, the “veil of ignorance” about this function is much lighter than

with real data, as the model DGP is known, while the real world DGP is

unknown. In other words, the researcher is the God of her artificial world,

although a non-omniscient God: she sets up the rules of the game, but does

not know in advance what the results will be. However, she can re-play her

artificial worlds at will, thus generating new time series that can provide

more information on the behaviour of the system.

3Computing time can of course be an issue, in practice.
4Whether this is satisfactory or not depends on the objectives of the analysis.
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This difference has an important implication: the ergodic properties of a

simulation model are in principle testable, as we can produce as many time

series as we wish, as long as we wish. And they should be tested, as we cannot

content with conditional statements on initial conditions in understanding

our system behaviour: real initial conditions being in some sense legitimized

by history, while the initial conditions chosen by the experimenter being often

more arbitrary.

In the Appendix to this chapter, we suggest an application of the same

non-parametric test used for stationarity for testing ergodicity of the artificial

time series generated by an AB model.

7.2.3 Implications of stationarity and ergodicity

To summarize, if the model is ergodic — with respect to an outcome y and

for given values of the structural parameters θ— each simulated time series

yt can be used to characterize the IOT function, at the given values of the

parameters, once “enough” time is passed to wash away the memory of the

initial conditions. If, in addition, the model is also stationary in a given

time interval, the time series can be used to characterize the (long-run or

transient) equilibria of the system.

On the other hand, if the model is non ergodic, each time series yt is only

informative of one possible outcome, given the values of the parameters.

Then, multiple runs of the model should be used and variation across runs

exploited in order to characterize, in distributional terms, the properties of

the system at the sampled values of the parameters.

A natural question then arises whether it is more convenient to always

treat the model as non-ergodic, and examine the outcomes of multiple runs

–i.e. many “short” time series– rather than only one “long” time series. The
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answer is that it is often important to characterize the equilibrium of the

system, that is its stationary behaviour, possibly after a prolonged phase of

adjustment: analysing “long” time series allow to test for stationarity and

identify the equilibrium.

A second remark concerns the fact that the stationarity / ergodicity anal-

ysis is only valid locally, i.e. for specific values of the parameters: the model

DGP can be stationary or ergodic for some values of the parameters, and

non-stationary or non-ergodic for some other values.5 Hence, in principle

the analysis should be repeated for every sampled point of the IOT func-

tion, assuming by a continuity argument that the results also hold in be-

tween different points in the parameter space. When the form of the model

DGP induces to expect some discontinuity in the behaviour of the system

for specific values of the parameters, these values should be included in the

experimental design and duly explored. More in general, the choice of the

points in the parameter space to be sampled, together with the overall design

of the experiments that are performed in order to gain understanding about

the IOT function, is the focus of sensitivity analysis.6

7.3 Sensitivity analyis of model output

The statistical techniques to analyse the behavioyr of the IOT function are

called sensitivity analysis (SA). SA represents not only the final step in

analysing the model behaviour, but can also be regarded as an essential

step in the model building process itself, since it provides the analytical tools

which allow to simplify the model structure by identifying its nonrelevant

parts.

5See the examples in the Appendix to this chapter.
6See for instance Box et al. (1978); Kleijnen and van Groenendaal (1992).
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More in details, SA can be defined as “the study of how uncertainty in the

output of a model can be apportioned to different sources of uncertainty in

the model input” (Saltelli et al., 2004). Such definition reflects the modeler’s

imperfect knowledge of the system, i.e. imperfect knowledge of the IOT

function. By means of SA the relative importance of the parameters in

influencing the model output can be assessed. This also allows to identify

possible interactions among the input factors and hence critical regions in

the input factor space, with respect to the conditions of most sensitivity of

the model output to some specific factors.

7.3.1 Settings for SA

There exist three main settings for SA, namely factor screening, local SA,

and global SA (Saltelli, 2000).

1. Factor screening aims at designing experiments to identify the most

influential factors in models characterized by a large number of inputs.

Often, only a few input factors have a significant effect on the model

output. Screening experiments can be used to rank the input factors

in order of importance. The experiments are generally one-at-time

(OAT) designs, which evaluate the main effect of changes in single

factors (Daniel, 1973), as well as factorial experiments, which evaluate

both the main effects and the impact of factor interactions.7

2. Local SA focuses on the impact of small variations in the input factors

around a chosen nominal value (base point). It generally assumes linear

7In particular, full factorial designs and fractional factorial designs are commonly
adopted. A full factorial design is applied when the factors assume discrete values and
considers all possible combinations of values across all factors, allowing to assess both the
main effects and the impact of factor interactions. A fractional factorial design consists
of a carefully chosen subset of the experimental runs of the corresponding full factorial
design.
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input-output relationships and involves the evaluation of the partial

derivatives of the output functions with respect to the input factors.

The experiments are generally OAT designs.

3. Global SA involves the estimation of the factor probability density func-

tions, investigates the role of their scale and shape, and allows for the

simultaneous variation of all factors over the whole factor space. The

sensitivity is measured over the entire range of each input parameter.

Global SA is particularly relevant for AB models as linear OAT sensi-

tivities are ill-suited for nonlinear models characterized by high factor

interaction and input uncertainty of various order of magnitude (Cukier

et al., 1973).

7.3.2 Strategies for SA

Different SA strategies may be applied, depending on the setting. Moreover,

given the manifold purposes of SA, a preliminary characterization of its ob-

jectives is essential. In particular, of fundamental importance is the adoption

of the most suitable measure of sensitivity depending on the desired definition

of factor importance. In fact, each importance measure generally produces its

own factor ranking. Most measures rely on variance decomposition formulas

of the model output with respect to the input factors, since the variance is

generally regarded as a proxy for uncertainty.8 In choosing the appropriate

sensitivity measure, a model-free approach should be followed, i.e. choosing

a sensitivity measure which is independent of the model characteristics, such

as linearity, monotonicity, additivity.

Saltelli et al. (2008) describe four basic strategies, together with some

associated sensitivity measures, namely factor prioritization, factor fixing,

8Other measures can also be used, e.g. entropy (Saltelli et al., 2000)
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factor mapping, and metamodeling.

1. Factor prioritization identifies as the most influential the factor Xi

causing on average, keeping its distribution fixed, the greatest reduction

in the variance of the output Y . The associated sensitivity measure is

the first-order sensitivity index Si of Xi on Y , i.e. the average partial

variance of Y conditional on the distribution of Xi. In formulas,

Si = (VXi
(
EX−i (Y |Xi)

)
/V (Y ) (7.6)

where X−i indicates all factors but Xi. The numerator represents the

variance, over all possible values of Xi, of the conditional expectation of

Y taken over all factors but Xi. The denominator is the unconditional

variance of Y .

2. Factor fixing aims at simplifying the model by fixing the factors which

do not appreciably affect the output in their range of variation. This

has to be evaluated taking into account both the first-order effect Si,

which describes the direct effect of Xi on Y , and the higher-order ef-

fects, which describe the impact of the interactions between Xi and

the other input factors. The sum of all-order effects due to Xi is called

the total effect ST i and represents a suitable sensitivity measure in this

setting. Considering the case of a three-factor model Y = f(X), where

X = (X1, X2, X3), the first-order effect of X1 on Y is labeled S1; the

second-order effects of X1 on Y are S12 and S13, respectively represent-

ing the effect of the interactions between the couples of factors (X1, X2)

and (X1, X3); finally, the third-order effect S123 measures the impact of

the interaction among all terms. The total effect of X1 on Y is given

by ST1 = S1 + S12 + S13 + S123.
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3. Factor mapping concerns the analysis of critical regions in the output

distribution, such as threshold areas. It aims at identifying the factors

producing realizations of Y into the critical range, rather than those

driving the variance of the model output. A useful mapping method

is the so called Monte Carlo filtering (Rose et al., 1991), which pro-

vides Monte Carlo realizations of Y corresponding to different sampled

points in the input factor space. Next, it filters the realizations into two

subsets depending on whether they belong or not to the critical region.

Then, statistical hypothesis testing is performed to check whether the

two subsets represent samples from the same distribution. An input

factor is identified as important if the distribution functions of the gen-

erated samples prove to be statistically different (Saltelli et al., 2004).

4. Metamodeling, or model approximation, aims at identifying an approx-

imation of the IOT function, i.e. a simple relationship between the

input factors and the model output that fits the original model well

enough. This simplification is due to regularity assumptions that allow

to infer the value of the output at untried points in the input space,

based on information from nearby sampled points. Hence, a surro-

gate model is identified, which contains the subset of the input factors

accounting for most of the output variability. Clearly, this approach

generally misses relevant high-order interaction terms and fails in the

case of heavily discontinuous mapping.

In particular, Gaussian process emulators are often used as surrogate

models. Emulators are particular types of meta-models: more than just

an approximation, they make fully probabilistic predictions of what the

actual simulation model (the simulator) would produce (Santner et al.,

2003; O’Hagan, 2006; Rasmussen and Williams, 2006). Differently from
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Figure 7.1: The output of an emulator. The vertical axis measures the model outcome
y, the horizontal axis measures the model inputs, for instance a parameter θ. Source:
OHagan2006.

regression-based meta-models, emulators are non-parametric interpola-

tors that pass through all the training points: if asked to predict the

simulator output at one of the training data points, an emulator re-

turns the observed output with certainty. Moreover, if asked to predict

the simulator output at a point that has not been sampled (and that

has consequently not being used to train the emulator), an emulator

returns a distribution of possible outcomes, reflecting the uncertainty

over the quality of the approximation. Gaussian process emulators

model this uncertainty under the assumption of Gaussian errors. Fig-

ure 7.1 depicts a standard output of an emulator, where the uncertainty

is reduced as more points in the parameter space are sampled.

This list of SA strategies is not exhaustive and other strategies can be de-

fined, depending on both the specific objective of the SA and further consid-

erations about the model under investigation, e.g. its computational burden,

the number of input factors and their theoretical interactions, other features

such as linearity, monotonicity, additivity.9

9Also, many software products for SA exist; (Chan et al., 2000) offer a brief review of
some of them.
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7.3.3 SA and AB modeling: some applications

The literature provides just a few examples of SA applied to AB model-

ing. Kleijnen et al. (2003) assess the soundness of design of experiments

techniques when carefully applied on a small subset of input factors. As an

example, Happe (2005) and Happe et al. (2006) propose a combined design

of experiment and metamodeling setting applied to AgriPoliS, a spatial and

dynamic simulation model developed to investigate the impact of agricultural

policies on regional structural change. At first, a full factorial design is used

to investigate both the first- and second-order effects of some selected factors

on a target response variable. The stochastic nature of the model is faced by

running a number of Monte Carlo experiments for each experiment. Then,

the simulation output is analysed by both graphical methods and metamod-

eling. In particular, an additive polynomial metamodel is estimated to assess

the statistical significance of the main effects and the two-factor interactions.

A stepwise Ordinary Least Squares procedure is applied to isolate and ex-

clude those factors characterized by low significance levels. Similarly, Lynam

(2002) adopts a fractional factorial design to investigate the mean effects of

a selection of factors in a multi-agent model.

Another SA application to AB modeling is described in Deffuant et al.

(2002). The authors propose an AB model of innovation diffusion to investi-

gate the effects of incentives for the conversion to organic farming in a French

department. They explore the huge parameter space and evaluate factor im-

portance by a decision tree approach (Breiman et al., 1984) on a composite

error, which estimates the deviance between the real and the simulated data

on the number of adopters and their proximity to the initial organic farmers.

In particular, their SA algorithm selects the factors and the values corre-

sponding to the smallest deviance by defining a learning set. It identifies
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the regions in the parameter space which are compatible with the real data.

Hence, this represents an example of SA in the factor mapping setting.

7.3.4 A simple example: SA on a Bass diffusion model

with local interaction

To gain further practical intuition in SA, we illustrate a very simple SA ex-

ercise based on a modified AB version of the Bass diffusion model. The

classical Bass model (Bass, 1969) describes the process of adoption of new

products by the interaction between actual and potential users. In partic-

ular, the probability of adoption for any potential user at time t depends

on an innovation coefficient p, an imitation coefficient q, and the cumulative

distribution function of adoptions F (t), i.e.

Prt(adoption) = (f(t))/(1− F (t)) = p+ qF (t) (7.7)

where f(t) is the probability density function of adoptions, and p + q < 1.

The innovation coefficient p measures an external (advertising) effect, the im-

itation coefficient q represents the internal (word-of-mouth) effect, and F (t)

can be interpreted as a global interaction term. In fact, this is an aggregated

model describing diffusion dynamics in an homogeneous population in a fully-

connected network, where each individual is aware of and influenced by the

adoption behaviour of the whole population. The model has an analytical

solution,

f(t) =
1− e−(p+q)t

1 + q
p
e−(p+q)t

(7.8)

and captures the typical S-shaped adoption curve of many products. By

reviewing the empirical work applying the Bass model to new products in-

230



troduction, (Mahajan, Muller, Bass, 1995) find the average value of p and

q to be 0.03 and 0.38, respectively, with p often less than 0.01 and q in the

range [0.3, 0.5].

In the original Bass model, every potential customer is linked to all the

others by the function F (t). Alternative formulations of the network struc-

ture yield different diffusion dynamics (Fibich and Gibori, 2010). In particu-

lar, we present the case of a small-world network characterized by an average

number n of bidirectional connections per agent. Thus, the probability of

adoption for the i-th potential user does not depend anymore on the global

interaction term F (t), but on a local interaction term Ai,t, defined as the

share of individuals connected to agent i who have adopted, i.e.

Pri,t(adoption) = p+ qAi,t (7.9)

The analysis of this model is particularly simple because its stochastic

properties are immediate to check: the model is ergodic, with a deterministic

absorbing equilibrium (everybody eventually adopts) which is achieved in

finite time, given p > 0, irrespective of q and n. So, our interest lies in

characterizing how the three input parameters (p, q, n) affect the adjustment

process to the equilibrium, i.e. the adoption dynamics.

The following SA exercise focuses on the effects of the parameters onto

two output statistics Y : the cumulated curve of adoptions and the time of

adoption of the 50th percentile of the population.

Figure 7.2 shows the sensitivity of the cumulated adoption curve at the

variation of one parameter at time around a reference parameter configura-

tion, i.e. p = 0.03, q = 0.4, n = 5 on a population of 1,000 agents. To get rid

of random effects in the generation of the network, average results over 50

runs for every triple of parameters are reported. In particular, the top panel
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shows how adoption drastically speeds up when the effect of the external

influence increases, for values of p sampled in the range [0, 1] by increasing

steps of 0.05; the middle panel illustrates how the adoption dynamics become

more and more similar when the internal influence is higher, for values of q

sampled in the range [0, 1] by increasing steps of 0.05; finally, the bottom

panel shows that the cumulated adoption curves are quite indistinguishable

for an average number of connections per agent greater than 6, for integer

values of n sampled in the range [1, 30]. Hence, n seems to have the weak-

est effect on the adoption dynamics of the population (for large n), while p

somehow the strongest (for small p).

Similar results are obtained when analysing the OAT effect of the param-

eters on the average time of adoption of the 50th percentile over 50 runs. In

fact, the bottom panel of figure 7.3 shows a flat distribution for values of n

greater than 6. Moreover, the impact on the adoption speed of high values of

q is quite similar, while the 50th percentile adopts in no more than 2 periods

for values of p greater than 0.2.

However, the results of an OAT analysis are local, i.e. they are gener-

ally strongly influenced by the chosen reference point, and give no informa-

tion about the eventual impact of the interactions among inputs. In order

to overcome this limitation, a global analysis is performed by evaluating a

metamodel Y = g(X) on artificial data generated by allowing all parameters

to change. The metamodel imposes a relationship between the inputs X and

the output Y with an arbitrary functional form g, which crucially includes

interaction terms (Kleijnen and Sargent, 2000). As an example, we perform a

multivariate analysis on 1,000 parameter configurations, obtained by random

sampling the inputs from uniform distributions. In particular, p is sampled

in the range [0,0.2], q in [0,0.8] and the integer n in [1,30].
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time 50 Coeff. Std.Err.
p -417.18 11.25 ***
p2 2824.05 125.46 ***
p3 7264.88 410.95 ***
q -32.31 2.64 ***
q2 28.86 7.52 ***
q3 -14.66 6.19
n -0.41 0.08 ***
n2 -0.02 11.25 ***
n3 0.0003 0.0001
pq 107.44 4.57 ***
pn 0.92 0.12 ***
cons 30.86 0.51 ***

*** Significant at the .01%

Table 7.1: Metamodeling: OLS regression on 1,000 different parameter configurations,
obtained by random sampling from uniform distributions in the range p [0,0.2], q [0,0.8],
n [1,30]. In order to get rid of random effects, the time of adoption of the 50th percentile
is averaged over 50 runs. Adjusted R-squared = 0.84.

The preferred specification is an OLS regression of the average time of

adoption of the 50th percentile on a third order polynomial of the innovation

coefficient, the imitation coefficient and the average number of connections

per agent, plus the second-order interaction terms between p and q and be-

tween p and n (the remaining second-order and third-order interaction terms,

qn and pqn, turn out to be non significant at the 90% confidence level). Given

that pq and pn are strongly significant (see table 7.1), the OAT analysis con-

firms to have just local implications.

Moreover, this metamodeling exercise allows us to quantify and compare

the impact of variations in the parameter values. Starting from our reference

point (p = 0.03, q = 0.4, n = 5), a 20% increase in the value of p lowers the

average adoption time of the 50th percentile of about 11%; the same increase

in n lowers the adoption time of about 2%, while a 20% increase in q causes

a 8.7% variation in the output.
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Furthermore, the exercise confirms a weak impact of variations in n when

n is high, e.g. a 20% increase when n = 20 yields a 2.4% decrease in the

average adoption time of the 50th percentile.

7.4 Conclusions

The discussion above should warn against the use of AB models as an “easy”

way of model building that simply allows to bypass the difficulties of deriving

analytical results. Indeed, given the higher complexity of AB models (which

precludes the derivation of analytical solutions), one has to expect a lot of

work to understand their behaviour. To sum up, four stages are involved in

the analysis of an AB model:

1. definition of the output variable(s) of interest, Y ;

2. design of an appropriate experimental design, with the definition of the

points in the parameter space to be explored;

3. analysis of the stationarity / ergodicity properties of the system at the

chosen points;

4. sensitivity analysis of the output variables Y with respect to other

variables of the model X and of the structural parameters θ.

These steps should not be necessarily undertaken in the order specified

above, as there may be feedbacks so that loops might become necessary: for

instance, SA could be used to simplify the model structure (the model DGP),

which in turn might affect the choice of the output variables Y and the design

of the experiments. Similarly, finding that the system is non-ergodic might

imply the need to reconsider the design of the experiments, with a higher

attention to the effects of the initial conditions.
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Unfortunately, such a complete analysis of the model behaviour is very

rarely done in the literature. In particular, stationarity is often simply

checked by visual inspection, ergodicity generally disregarded, and sensitivity

analysis at best implemented with a local OAT approach around a baseline

configuration. True, global SA strategies with extensive testing for station-

arity and ergodicity at every sampled point are very difficult to implement in

large and complex models, computationally burdensome and characterized

by many output variables. On the other hand, OAT designs around one cen-

tral configuration (or a limited number of combinations) of the parameters

are generally easier to understand, and reduces the need to test for ergodic-

ity and stationarity, given the appropriate continuity assumptions: the tests

can be performed at pre-specified intervals of the variable that is allowed to

change, assuming that the results also hold for the other sampled values in

between.10

These difficulties notwithstanding, the importance of proper formal anal-

ysis of AB models should not be downplayed, if the methodology has to gain

full respectability among the scientific community. Jointly considered, the

techniques reviewed here retain a fundamental role in building and analysing

simulation models; they represent a compelling procedure in model develop-

ing, providing tools that map the input factor space into the prediction space

and back, as well as techniques to evaluate alternative model structures and

the relative importance of each input factor.

10This can also be done with multi-dimensional designs; however, the identification
of an adequate neighborhood of the tested points in which the continuity assumption is
supposed to hold becomes more complicated.
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Figure 7.2: OAT analysis: average cumulated adoption curves over 50 runs, obtained by
varying p in the range [0 : .5 : 1] (top panel), q in [0 : .5 : 1] (central panel), and n in
[1 : 1 : 30] (bottom panel). Reference parameter configuration: (pqn) = (0.030.45), 1000
agents.
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Figure 7.3: OAT analysis: average time of adoption of the 50th percentile over 50 runs,
obtained by varying p in the range [0 : .5 : 1] (top panel), q in [0 : .5 : 1] (central panel), and
n in [1 : 1 : 30] (bottom panel). Reference parameter configuration: (pqn) = (0.030.45),
1000 agents.
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Appendix

7.A A stationarity test for AB models

The test which we propose to check stationarity is called Runs Test (or Wald-

Wolfowitz test). The Runs Test was developed by Wald and Wolfowitz (1940)

to test the hypothesis that two samples come from the same population.

In particular we employ an extension of the Runs Test to check the fit of

a given interpolating function (Gibbons, 1985). Suppose that we have a

time series and a function of time that is used to describe its trend. If the

trend function fits the time series well, the observations should be randomly

distributed above and below the function, regardless of the distribution of

errors. The Runs Test tests whether the null hypothesis of randomness can

be rejected or not. Given the estimated function, a 1 is assigned to any

observation above the fitted line, and a 0 to any observation below the fitted

line. Supposing that the unknown probability distribution is continuous,

there is a 0 probability that a point lies exactly on the fitted line (if, by

accident, it does happen, the point has to be disregarded). The process is

then described by a sequence of ones and zeros that represents the sequence

of observations above and below the fitted line. The statistics we use to

test the null hypothesis is the number of runs, where a run is defined as “a

succession of one or more identical symbols which are followed and preceded
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by a different symbol or no symbol at all” (Gibbons, 1985). For example in

the sequence 1,0,0,1,1,1,0 there are 4 runs: {1},{0,0},{1,1,1} and {0}. The

number of runs, too many or too few runs, may reflect the existence of non-

randomness in the sequence. Following the notation of Wald and Wolfowitz

(1940), we define the U -statistic as the number of runs, m as the number of

points above the fitted function and n as the points below the fitted function.

Under the null hypothesis of randomness around the trend, the mean and

variance of the U -statistic are

E(U) =
2mn

m+ n
+ 1 (7.10)

V ar(U) =
4mn(2mn−m− n)

(m+ n)2(m+ n− 1)
. (7.11)

The asymptotic distribution of U , as m and n tend to infinity (as the

observations tend to infinity) is a normal distribution.11

To sum up, the Runs test tests the hypothesis that a set of observations

is randomly distributed around a given fitting function; it tests whether the

function provides a good representation of the observed data. The idea is

to use the test described above to check the stationarity of a time series

produced by the AB model. The first step is to divide the time series into

w windows (sub-time series). Then we compute the moment of order m for

each window:

µm =
1

T

T∑
t=1

Y m
t (7.12)

If the moment is constant, then the “window moments” are well explained

11The derivation of the finite sample properties and of the asymptotic distribution of
U can be found in (Wald and Wolfowitz, 1940) and in (Gibbons, 1985).
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by the moment of the same order computed over the whole time series (“over-

all moment”). Here is where the Runs Test is used: if the sample moments

are randomly distributed around the “overall moment”, it is concluded that

the hypothesis of stationarity for the tested moment cannot be rejected. A

strictly stationary process will have all stationary moments, while a station-

ary process of order m in this framework means that the first m non-centered

moments are constant.

To run the test we have to choose the length of the artificial time series

to be analysed, together with the length of the windows. Under the null

hypothesis, longer windows imply a better estimation of the subsample mo-

ments, but at the same time they imply fewer windows (given the length

of the time series) and a worse approximation of the distribution of runs

toward the normal distribution. The trade off can be solved by using long

series and long windows, a solution which is often feasible in AB models (the

only drawback being increased computational time), while it is generally not

at hand with real data.

To describe the properties of the test, we check the stationarity of the

first moment (mean) of an autoregressive function of the first order:

yt = θyt−1 + εt (7.13)

with θ = 0 (strictly stationary, figure 7.A.1 (a)), θ = 0.99 (stationary,

figure 7.A.1 (b)), and θ = 1(non-stationary, figure 7.A.1 (c)), and εt a random

error with uniform distribution U(−1, 1).12

We show experiments with different window length s (1, 10, 50, 100, 500,

1000, 5000, 10000) using a time series of 100,000 observations/periods. The

12The experiment with θ = 0.99 is shown to “test” the test in an extreme case, where
the null and the alternative hypothesis are nearly indistinguishable from each other.
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performance of the test is evaluated, for every window length, over 100 Monte

Carlo replications of the stochastic process. By changing the length of the

windows we change the number of sub-samples (since the length of the time

series is fixed).

Figure 7.A.1 shows the sensitivity of the test to different sample length.

The null hypothesis is that the first moment is constant, and in turn that

the sub-time series moments are randomly distributed around the overall

first moment. We set the tolerated probability of a type I error equal to 0.05:

hence, we expect to reject the null hypothesis when the null is true in 5% of

the cases; this happens with both θ = 0 and θ = 0.99. It is interesting to

note that the length of the windows has no influence in the case of a strictly

stationary process. In particular, since every observation has the same dis-

tribution, the stationarity can be detected even when the window length is

equal to one. However, if θ = 0.99, longer windows are needed to detect the

stationarity property in order to allow the sub-time series to converge toward

the overall mean; in other words more observations are needed to obtain a

good estimation of the sub-sample moments. Non-stationarity is also simple

to detect; the test has full power (it can always reject the null when the null

is false) for all the window lengths but the ones that reduce the number of

windows under the threshold of good approximation of the normal distribu-

tion (the test can detect non-stationarity as long as the number of samples

is higher than 50).

As an additional experiment, we analyse a time series produced by an

AR(1) process as in eq. 7.13 with θ = 0, but with an error term that is

distributed as U(−1, 1) in the first part of the time series and as U(−8, 8)

in the second part. Figure 7.A.2 shows the distribution of the sub-sample

moments around the overall moments. The test (correctly) does not reject
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stationarity for the the first moment, while it refuses the null hypothesis for

the second moment.

The experiment shows the flexibility and the limits of the test. If the

length of the time series and the number of windows are properly set, the

test is highly reliable, with a power approaching 1. In case non-stationarity

is found, standard methods may be used to transform the series in stationary

ones (for example detrending or differentiating the series); the non parametric

test can then be used on the transformed series.

7.B An ergodicity test for AB models

The test described below is a test of ergodicity of the moment of order m,

where we test its invariance between different replications of the same DGP.

To this aim, the Runs test is used again, but this time in the original ver-

sion presented in Wald and Wolfowitz (1940) to test whether two samples

come from the same population. Using the notation of Wald and Wolfowitz,

suppose that there are two samples {at} and {bt}, and suppose that they

come from the continuous distributions fa(a) and fb(b). Let Z be the set

formed by the union of at and bt and arrange the set Z in ascending order

of magnitude. Eventually, create the set V , that is a sequence defined as

follows: vi = 0 if zi ∈ {at} and vi = 1 if zi ∈ {bt}. We define a run as in the

previous section, and use the number of runs, the U -statistic, to test our null

hypothesis fa(· ) = fb(· ). In the event that the null is true, the distribution

of U is independent of fa (and fb). A difference between fa(· ) and fb(· ) will

tend to decrease U . If we define m as the number of elements coming from

the sample {at} (number of zeros in V ) and n as the number of elements in

Z coming from the sample {bt} (number of ones in V ), m+n is by definition
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the total number of observations. Under the null, the mean and the variance

of the U-statistics are (7.10) and (7.11), if m and n are large, the asymptotic

distribution of U is Normal with asymptotic mean and variance.13 Given the

actual number of runs, U , computed over the two samples, we reject the null

hypothesis if U is too low (we test U against its null distribution with the

one-tailed test).

The aim here is to use this test as an ergodicity test, supposing that the

process has already passed a stationarity test. Intuitively, if the process is

ergodic the “horizontal” distribution of moments within one (long enough)

time series should be the same as the “vertical” distribution of moments

between different time series, created by different replications of the model.14

To test the ergodicity of a given moment one long time series is therefore

created and divided into sub-samples. As in the previous section, think of

100,000 periods for the entire time series, divided into 100 sub-samples of

1,000 periods each. The first sample of moments used for the Runs test

(say {at}) is formed by the moments of the 100 sub-samples of this (long)

time series. For the second sample of moments (say {bt} ) we create 100

new time series (by running each time the simulation model with a different

random seed, or with different initial conditions) of 1,000 observations each

and compute the moment of interest in each of them. Given the two samples

of moments we can then apply the Runs test as described above (merge the

two samples, arrange the observations in ascending order and compute the

runs over the sequence of ones and zeros). Under the null hypothesis, the

two samples of moments {at} and {bt} have the same distribution.

13As in the stationarity test we use the exact mean and variance to implement the test.
14Often a replication of a simulation model –an instance of the model producing a

stream of artificial data– is called a “run”. Here, to avoid confusion with the definition of
run used by the Runs test –a sequence of equal values (0 or 1) of an opportunely defined
indicator– we use “replication” instead.
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The moments in the two samples have to be computed over time series

of the same length (in our example 1,000 periods), because, under the null

hypothesis, the variance of the moments depends on the number of observa-

tions over which they are computed. If we used longer time series to build

the second sample we would produce sample of moments with lower variance,

and the Runs test would consider the two samples as coming from different

distributions.

As regards the implementation of the test, particular care should be taken

when the time series under analysis converges during the simulation toward

an asymptotic mean. Suppose that we have a time series that converges to a

long run mean in a given number of periods and then stays around that mean

for ever. In this case, the stationarity test would correctly deem the process

as stationary (with a sufficient long simulation), but even if the process is

ergodic, the ergodicity test will result in a refusal of the hypothesis with the

process being classified as non-ergodic, since in the time series used to create

the second sample of moments the memory of the initial conditions matters

more than in the sub-samples coming from the long time series used to create

the first sample of moments.

As an example, consider a simple AR(1) process yt = 0.99yt−1 +ut, where

ut ∼ N(1, 1). The process is ergodic; it starts from zero and converges toward

the asymptotic mean E(yt) = 100.15

Figure 7.B.1 illustrates the problem: the top and middle panels show the

long time series used to create the first sample of moments and (one of) the

short time series used to create the second sample of moments, respectively;

the bottom panel shows the moments computed from then 100 sub-samples

of the long time series (dots) and the moments computed from the 100 short

15In general, for a process AR(1) yt = θ0 + θ1yt−1 + ut where θ0 represent constant
coefficient and uthas zero mean and a given variance, the asymptotic mean is E(yt) = θ0

1−θ1 .
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time series (squares). The different effect of the initial conditions in the two

series is clearly visibile, and creates a convergence problem. The ergodicity

test will find significant differences between the two samples, and detect non-

ergodicity.

If the series converge toward a long run mean, we have to use its stationary

part only for the ergodicity test (we know the series is stationary, at least from

some point onward, from the stationarity analysis). Often, the stationary

part of the series can be identified by simple visual inspection. For example,

to build the second sample we can create a set of time series with 2,000

observations and compute the moments using the last 1,000 observations.

The ergodicity test tells us, for example, whether the first moments of a

series can be used as estimates of the true moment of the IOT. The test have

to be replicated for every moment under consideration.

To check the performances of the test we define the following process:

yt = θyt−1 + ut (7.14)

where ut ∼ N(l, 1). If l is a random variable extracted at the beginning of

the process, the process mimics a situation in which the starting conditions

have an everlasting effect on the process, and it is not ergodic, as different

replications of the process entail different extractions of l. If by converse l is

fixed once and for all, the process is ergodic.

In order to assess the performances of the test, we run 5 experiments

of 100 replications each of the test, in three different settings (θ = 0, θ =

.99, θ = 1), both in the case of an ergodic process (l = l̃ = 0) and in the case

of a non-ergodic process (l ∼ U(−5, 5)).16

16If θ = 0.99, l = l̃ 6= 0 and the starting point is y0 = 0 the process generates time
series as in figure 7.B.1: we may therefore reject ergodicity even if the process is ergodic.
To solve this convergence problem, as already discussed, we compute the moments of the
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Figure 7.B.2 shows the result. When the process is ergodic (top panel),

with θ = 0, θ = 0.99 the test suggests non-ergodicity in about 5% of the

cases (this is the chosen level for the type I error). However, if the process is

non-stationary, θ = 1, the test (erroneously) always rejects ergodicity: this is

due to the fact that the test cannot distinguish between non-ergodicity and

non-stationarity.

The bottom panel of figure 7.B.2 shows the results for of a non-ergodic

process, where an initial random draw determines the asymptotic mean of

the process. The test can detect non-ergodicity with power 1.

To further clarify how the test works, figure 7.B.3 shows the two samples

of moments used for the test for an ergodic (top panel) and a non-ergodic

(bottom panel) process. Simple visual inspection confirms that the two sam-

ples come from the same distribution in the case of an ergodic process, but

not in the case of a non-ergodic process (the dots come from the first sample,

while the squares come from the second sample).

Of course, a process may be ergodic in the first moment but non-ergodic

in the second moment or in other order moments.

To analyse the performance of the test with respect to ergodicity in second

moments we use the same framework as before (eq. 7.14) with ut ∼ N(0, l),

extracted at the beginning of the process. We consider the case of l ∼ U(1, 5)

for a non-ergodic process (the variance of the error changes across different

replications), and the case of l = l̃ = 1 for an ergodic process.

To test the second moment we simply have to build the first sample using

the second moment of the 100 sub-samples of the long time series, and the

second sample using second moment of the 100 short time series. The test is

exactly as above except for the fact that we are comparing second moments.

second sample (the moments of the 100 replications of the model) by creating time series
of 2,000 periods and computing the moments only in the last 1,000 observations.
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Figure 7.B.4 is the analog of figure 7.B.2, and shows the performance

of the test on the second order moment of an ergodic (top panel) and a

non ergodic (bottom panel) process. Only the case of θ = 0 is considered,

corresponding to strictly stationarity, as with θ → 1 (e.g. θ = 0.99) the

variance of an AR(1) process tends to infinity 17: the test always detects non-

ergodicity when the process is non-ergodic (full power), and rejects ergodicity

in 5% of the cases ( (the chosen level for the type I error) when the process

is ergodic:

var(yt) =
σ2
u

1− θ2
(7.15)

Finally, note that when the process is non-ergodic in the second moment

but ergodic in the first moment, as in the bottom panel of figure 7.B.4, the

ergodicity test on the first order moment (mean) gives between 20% and 30%

of non-ergodicity results. This is because the different variance of the error

implies a different variance in the first moments, so despite the fact that the

different processes have the same mean, the test detects that “something is

wrong”.

For completeness, we report the analog of figure 7.B.3 for the second

moments (figure 7.B.5).

17more observations are needed in this case to regain full power
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(a) Strictly stationary process (θ = 0)

(b) Stationary process (θ = .99)

(c) Non-stationary process (θ = 1)

Figure 7.A.1: Rejection rate for the null hypothesis of stationarity (%).
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Figure 7.A.2: The dots are the sub-sample moments, the line is the overall moment. The
first moments are randomly distributed around the overall mean (above). The second
moments are not randomly distributed around the overall moments (below).

Figure 7.B.1: The long process (above), a short process (middle) and the moments com-
puted from the sub-samples of the long process (points) and the moments computed from
the short processes (squares).
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Figure 7.B.2: The performance of the ergodicity test. In the top panel the process is
ergodic. In the bottom panel the process is non ergodic. One experiment is made by
testing 100 times the same process using different random seeds. The experiment is made
5 times for each setting. The graphics displays the number of times the test reject the null
hypothesis of ergodicity.

Figure 7.B.3: The test checks whether there is a significant difference between two samples
of moments: one coming from sub-samples of a (long) time series produced by a single
replication of the simulation model (dots) and the other coming from (short) time series
produced by multiple replications of the simulation model (squares). Top panel: an ergodic
process. Bottom panel: a non-ergodic process.
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Figure 7.B.4: The performance of the ergodicity test on second moments. In the top panel
the process is ergodic. In the bottom panel the process is non ergodic. One experiment
is made by creating 100 instances of the same process with different random seeds. The
experiments has been done 5 times.

Figure 7.B.5: The test checks whether there is a significant difference between two samples
of moments: one coming from sub-samples of a (long) time series produced by a single
replication of the simulation model (dots) and the other coming from (short) time series
produced by multiple replications of the simulation model (squares). Top panel: an ergodic
process. Bottom panel: a non-ergodic process.
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Chapter 8

Empirical Validation of

Agent-Based Models

Giorgio Fagiolo and Matteo Richiardi

8.1 Introduction

Generally speaking, validation involves a judgment over the ‘quality’ of a

model. How “good” model A is? Is it “better” or “worse” than model B? A

model can be good from a certain point of view and bad, or inadequate, from

another one. Also, validation is not necessarily a 0-1 pass test: the criteria

can be continuous.

The validity of a model can be defined as the degree of homomorphism

between a certain system (the model) and another system that it purportedly

represents (the real world system).1

1See Vandierendonck (1975); Bailey (1988). As the criterion for validity, homomor-
phism is more appropriate than isomorphism, because the goal of abstraction is to map
an n-dimensional system onto an m-dimensional system, where m < n. If m and n were
equal, the systems would be isomorphic.
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Model validation can be defined along different dimensions.

First of all, no model exists without an underlying theory. A first di-

mension of validation therefore is concept validation, i.e. the validation of

the model relative to the theory: is the model consistent with the theory on

which it is based? This is common to both analytical and computational

models. The latter however need an additional level of validation (Stanislaw,

1986): program validation i.e. the validation of the simulator (the code that

simulates the model) relative to the model itself.

Second, models can be evaluated against real data. This is empirical val-

idation. The aim of this chapter is to introduce the reader to the techniques

of empirical validation of ABMs in economics. It requires (i) the choice of

the relevant empirical indicators (so that the theoretical framework can be

validated relative to its indicators) and (ii) the validation of the empirical

true value relative to its indicator.

Empirical validation is often the basis for theory validation – the valida-

tion of the theory relative to the simuland (the real-world system).2

Empirically validating an ABM means, broadly speaking, “taking the

model to the data”, in the form of empirical and/or experimental data, his-

torical evidence or even anecdotal knowledge.3

Empirical validation may concern the model inputs and/or outputs. In-

put validation refers to the realism of the assumptions. There are two classes

of inputs of an ABM. The first one consists of structural assumptions con-

2This is not always the case. Philosophical theories for instance are often not testable
in the data.

3A large literature has been developed on empirical validation of simula-
tion models in other social sciences, computer science, engineering, etc.: for
an introduction, see Leigh Tesfatsion’s web site on empirical validation at
http://www.econ.iastate.edu/tesfatsi/empvalid.htm. For some examples of alter-
native empirical validation techniques in simulation models, see Klejinen (2000); Sargent
(1998); Barreteau (2003).
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cerning the behavior of the agents or the pattern of their interactions. Ex-

amples include a particular bounded-rationality rule that we assume agents

follow (e.g. a mark-up price setting rule); or a peculiar type of network (for

instance, a small-world) governing the interactions among agents.4 Empiri-

cally validating the structural assumptions of an AB consists in using data

to understand if these assumptions are in line with the behaviors and inter-

actions of real-world agents populating the economy that we want to study

(e.g. an industry or a market). Of course, the actual implementation of the

model may differ according to the particular parameters that fine tune the

structural assumptions, e.g. the mark-up parameter or the clustering-path

length ratio in a small-world network.

The second class of inputs consists of parameters and the initial conditions

for all relevant micro and macro variables.

Output validation means checking whether the model generates “plausi-

ble” implications, that is whether the model delivers output data that re-

semble in some way real-world observations. Note that output validation is

a joint test on the structure of the model and the values of the parameters.

This explains why and how input and output validation are connected. In-

deed, output validation can be used to refine the parameters of the model:

this is called calibration or estimation.5 Estimation is an attempt to make

the behavior of the model as close as possible to the real behavior; output

validation is a judgment on how far the two (still) are. A model where the

parameters have not been properly estimated and are, for instance, simple

4These structural assumptions are more specific than the basic modeling choices – e.g.
the type of agents that populate the model economy and the choices these agents have to
make – which are the object of concept validation.

5In this Chapter, we shall use the terms calibration and estimation substantially as
synonyms. There are however subtle and important differences in the two practices, as we
will discuss in Chapter 9.

255



guesses can of course be validated. However, by definition its performance

can only increase should the values of the parameters be replaced with their

estimates.

This chapter mostly deals with output validation. Therefore, in what

follows we shall use the term empirical validation as a shortcut to empirical

validation of the outputs of an AB model, while referring specifically to input

validation where appropriate.

8.2 The methodological basis of empirical val-

idation

Models, in economics as in any other scientific discipline, isolate some features

of an actual phenomenon, in order to understand it and to predict its future

status under novel conditions. These features are usually described in terms

of causal relations and it is usually assumed that a causal (deterministic or

stochastic) mechanism has generated the data that we observe in the real

world.

We call this causal mechanism the ‘real-world data generating process’

(rwDGP). A model approximates portions of the rwDGP by means of a

‘model data generating process’ (mDGP). The mDGP must be simpler than

the rwDGP and, in simulation models, generates a set of simulated outputs.

The extent to which the mDGP is a good representation of the rwDGP

is evaluated by comparing the simulated outputs of the mDGP, M, with

the real-world observations of the rwDGP, R. In what follows, we call this

procedure empirical validation.

Two remarks are in order at this point. First, M represents all the no-

tional simulated outputs of the mDGP, that is those that the model can in
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principle generate by allowing for a full search of its parameter, initial condi-

tion, and seed spaces. Second, the main difficulty with empirical validation

(and with modeling in general) is that the modeler wants to learn something

about the rwDGP, but she can only observe R, a limited number of draws

(often just one) from rwDGP. The learning process has therefore to be, at

this stage, inductive.

Marks (2007) formalizes the assessment of model validity as follows: a

model is said to be useful if it can exhibit at least some of the observed

historical patterns, accurate if it exhibits only behaviors that are compatible

with those observed historically, and complete if it exhibits all the historically

observed patterns. In particular, we can define completeness as M ∩R, and

accuracy as (M−R)/M. Four cases are possible:

1. No intersection between R and M (R∩M = �): the model is useless ;

2. M is a subset of R (M ⊂ R): the model is fully accurate, but (to a

certain extent) incomplete;

3. R is a subset of M (R ⊂ M): the model is fully complete, but (to

a certain extent) inaccurate (or redundant, since the model might tell

something about what could yet happen in the world);

4. M is equivalent to R (M ⇔ R): the model is fully complete and

accurate.

Some key methodological issues are involved in the inductive process de-

scribed above. We will discuss them in the following subsections.
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8.2.1 Tractability vs accuracy

How can we possibly ‘know’ all the different elements of the rwDGP? And

even if we know them, how can we model all the different elements of the

rwDGP? Serious doubts have been raised in the past (for instance by J.S.

Mill and J. M. Keynes) about the possibility of building models that are

fully complete and accurate. In a highly complex world, a fully complete

and accurate model would be a one-to-one map of the world itself!

In order to cope with the complexity of the world, researchers proceed

first by simplifying, i.e. focusing on the relationships between a very limited

number of variables, and by selecting only the relevant historical behavior R.

This process amounts to defining the criteria against which the model is to be

evaluated, and leads to the identification of stylized facts, which are generally

defined in stochastic terms. Thus, a model is eventually evaluated according

to the extent to which it is able to statistically replicate the selected stylized

facts. Second, scientists focus on some causal mechanisms of the rwDGP and

mDGP alone, and abstract from certain entities that may have an impact

on the phenomenon under examination (Mäki, 1992).

A series of open questions remains. How can we assess whether the mech-

anisms isolated by the model resemble those operating in the real world? In

order to isolate such mechanisms, can we make assumptions that are ‘con-

trary to fact’, that is, assumptions that contradict our knowledge of the

situation under discussion?

These dilemmas are strictly related to the trade-off between analytical

tractability and descriptive accuracy. Indeed, the more complete and accu-

rate are the assumptions, the higher the number of parameters in a model,

the higher is the risk of failing to analytically solve the model (and derive

sharp implications from our set of assumptions). By contrast, the more ab-
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stract and simplified the model, the more analytically tractable it is. The

neoclassical paradigm comes down strongly on the side of analytical tractabil-

ity. The AB modeling approach, on the other hand, is willing to trade-off

analytical tractability with some degree of completeness and accuracy.

8.2.2 Instrumentalism vs realism

This brings us to the second core issue of empirical validation: instrumen-

talism versus realism. Realism, roughly speaking, claims that theoretical

entities ‘exist in reality,’ independent of the act of inquiry, representation

or measurement (Mäki, 1998). By contrast, instrumentalism maintains that

theoretical entities are solely instruments for predictions and not true de-

scriptions of the world. A radical instrumentalist is not much concerned with

issues of empirical validation, in the sense that she is not much interested in

making the model resemble mechanisms operating in the world. The radical

instrumentalist does not bother about input validation, by definition, and

is only partially interested in output validation. Her sole goal is prediction.

The ability of the model to replicate past behavior is valued only insofar as

it suggests that it will continue to track the real data in the future. Indeed,

a (consistent) instrumentalist is usually more willing than a realist to ‘play’

with the assumptions and parameters of the model in order to get better

predictions. Economists that have embraced the neoclassical paradigm have

sometimes endorsed purely instrumentalist statements à la Friedman (1953).

8.2.3 Pluralism vs apriorism

The third issue is related to the choice of a pluralist or apriorist method-

ology. Methodological pluralism claims that the complexity of the subject

under investigation and the limitations of our scientific representation natu-
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rally call for different levels of analysis, modeling approaches and assumptions

which may complement each other. Apriorism is a commitment to a set of a

priori assumptions. A certain degree of commitment to a set of a priori as-

sumptions is normal in science. Often these assumptions correspond to what

Lakatos (1970) called the ‘hard core’ assumptions of a research program. But

strong apriorism is the commitment to a set of a priori assumptions (possibly

contrary to the facts) that are seldom exposed to empirical validation (for

instance, general equilibrium and perfect rationality). Theory is considered

prior to data and it is denied the possibility of interpreting the data with-

out theoretical presuppositions. Typically, strong apriorist positions do not

allow a model to be changed in the face of anomalies, and encourages the

researcher to produce ad hoc adaptations whenever the theory in its original

form is empirical refuted. Research programs in this stage of development

have been labeled ‘degenerating’ by Lakatos.

8.2.4 The identification problem

The fourth issue regards the under-determination or identification problem.

In other words: What happens when different models are consistent with

the same empirical data? The issue is known in the philosophy of science

as the ‘under-determination of theory by data’. In econometrics the same

idea has been formalized and labeled as ‘the problem of identification’. As

Haavelmo (1944) noted, it is impossible for statistical inference to decide

between hypotheses that are observationally equivalent. He suggested to

specify an econometric model in such a way that the problem of identifica-

tion does not arise thanks to the restrictions derived from economic theory.

The under-determination problem is also strictly connected to the so-called

Duhem-Quine thesis: it is not possible to test and falsify a single hypothesis in
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isolation. This is because any hypothesis is inevitably tied to some auxiliary

hypotheses. Auxiliary hypotheses typically include background knowledge,

rules of inference, and experimental design that cannot be disentangled from

the hypothesis we want to test. Thus, if a particular hypothesis is found to be

in conflict with the evidence, we cannot reject the hypothesis with certainty,

since we do not know if it is the hypothesis under test or one of the auxil-

iary hypotheses which is at odds with the evidence. Econometricians have

adopted sophisticated tests which are robust to variations in the auxiliary

hypotheses.6 Nonetheless, the Duhem-Quine thesis still undermines strong

apriorist methodologies that do not check the robustness of the empirical

results under variations of background assumptions.

So far, we have discussed issues related to empirical validation that are

common to all types of models in economics. Are there specific problems

that AB modelers have to deal with in validating their models? To ad-

dress this issue, we must recall from chapter 2 some characteristics of AB

models: (i) realistic assumptions about individual behavior, which often in-

volve heterogeneity, nonlinearities, etc., (ii) non-trivial interaction among

agents, (iii) interplay between the micro and the macro level, due to feed-

backs between individual behavior and macro variables, (iv) attention to the

dynamic path of adjustment. Individually or collectively, these features call

for a computational solution of the model. Unfortunately, they also make

AB models potentially difficult to interpret and validate. The higher the

level of heterogeneity of the mDGP, the bigger the set of real-world data we

need to meaningfully compare the simulated data with the observed data, as

under-determination and equifinality arise: different micro structures can be

consistent with the same aggregate data.

6See, for example, Leamer (1978).
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8.3 Input validation of agent-based models

Input validation of an ABM is a crucial step in model building but so far

no explicit and agreed-upon techniques have been proposed to perform such

a task in a coherent way. Validating the inputs of an ABM, in a nutshell,

consists in checking whether the building blocks of the model and its as-

sumptions – concerning for instance agents’ behaviors and interactions – are

in line with the available evidence.

In principle, any practice that is aimed at ensuring that the fundamental

conditions incorporated in the model reproduce aspects of the real system

falls in the realm of input validation. For example, calibrating and estimating

the parameters of the rules describing agent behaviors and interactions, as

well as macroeconomic and model parameters, can be considered as a way to

make the model more realistic and thus validating it at the level of the inputs.

However, parameter calibration and estimation can also be considered as a

way of validating the outputs of the model, as we will discuss in more detail

below. This is because performing parameter calibration or estimation often

involves an assessment of how good the model performs in replicating the

observed statistical regularities concerning the macro variables of interest.

Therefore, to make things simpler, we will not consider parameter cali-

bration or estimation as an input validation technique here. What we are

interested in, on the contrary, is input validation in terms of selecting assump-

tions about the rules of interactions and behaviors of the agents that are in

line with what is observed in reality. As an example, consider a model where

agents are firms that need to set the price of their output. Many different

behavioral rules can be in principle considered. Neoclassical economics mod-

els would prescribe the use of a rule that comes from profit maximization,

depending on the assumptions on market structure. Therefore, in standard
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models the main constraint is a logic one, based on the consistency with

a-priori prescriptions (e.g., equilibrium, maximization, etc.). Conversely, in

AB models the researcher has more flexibility in selecting behavioral rules.

The main constraint is thus empirical: one should choose the rule that is

closer to what the available evidence on behaviors and interactions suggests.

Note that this is (or should be) a very stringent requirement. Indeed,

AB modelers often criticize standard theory because of its alleged unrealism.

For instance, the building blocks of general equilibrium theory, ranging from

full rationality, to the absence of direct interactions among agents and out-

of-equilibrium behaviors, are known to be at odds with what empirical and

experimental research suggests. This is in principle fully legitimate and in line

with Friedman’s instrumentalist approach, which states that assumptions are

a free good: what counts is not their purported realism, which in principle is

impossible to test, but their ability to successfully predict reality. In other

terms, a totally unrealistic model could do its job if it is able to replicate

the observed evidence. This position is harshly criticized by AB modelers,

who instead maintain that good science cannot be done with wrong models.

Only models that are based on assumptions close to reality should be able to

reproduce it, and most of all, explain it. Indeed, suppose that one has a fully

unrealistic model that is able to well reproduce some stylized fact. What

can we learn from it, e.g. in terms of the causal mechanisms that are behind

the observed dynamics? As a result, AB models are often motivated because

of their more realistic underpinnings, e.g. in terms of boundedly-rational

behaviors, local direct interactions, adaptive expectations, and so on. But

if AB models aim at becoming a strong alternative to mainstream ones,

they should be grounded on behavioral assumptions that can be really more

realistic —however defined— than those used in standard theory. Indeed,

263



AB models are sometimes criticized from the neoclassical camp as being too

sloppy and fragile in their behavioral assumptions, exactly along the same

lines used by AB modelers in addressing the issues that plague standard

models.

This leads to the foremost importance of performing a serious input val-

idation of AB models. In absence of fully and widely accepted recipes for

performing such a task, the researcher should strive to adopt assumptions

about agent behaviors that are more in line with the empirical evidence than

their neoclassical counterparts. But what does ‘more realistic assumption’

really mean? Experimental evidence can give us a clue. By “experiments”

we typically mean controlled laboratory experimentation with human sub-

jects, with the aim of testing whether in reality humans behave according

to some prescriptive behavioral rules, e.g. those suggested by the rational-

ity paradigm. As discussed in more details in Duffy (2006), experiments

and ABM can have multiple complementarities, the most likely to be that

ABM can be used to explain experimental results. Furthermore, once some

behavioral stable pattern has been identified to be the norm in a certain

simple environment (e.g., a prisoner dilemma game), robots programmed as

artificial agents who behave according to such pattern can be employed in

subsequent experiments, and let playing against human subjects.

However, a further and more important way in which experiments can

complement AB modeling is to provide a basis for input validation. For

example, perfectly rational outcomes are far from being the norm in exper-

iments. Hence we can adopt behavioral assumption which are inconsistent

with perfect rationality and in line with what experimental evidence sug-

gests. Experiments can also shed light on realistic interaction structures

(who interacts with whom) and the functioning of organizations, markets
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and institutions. Therefore, there exist two intertwined ways to have ABMs

and experiments interacting (Heckbert, 2009). First, agent behaviors can be

determined using the results of experiments, so as to create populations of

simulated agents that behave consistently with the participants to the ex-

periment. Second, experiments can help choosing between possible sets of

decision making algorithms, whenever the modeler does not have any partic-

ular idea on which one should be preferred and does not want to introduce

additional degrees of freedom in her/his model. Indeed, as argued in Duffy

(2006), “[C]hoosing simple, parsimonious adaptive learning rules that also

compare favorably with the behavior of human subjects in controlled labora-

tory settings would seem to be a highly reasonable selection criterion”, which

may also be a natural way to comply with a “keep-it-simple-stupid” (KISS)

principle in model building, namely the suggestion not to over-parametrize

the model.

As discussed in D’Orazio and Silvestri (2014), the practice to employ re-

sults from lab experiments as an input to ABM building is still in its infancy.

Some notable examples include the work of Cars Hommes, Thomas Lux and

co-authors (see, e.g., Hommes and Lux, 2013). Using lab experiments, they

show that human subjects tend to display heterogeneous expectations when

asked to forecast price dynamics. Using this piece of evidence, they build a

number of ABMs when agents are endowed by heterogeneous expectations

mimicking those exhibited by human subjects in the experiments, and show

that their interactions can replicate much of the existing evidence on price

dynamics at both micro and macro levels.

Another useful source of information in designing agents’ behaviors and

interactions are of course case-studies and empirical data collected at the

micro level (e.g., studies on firm and consumption behaviors, etc.). Manage-

265



ment science can often help the researcher to identify realistic routines as far

as firms and entrepreneurial activity is concerned.

All these sources of information may be employed in building models

where individual behaviors and interactions are —at the very least— more

realistic than those usually assumed in standard models. This could help the

researcher in understanding to what extent the results of standard models

depend on such over-simplifying assumptions.

8.4 Output validation of agent-based models

A number of ABMs mostly engage in purely qualitative theorizing, and

are not empirically validated in any meaningful sense. In a sense they are

thought experiments. There is little rationale in testing such models against

existing empirical data. Notable examples are evolutionary game-theoretic

models (Vega-Redondo, 1996), and Polya urn models (Arthur, 1988, 1994):

only a weak relationship can be established between the micro-macro vari-

ables/parameters of these models and their empirically observed counter-

parts. The focus of such models is the emergence of qualitative aggregate

patterns, such as the emergence of coordination and cooperation. Forecasting

exercises are possible but they typically yield unpredictability. For example,

we can state with certainty that users will lock into one of the competing tech-

nologies in Arthur’s (1994) Polya urn model but it is impossible to know ex

ante which of the competing technologies will be selected. Therefore models

belonging to this class are not frequently taken to the data. Sometime, how-

ever, appropriate extensions/modifications of this model can be empirically

tested. For example, the predictions of an appropriately modified Schelling
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segregation model can be matched with real-world segregation indicators.

Similarly, the outputs of simple technological adoption models based on co-

ordination games may be compared to existing data about market shares of

competing technologies in a certain market.

Even when the model is suited for empirical validation, some basic issues

arise.

A first issue concerns the quality of the empirical data: the most com-

mon reason for under-determination in economics is the incompleteness of

the available data sets.7 Sometimes a model is disregarded on the basis of

existing empirical data but other types of data could provide a better test

and potentially support the model, if they had been collected. There is

a strong conservative tendency in empirical validation, which supports es-

tablished theories and models for which empirical data is readily available,

while putting at a disadvantage new theories and models for which empirical

research has not yet caught up and discouraging the study of qualitative phe-

nomena that are either difficult to measure or are inherently non-measurable

by their very nature.

Kaldor observed that, when hampered by a lack of large, high quality

data sets, we should use stylized facts or statistical regularities to evaluate

models (Kaldor, 1961; Kwasnicki, 1998). By emphasizing the reproduction

(explanation) or prediction of a set of stylized facts, one hopes to circumvent

problems of data availability and reliability. However, in order for empirical

validation to be effective, the stylized facts of interest should not be... too

stylized, i.e. too general. Otherwise, they might not necessarily represent a

difficult test for the model: the model might pass the validation procedure

7The problem of data availability is made worse by the large degrees of freedom AB
models often have. Two points are sufficient to identify a straight line; more data are
needed to discriminate between alternative, non-linear, specifications.
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without providing any effective explanation of the phenomena of interest.

This parallels Brock’s (1999) discussion of ‘unconditional objects’ (another

aspect of the under-determination problem). Empirical regularities need to

be handled with care because they often contain information only on the

stationary (‘unconditional’) properties of the process of interest. They often

provide little information on the dynamics of the stochastic processes that ac-

tually generated them. In this respect, replication does not necessary imply

explanation. For example, many evolutionary growth models can generate

similar outputs on differential growth-rates between countries, technology

leadership and catch-up, even though they differ significantly with respect

to agents’ behavior and learning schemes (Windrum, 2007). Similarly, the

Nelson and Winter (1982b) model replicates highly aggregated data on time

paths for output (GDP), capital, labor inputs and wages (labor share in

output), but these facts can also be replicated by conventional neoclassical

growth models. In the same vein, there might be many different stochas-

tic processes (and therefore models of industry dynamics) that are able to

generate, in the stationary state, a power-law distribution of firm size.8

Supposing the available real data are good enough, the first step in out-

put validation is the selection of appropriate statistics as summary measures

for both artificial and real data. Subsets of the parameter space are then

identified where the statistics computed on artificial data (which depend on

the values of the parameters) are close enough to those computed on the

observed data.

Adopting the terminology introduced in chapter 5, let Yt be some ag-

gregate statistics computed on the state of the simulated system, in a tran-

8One way out of the unconditional objects critique, is to validate not only the macro-
economic output of the model, but also its micro-economic structure. This however re-
quires even greater data requirements.
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sient or absorbing equilibrium, say the unemployment rate. Assume that

the mechanics of the model implies, for a given value of the parameters θ,

a probability of being unemployed for any individual worker equal to u(θ).

Given that being employed/unemployed is a Bernoulli random variable, its

variance is equal to σ2
u = u(θ)(1− u(θ)).

By the properties of the sample mean (the Central Limit Theorem), in

large populations of size N the expected value of the unemployment rate at

time t is normally distributed with mean EN(Yt) = u, and variance equal

to VN(Yt) = σ2
u

N
. (In small samples, the unemployment rate follows a bino-

mial distribution with mean u and variance σ2
u.) In other words, given the

stochastic elements of the model, the unemployment rate at time t is a ran-

dom variable, with different realizations in different periods and in different

simulation runs. If we want Y to be representative of the model output, so

that we can use it as a summary measure for comparison with the real out-

put, we must therefore choose N high enough. Alternatively, if the model is

ergodic, we can use the average of the unemployment rate over M simulation

runs, ȲM , which is equivalent to using the unemployment rate of a single run

with M ·N agents.

In this simple case, focusing on the state of the system at one specific

point in time t poses no problems, as the employment status shows no per-

sistence, hence the unemployment rate bears no memory whatsoever of past

values. More in general however, it could be the case that even if the system

is at an absorbing equilibrium, the distribution of Y is not constant over time.

Indeed, as we have seen in chapter 5, (weak) stationarity is defined as the dis-

tribution of Yt having a constant mean and variance, and an autocorrelation

structure that depends only on the number of the lags and not on t. Hence,

the unconditional mean is constant, but the mean of the distribution of Y
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at time t conditional on the past realizations Yt−1, Yt−2, · · · is not constant.9

In this case, focusing on a specific period t might introduce an idiosyncrasy:

to characterize the system then one has to compute an average over many

periods, Ȳ , where the length of the observation period is determined in order

to get rid of the autocorrelation structure in the statistics of interest. This

turns out to be a crucial difference between calibration and estimation, as

we shall see.

Once we have the summary measures for both the simulated (Y ) and

real (YR )output, we must compare them. The second step is therefore the

definition of a distance metric d(Y, YR). This is the loss function for the

modeler, that is, it contains the judgment about ‘how good’ the model is. A

common choice for this function is the quadratic form d(Y, YR) = (Y −YR)2,

which increasingly penalizes the performances of the model as they are more

distant from the observed data. However, the summary measure chosen may

well be multidimensional, that is Y ′ = {Y1, Y2, · · · , YK}. In the example

above, we might be interested in the average income, in the poverty rate, in

the Gini coefficient of income, etc., in addition to the unemployment rate.

The distance function must then specify appropriate weights for the different

summary measures. A natural choice is to use weights that are inversely pro-

portional to the variability of each statistics, so that more volatile statistics,

being less informative on the model behavior, count less. Given that the

variability of the statistics computed on the simulated data can be decreased

at will, as we have seen above, the weights are generally computed on the

real data.

The distance function then becomes

9In addition, given the definition of stationarity, moments other than the first and the
second could be time variant.
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d(Y ,Y R) = (Y − Y R)′W(Y − Y R) (8.1)

where W is best chosen to be a consistent estimate of V (Y R)−1, as in

the White covariance matrix or, in a time series context, the appropriate

Newey-West covariance matrix.

Recall that Y depends on θ. The distance d provides a measure of the

quality of the model, conditional on the values of the parameters. However,

unless some acceptance/refusal criteria are specified that explicit the biggest

distance the modeler is willing to accept, it is of little use per se. But it

immediately leads to the comparison of different models, or of different spec-

ifications of the same model. In this case the question that the validation

exercise is supposed to answer is not ‘how good’ a model is, but rather ‘is

a model better or worse than another model?’. If we compare different in-

stances of the model with different values of the parameters, this validation

method offers a natural way for the selection of the ‘best’ values of the pa-

rameters, that is calibration or estimation. This will be the focus of the next

Chapter, where we dig in details into the issue of how one can use data to

tune the parameters of the model.

The issue concerning the ergodicity of the rwDGP (with respect to out-

comes Yt) is crucial. If the underlying rwDGP is non-ergodic (as well as

the theoretical mDGP described in the ABM), initial conditions matter. In

theory, to compare the real and simulated data the modeler should identify

the ‘true’ set of initial conditions in the empirical data, generated by the

rwDGP, in order to correctly set the initial parameters of the model. Even

if perfect data existed (which is unlikely), this would be a hard task, as few

real processes have a clearly defined starting point. How far in the past does

one need to go in order to identify the correct set of initial values for the
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relevant micro and macro variables? Possibly well before the data started to

be collected.10

But even when the mDGP and rwDGP are ergodic and stationary, the

problem of correctly setting the time span for analyzing the simulated data

remains. The underlying rwDGP may generate a number of different regimes

(transient equilibria); for instance the same macroeconomic structure may

generate a diverse set of outcomes that include economic depression, full

employment, inflation, hyper-inflation, and even stagflation. If this is the

case, then one is faced with the problem of which sub-sample of the simulated

and observed time-series should be compared in order to carry out model

validation. By incorrectly setting the period over which the model output

is analyzed one can generate a set of simulated output data that describes

a different regime than that found in the empirical data. In this case one

may incorrectly reject a ‘true’ model. Moreover, if –as it is frequently the

case– the modeler sets the simulated data to start at a point where the model

reaches a stationary behavior, one is implicitly assuming that the empirical

evidence comes from a stationary DGP. This may, or may not, be the case.

As a final note of care, we should stress that if the model is to be used

for prediction or policy analysis (that is, in most cases) empirical valida-

tion should not be confused with model acceptance. Is the model able to

make good predictions out-of-sample? Does it take into consideration that

changes in the economic environment (for instance policy changes) might

modify the way individuals behave? Real economic agents not only think in

statistical terms based on past experience (adaptive expectations) but use

current data to forecast the future. In this way, agents are able to respond

to exogenous economic shocks. This intuition was the basis for the rational

10One can still be interested in building a model that describes the particular history
of the non ergodic rwDGP observable in the data.
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expectations critique of Keynesian behavioral models: exogenous shocks al-

ter individual behavior, even when leaving the underlying structure of the

economy unchanged. As a consequence Keynesian theories seriously mis-

predict the consequences of shocks, whereas models that explicitly take into

consideration the micro fundamentals - individual production functions and

utility functions - don’t. The Lucas critique (Lucas, 1976) applies even to

empirically validated models. Only structurally correct models should be

given a structural interpretation. The fact that a model is able to replicate

the observed data does not guarantee that it will perform well even when

tracing future data, or counterfactual data.

8.5 Qualitative Output Validation Technqi-

ues

We now turn to the issue of choosing the value of the structural parameters

in order to get a good fit with the real data. Here, output validation is

not a goal, but a mean for the calibration/estimation of the parameters. As

already noticed, what we would like to do here is comparing (possibly an

infinite number of) instances of the model with different parameter values

and choose the one that best fits the data.

As we will be discussing in more details in the next chapter, we almost

never aim at calibrating or estimating a model by means of a unique optimal

choice for all the parameters. We rather look for confidence intervals or ranges

of the relevant parameters. Indeed, a point estimate or calibration of all

parameters is useful for predictive purposes, though probabilistic assessments

of likely outcomes based on estimates of the uncertainty about the ‘true value’

of the parameters should be preferred. On the other hand, when the goal is
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more descriptive, we rather aim at identifying a reasonable (and relatively

small) subset of the parameter space where counter-factual types of questions

can be asked.

Furthermore, the fact that a given parameter set leads to the best fit does

not mean that the model is empirically validated: it can be the case that even

the best fit is not good enough, according to the criteria of acceptance for

the model. In other words, even a wrong model can be calibrated/estimated.

One of the main purposes of calibration/estimation is to address the over-

parametrization problem of many ABMs by reducing the space of possible

‘worlds’ explored by an ABM (Kwasnicki, 1998). This is done through the

use of empirical data, such that the model mDGP resembles as closely as

possible the actual rwDGP that we observe.11

In the rest of this Chapter, and in the one that follows, we review the most

influential approaches to calibration and estimation developed in the AB

literature so far and assess their strengths and weaknesses. Each approach

attempts to put restrictions on the parameters so that the model output

resembles as closely as possible the real output of interest. However, they do

this in different ways.

A rough but useful distinction is between approaches that are mostly

qualitative and those that instead rely on a battery of quantitative meth-

ods to estimate/calibrate the parameters. Whereas the former are based on

observed qualitative similarities between real-world and model outputs, the

latter try to identify the most-likely parameter ranges based on optimization

techniques employing, e.g., explicit metrics between rwDGP and mDGP, as

well as sophisticated search algorithms.

In the remaining part of this Chapter we will briefly review some of the

11For a notable example of calibration on ABMs, see Bianchi et al. (2007, 2008).
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most-employed qualitative estimation/calibration techniques, whereas in the

next Chapter we will deal in details with quantitative approaches.

The history-friendly approach constrains parameters, interactions, and

decision rules of the model in line with a specific, empirically-observable

history of a particular industry.

8.5.1 The Indirect Calibration Approach

Drawing upon a combination of stylized facts and empirical data sets, many

AB modelers have been developing a pragmatic four-step approach to em-

pirical validation, typically referred to as the Indirect Calibration Approach.

This qualitative procedure can be interpreted as a calibration exercise with

respect to unique historical evidence. The indirect calibration approach aims

at replicating some relevant statistical regularities or stylized facts. In the

first step, the modeler identifies a set of stylized facts that she is interested

in reproducing and/or explaining with her model. Stylized facts typically

concern the macro-level (as an example, the relationship between unemploy-

ment rate and GDP growth) but can also concern cross-sectional regularities

(for instance, the shape of the distribution of firm size). In the second step,

the researcher builds the model in a way that keeps the microeconomic de-

scription as close as possible to empirical and experimental evidence about

microeconomic behavior and interactions. This step entails gathering all

possible evidence about the underlying principles that inform real-world be-

haviors (of firms, workers, consumers, etc.) so that the microeconomic level

is modeled in a realistic fashion. In the third step, the empirical evidence

on stylized facts is used to restrict the space of parameters, and the initial

conditions if the model turns out to be non-ergodic.

Suppose, for example, that the Beveridge curve is one of the statistical
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regularities to be investigated. The model must be able to replicate a re-

lationship in which unemployment rates decrease with vacancy rates in the

labor market.12 The researcher should restrict her analysis to all (and only)

parameter combinations under which the model does not reject that hypoth-

esis (at some confidence level). This step is the most sensible because it

involves a fine sampling of the parameter space. It is also computationally

demanding and requires the use of Monte Carlo techniques. Indeed, for any

given point in the parameter space, one must generate a distribution for the

statistics summarizing the stylized facts of interest (for instance, the slope

of the relationship between unemployment and vacancy rate), and test the

null hypothesis that the empirically observed valued can be generated by our

model under that particular parameter combination.

In the fourth and final step, the researcher should deepen her under-

standing of the causal mechanisms that underlie the stylized facts and/or

explore the emergence of new stylized facts (statistical regularities that are

different to the stylized facts of interest) which the model can validate ex

post. This might be done by further investigating the subspace of parame-

ters that resist to the third step, those consistent with the stylized facts of

interest. For example, one might study how the absolute value of the Monte

Carlo average of the slope of the unemployment-vacancy rate relation varies

with some macro-parameter (if any) that governs wage setting and/or union

power in the model. This can shed light on the causal mechanism underlying

the emergence of a Beveridge curve. Similarly, one can ask whether business

cycle properties (for instance, average and volatility of growth rates) change

with the slope of the Beveridge relation. If this is the case, a fresh impli-

cation generated by the model (under empirically plausible parameters) can

12See Fagiolo et al. (2004b) and Richiardi (2006).
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be taken to the data –and further provide support for the AB model under

scrutiny.

Although appealing, the indirect calibration approach is open to criticism

in at least two important respects. First, notice that no attempt is made to

quantitatively set model parameters using their empirical counterparts. This

is mostly because, due to the difficulties of qualitatively matching theoretical

and empirical observations, one is bounded to be as agnostic as possible as

to whether the details of a model (variables, parameters) can be really com-

pared with empirically-observable ones. However, in order for this indirect,

qualitative, calibration procedure to be effective, the empirical phenomena

of interest should not be very general. Otherwise, they might not necessarily

represent a difficult test for the model. If this is the case, the model might

pass the validation procedure without providing any effective explanation

of the phenomena of interest (e.g. no restrictions on the parameter space

would be made). Here the fundamental issue of discriminating between the

‘descriptions’ and ‘explanations’ of reality pops up once more.

The second problem is far subtler, and has to do with the interpretation

of the points belonging to the sub-region of the parameter space (and initial

conditions) that resist the sort of ‘exercise in plausibility’ that one performs

in the third step of the procedure. After a suitable sub-region of the pa-

rameter space (and initial conditions) has been singled out - according to

the capability of the model to replicate the set of stylized facts of interests

in that sub-region - how should one interpret all comparative exercises that

aim at understanding what happens when one tunes the parameters within

that sub-region? This boils down to the problem of interpreting the different

parameter configurations as counterfactuals (see below).

A stream of recent ABM contributions to the fields of industry and
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market-dynamics has been strongly rooted in the four-step empirical valida-

tion procedure just outlined. For example, Fagiolo and Dosi (2003b) study

an evolutionary growth model that is able to reproduce many stylized facts

about output dynamics, such as I(1) patterns of GNP growth, growth-rates

autocorrelation structure, and the absence of size-effects, while explaining the

emergence of self-sustaining growth as the solution of the trade-off between

exploitation of existing resources and exploration of new ones. Similarly, in

a number of papers exploring the properties of the “Keynes meets Schum-

peter” (K+S) model (Dosi et al., 2006, 2010, 2015), an indirect calibration

approach is used to show that the KS model is able to successfully replicate

a huge number of stylized facts related to firm dynamics, the business cycle

and the financial side of the economy.

8.5.2 The History-Friendly Approach

The history-friendly approach offers an alternative to the problem of over-

parametrization. Like the indirect calibration approach discussed above, it

seeks to bring modeling more closely ‘in line with the empirical evidence’

and thereby reduce the dimensionality of a model. The key difference is

that this approach uses the specific historical case studies of an industry to

model parameters, agent interactions, and agent decision rules. In effect, it

is a calibration approach which uses particular historical traces in order to

calibrate a model.

In this approach a ‘good’ model is one that can generate multiple styl-

ized facts observed in an industry. The approach has been developed in a

series of papers, in particular Malerba et al. (1999); Malerba and Orsenigo

(2002). In the first of these papers, the authors outlined the approach and

then applied it to a discussion of the transition in the computer industry from
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mainframes to desktop PCs. In the latter, the approach was applied to the

pharmaceutical industry and the role of biotech firms therein. Here we shall

keep the description of the approach succinct. Through the construction of

industry-based AB models, detailed empirical data on an industry informs

the researcher in model building, analysis and validation. Models are to

be built upon a range of available data, from detailed empirical studies to

anecdotal evidence to histories written about the industry under study. This

range of data is used to assist model building and validation. It should guide

the specification of agents (their behavior, decision rules, and interactions),

and the environment in which they operate. The data should also assist the

identification of initial conditions and parameters on key variables likely to

generate the observed history. Finally, the data is to be used to empirically

validate the model by comparing its output (the ‘simulated trace history’)

with the ‘actual’ history of the industry. It is this latter step that truly

distinguishes the history-friendly approach from other approaches. Previ-

ous researchers have used historical case studies to guide the specification

of agents and environment, and to identify possible key parameters. The

authors of the history-friendly approach suggest that, through a process of

backward induction one can arrive at a satisfactory approximation of struc-

tural assumptions, parameter settings, and initial conditions. Having identi-

fied the approximated set of ‘history-replicating parameters’, one can carry

on and conduct sensitivity analysis to establish whether (in the words of the

proponents of this methodology) ‘history divergent’ results are possible.

The history-friendly approach raises a set of fundamental methodologi-

cal issues.13 First, the approach to empirical validation that is advocated

involves comparing the output traces of a simulated model with detailed em-

13Interested readers are referred to Windrum (2007) for a detailed critique of history-
friendly modeling.
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pirical studies of the actual trace history of an economic system. This does

not move us much further on from ascertaining whether a model is ‘capable’

of generating an output trace that resembles an empirically observed trace.

It is not a very strong test. As we have seen, an individual simulated trace

may, or may not, be typical of the model.

A second issue is the ability to infer backward the ‘correct’ set of struc-

tural assumptions, parameter settings, or initial conditions from a set of

traces –even if we have a model that generates an appropriate distribution of

output traces. Simply stated, there are, in principle, a great many combina-

tions of alternative parameter settings that can produce an identical output

trace. We cannot deduce which combination of parameter settings is correct,

let alone the appropriate set of structural assumptions.

A third issue is the possibility to build counterfactual histories (although

the authors do not themselves engage in this in their papers). For exam-

ple, we need to be able to construct a world in which IBM did not enter

the PC market. This poses a very serious question. Could the PC market

have developed in much the same way had IBM not invented the PC? Can

we meaningfully construct a counterfactual history? As Cowan and Foray

(2002) discuss, it is exceedingly difficult in practice to construct counter-

factual histories because economic systems are stochastic, non-ergodic, and

structurally evolve over time.

Finally, a fourth key methodological issue concerns the meaning of history.

To what extent can we actually rely on history to be the final arbiter of

theoretical and modeling debates? To pose the question another way, can

simulations, in principle, be guided by history? In practice, it is unlikely

that we will be able to appeal to history, either to bear witness, or to act as

a final arbiter in a dispute. This is because history itself is neither simple
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nor uncontested, and any attempt to develop a historically based approach

to modeling faces deep level methodological problems.14

14A well-known example of the contestability of history is evidenced by the ongoing
debate about whether inferior quality variants can win standards battles.15 As Carr
(1961) observed in his classic work, history can be contestable at more fundamental and
unavoidable levels.
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Chapter 9

Estimation of Agent-Based

Models

Matteo Richiardi

“How absurdly simple!”, I cried.
“Quite so!”, said he, a little nettled.
“Every problem becomes very childish when once it is explained
to you.”

Arthur Conan Doyle. The Adventure of the Dancing Men.

9.1 Introduction

The ultimate test of a theory is its empirical validity, so the question whether

a model “fits the data well” is crucial. In the last chapter, we have intro-

duced some of the many issues involved in model evaluation. Here, we dig

into the problem of tuning the values of the parameters. Moreover, we are

also interested in the values of the estimated parameters for interpreting the

model behaviour, and to perform “what-if type” counterfactual (e.g. policy)
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evaluation exercises. Agent-based (AB) models are in general complex non-

linear models, and can therefore display many different behaviours depending

on the region of the parameters space being sampled. Assessing the perfor-

mances of the model in the right region of the parameters space is therefore

important for model evaluation. Once this region has been identified and the

model deemed appropriate for its scopes, lessons can be learned about what

might happen in the real world if some of the parameters changed, either as

a consequence of some unforeseen developments (scenario analysis) or due

to some specific actions purposefully implemented (policy analysis).

Our goal, broadly speaking, is comparing (possibly an infinite number of)

instances of the model with different parameter values and select those that

fits the data better.

Before going on, a first remark is necessary. Generally, we do not aim at

calibrating or estimating a model by getting to a single optimal choice for

all the parameters. In a frequentist approach, we rather look at confidence

intervals —that is, ranges where the “true” value of the parameters, assum-

ing the model is correctly specified, is likely to lie— while in af Bayesian

approach we focus on the posterior probability distributions for the parame-

ters —reflecting our uncertainty about the parameters values given our prior

knowledge and the information contained in the data. In this chapter we will

provide examples of both approaches.

A second remark is about the fact that it is always possible to find some

parameter set leading to the best fit with the real data, but this does not

mean that the model is empirically validated: it can be that even the best

fit is not good enough, according to the criteria of acceptance for the model.

In other words, even a wrong model can be calibrated/estimated.

Third, there is the issue of the invariance of parameters. What if the
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observed micro and macro parameters are time dependent? One needs to

be sure that the calibrated/estimated parameters are at least slow changing

variables (and, hence, can reasonably be treated as fixed within the time scale

explored by the model). If they are significantly time dependent, then the

researcher needs to go back to the specification of the model and endogenise

some of the parameters or, if s/he prefers to remain agnostic about how they

change, employ appropriate inference techniques which allow time-varying

parameters, as particle filters (not discussed here).

A fourth remark concerns the difference between calibration and estima-

tion. This has been overly debated, with researchers arguing that calibration

(to which different people give a different meaning) is something different

from estimation, while other stress that the two things are basically the

same thing.1 The issue boils down to a matter of convenience. For our

discussion, it is helpful to distinguish calibration and estimation along the

following lines: calibration aims at maximizing the fitness of the model with

the observed data in a distance metric arbitrarily chosen by the modeller,

without bothering about the ‘true’ value of the parameters of the real world

data generating process (rwDGP), or the uncertainty surrounding them; es-

timation aims at learning about the ‘true’ value of the parameters of the

rwDGP, by evaluating the fitness of the model with the observed data in

a carefully chosen distance metric, such that the estimator has well known

(at least asymptotically) properties. Roughly speaking, maximization of the

fitness is a goal in calibration, a mean in estimation. Calibration is meant

to show that the model is plausible –that is, it resembles the real world–

and aims at reducing the number of possible ‘worlds’, one for each combi-

nation of the parameters, that have to be explored in order to understand

1See Dawkins et al. (2001) for an overview.
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the behaviour of the system; estimation assumes that the model is at least

approximately correct –that is, well specified– to make inference about the

true rwDGP.

While some calibration techniques have been presented in the previous

chapter, here we focus only on estimation.

The rest of the chapter is organised as follows. Section 9.2 discusses how

we can choose the real and simulated data on which we perform estimation,

and the basic principles and properties of the data and the model that esti-

mation relies upon. Section 9.3 describes how AB models can be simulated

by means of simulated minimum distance techniques, in a frequentist ap-

proach. Section 9.4 introduces the main issues and techniques in Bayesian

estimation of AB models. Section 9.5 concludes.

9.2 Taking the model to the data

9.2.1 Comparing apples with apples

This section is of crucial importance but it can be kept very short. Let’s

assume that our model is a good description of the unknown rwDGP, for

the specific purposes that we have in mind: that is, the model has passed

a preliminary validation stage (see chapter 8). The behaviour of the model,

however, is dependent on the values of the parameters and on the initial

conditions, which amount to the initial state of the system and the random

seed: yt+1 = gt(X0, s,θ). Estimation is all about comparing the artificial

data produced by the model with the real data, but the model is in principle

able to produce much more data than what is available in the observations.

So, a preliminary choice has to be made with respect to what data to select

from the simulated time series.
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If we could run the model starting from the same initial conditions X0

as observed in the real data, we could simply compare the first T simulated

periods with the corresponding real world observations. However, it is often

very difficult to initialise the model with real world data, especially as these

can be available only in aggregate form. Therefore, a direct, one-to-one

relationship between the artificial data and the real data is lost: there is not

a simulated day ‘t = 16 September 2015’ to be compared with the actual data

for 16 September 2015. The best we can do is therefore selecting subsamples

of the artificial time series that qualitatively resemble the real series, and

then looking at the values of the parameters that make the two series also

quantitatively similar. This often reduces to focusing on some stationarity

properties of the observed data, and select the simulation output so that those

stationarity properties also hold in the artificial data. Loosely speaking, this

ensures that the data for 16 September 2015 are not particularly ‘special’

—they look not too different from the data for 15 or 17 September— so that

they can be meaningfully matched to the selected artificial data, provided

these are also not too ‘special’. In other words, the initialisation problem can

be overcome by focusing on the equilibrium properties of both the real and

the simulated data, where by equilibrium we mean statistical equilibrium,

that is stationarity. Focusing on stationary regimes has also an additional

advantage. Stationary data are, to some extent, interchangeable. It does

not really matter if September 15 is considered before or after September

17, if they both come from a stationary distribution.2 This means that

we can easily summarise them, for instance by taking their mean (on the

contrary, two non-stationary series might have the same mean, but very

different behaviour —for instance, one might trend upwards, while the other

2Stationary data can be serially correlated, but this can often be neglected in estima-
tion, at the cost of increasing the error of the estimates —see below.
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might trend downwards).

Ergodicity (or lack thereof) is also an important property which should be

considered before turning to the data. In particular, mistakenly considering

a model as ergodic, while in facts it is not, might lead to a significant un-

derestimation of the uncertainty surrounding the estimates. As an example,

think of a non-ergodic model with a long run equilibrium at µ∗ = rθ, where

r is a random variable with mean 1, whose actual value is determined at

model setup —that is, by the random seed. At the risk of being redundant,

let us make clear what this means. The model produces an outcome yt, that

after an adjustment phase becomes stationary, with mean µ∗. Note that

in the stationary state, yt keeps fluctuating around µ∗ (with a correlation

structure that depends only on the number of lags and not on time). The

model is non-ergodic insofar as the mean µ∗ differs across simulation runs,

for the same value of θ. Suppose now that the model is correctly specified,

and that the specific universe that we observe has a value of r 6= 1. If we

ignore the non-ergodic nature of the model when estimating it, we would

infer that θ̂ = µR, while in facts the ‘true’ value of θ is µR/r.
3 While the

rwDGP can generate many parallel universes, distributed around a “cen-

tral” universe with µ∗ = µR/r, we are treating it as if it were capable to

produce only one universe, centred at µR. Given that we only observe µR,

we cannot remove a bias towards this particular value, but we should at least

recognise that the ‘true’ value of θ could be different from µR, knowing that

the model is non-ergodic.4 Devising a policy based on a precise but biased

estimate of θ might lead to inaccurate predictions. On the contrary, taking

3We assume for simplicity that the observed time series is long enough to drive the
sampling error to 0 (the mean µR is insensitive to new observations).

4Indeed, we can do better than this, and estimate a distribution for the parameter,
though this distribution will be centred on µR and not on µR/r. We will discuss this in
more details in section 9.3.2.
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fully into account the non-ergodic nature of the model helps recognising that

there is an extra source of uncertainty on top of sampling error, arising from

the fact that we do not know from what universe the data we are observing

come from. Moreover, by simulating the effects of the policy taking into

account the full uncertainty around the parameters, we might discover that

the policy is able to move permanently the system to a different equilibrium,

which persists even when the initial conditions are restored (i.e. the policy is

abandoned). To summarise, non-ergodic models are trees which are able to

produce a whole variety of apples, and we should expect many different trees

(instances of the model with different values of the parameters) to produce

something that closely resembles the specific apple that we observe in the

data.

9.2.2 Preliminary tests

Operationally, the discussion of the previous section amounts to say that

we need to understand the properties of a model and the properties of the

data, before engaging in estimation. Stationarity can be easily tested in the

observed data, using one of the many tests available in the literature. If the

data are not stationary, an attempt to making them stationary by looking at

appropriate transformations should be made. Stationarity greatly simplifies

the choice of the artificial data to be considered as the model outcome in

the estimation process, as we can run the model until an appropriate sta-

tionary state (statistical equilibrium) is found, and then disregard the initial

adjustment path. On the other hand, if the observations are not stationary,

we often do not know when to stop the simulation, as the model might in

principle be able to produce something that resembles the observations in

the future.
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Ergodicity, on the contrary, cannot in general be tested in the real data,

unless we observe many instances of the process. For instance, consider the

diffusion of rival technologies with strong network externalities. By observing

many adoption trajectories for different products, we can infer whether they

always lead to the selection of one dominant technology, which drives the

others out of the market. The irreversibility of the process, together with its

stochastic nature, implies non-ergodicity: each technology has in principle

some chances of winning the race, so that outcomes can be very different

even if the initial conditions are the same.

A classic example is the battle between Sony’s Betamax and JVC’s VHF

video standards that started in the mid-1970s. For around a decade these two

standards battled for dominance, while in the end VHF became dominant,

and Betamax disappeared. Presumably, the process is non-ergodic, meaning

that if we could rewind history, and repeat the competition again starting

from exactly the same conditions, we might end up with a very different

outcome, e.g. Betamax winning, or both standards coexisting in the market.5

Note again that the non-ergodic nature of the process lies in the fact

that it has more than one long run equilibrium (which presupposes that the

process is stochastic, to allow the selection of different long run equilibria ).

Quite obviously then, the possibility of learning about the non-ergodic

nature of the process depends on our ability to observe more than one real-

5The reason why VHF won the war has been the subject to intense debate. Arguably,
Betamax was a slightly better technology; however, VHF had a slicker marketing. Other
explanations have pointed to licensing problems between Sony and other companies, VHF
machines being simpler, Sony giving inadvertently a help to its competitors by revealing
key aspects of Betamax technology which were then incorporated into VHS, and even the
fact that pornography was not available on Betamax. Perfectly ‘explaining’ why VHF
won would reduce the adoption process to a deterministic one; following our discussion,
it would be similar to controlling for the random seed. The whole issue of determining
whether the process is ergodic or not would then be pointless, as deterministic processes
are ergodic by nature.

290



isation of the process. If we observe only one equilibrium, we cannot learn

about the existence of other equilibria. In turn, observing more realisations

requires considering more technologies, under the assumption that they are

all governed by the same law (that is, they are all instances of the same

stochastic process). This might actually be a problematic assumption. Can

we claim that the battle for internet search engines follows the same process

than the VHF-Betamax war? Google has come close to dominate the mar-

ket, with about 2/3 of the searches, but Bing has climbed up to about 10%

despite being a latecomer, and Yahoo! still has another 10% market share.

It can be argued that network externalities are lower for search engines than

for video formats: it is therefore possible that the process for search engines

is ergodic, while the one for video formats was not.6 But what about operat-

ing systems (OS)? Under the assumption that the diffusion of video formats

and OS (and possibly of many more technologies) are instances of the same

process, and that the initial conditions are approximately the same (e.g. all

alternatives appear at the same time, and no-one is drastically better than

the other in terms of performances, or costs), we could test for ergodicity

by comparing the “equilibrium” market shares in the different markets.7 For

OS, the market is dominated by Microsoft, but Mac has a fairly stable share

(over the past few years) of about 10%. We would then find that the (unique)

diffusion process is non-ergodic, as in the video formats case there is only one

firm who gets all the market, while in the OS there is a coexistence of many

firms.

6We should stress that the fact that there is not a single search engine that has eaten
up all the market does not mean by itself that the process is ergodic: it might be the case
that if history was given a second chance, given the same initial conditions, Yahoo! might
end up having a bigger market share than Google.

7A nonparametric test for ergodicity is proposed in ?, and rests on an application
of the Wald-Wolfowitz Runs test for testing whether two samples come from the same
population.
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The lesson from this discussion is that it is very hard to test for ergodic-

ity in the real data, as history never exactly repeats itself. The assumption

that two observed trajectories are instances of the same underlying process,

and that the initial conditions are the same, is likely not to hold. On the

other hand, ergodicity can easily be tested in the simulated data, as multiple

simulation runs can be performed by keeping all the parameters and initial

conditions fixed, and changing only the random seed. If we had a model of

product adoption in presence of network externalities, we could test it for

ergodicity, for the appropriate initial conditions (e.g. the different techno-

logical features and costs of rival video formats) and reasonable values of the

unknown parameters (e.g. users’ preferences). If the results of the test were

pointing to ergodicity, we could then fix a random seed and proceed with es-

timation. If, on the other hand, non-ergodicity was detected, we should take

this information into consideration in the estimation process, as discussed in

sections 9.3.2 and 9.4.4.

9.2.3 Simulation-based estimation

In AB modelling everything, from ‘solving’ a model to estimating it, must be

done numerically. However, AB models generally involve many parameters

and non-linearities, and this implies that the computational methods that

need to be used are often particularly burdensome. As LeBaron and Tesfat-

sion (2008, p. 249) put it, “the very properties that make ACE [Agent-based

Computational Economics] models so interesting to study can cause empirical

headaches when estimating them”. This has so far deterred estimation, and

harmed the diffusion of the methodology. Fortunately, the development of

computational techniques and the increasing availability of computer power

have made the problem more manageable.
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The diffusion of simulation based techniques in econometrics is rather a

recent trend in econometrics, but it is rooted in a long history of develop-

ments of computational methods.8 Three periods can be identified in this

process. During the first period, before the 1960s, models and estimation

methods were assumed to lead to analytical expressions for the estimators.

The techniques employed made use of linear models with associated least-

square approach, multivariate linear simultaneous equations with associate

instrumental variables approach, exponential families for which maximum

likelihood techniques are suitable.

In the second period, during the 1970s and 1980s, numerical optimiza-

tion algorithms were introduced to derive the estimates and their precision

without knowing the analytical form of the estimators. Among the tech-

niques employed there were non-linear models as limited dependent variable

models, duration models, ARCH, GARCH etc., with optimization of some

non-quadratic criterion functions (log likelihood, pseudo-log likelihood, etc.).

These different approaches, however, still require a tractable form of the cri-

terion function.

Simulation-based methods were introduced only in the third period, dat-

ing back to the 1990s, to deal with criterion functions without simple analyt-

ical expression (for instance because of integrals of large dimensions in the

probability density function or in the moments).

The basic idea with simulation-based econometrics is to replace the eval-

uation of analytical expressions about theoretical (model) quantities with

their numerical counterparts computed on the simulated data. The (sim-

ulated) theoretical quantities, which are functions of the parameters to be

estimated, can then be compared with those computed on the real (observed)

8See Gouriéroux and Monfort (1996) and Stern (1997, 2000).
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data as in any estimation procedure. If the model is correctly specified –and

some technical conditions hold – for large samples the observed quantities

tend to the theoretical quantities, at the ‘true’ values of the parameters.

Because the simulated quantities also tend to the theoretical quantities, the

observed quantities converge to the simulated quantities.

As for econometrics in general, two families of approaches can then be

followed. In a frequentist approach, we look at the values of the parameters

that minimize the distance between the simulated and the observed quan-

tities. The procedure is known in general as simulated minimum distance

(SMD). The method of simulated moments (MSM), indirect inference (II)

and simulated maximum likelihood (SML), among other techniques, all fall

in this general class. The task of comparing real and artificial data involves

the computation of some statistics y both in the real and in the artificial data,

and then aggregated in a unique measure of distance. Clearly, these statistics

have to be computed just once in the real data (which do not change), and

once every iteration until convergence in the artificial data, which depend

on the value of the structural parameters. The change in the value of the

parameters of each iteration is determined according to some optimization

algorithm, with the aim to minimize the distance.9

The other approach is Bayesian. In Bayesian analysis, one starts with

a prior knowledge (sometimes imprecise) expressed as a distribution on the

parameter space and updates this knowledge according to the posterior dis-

tribution given the data. Classical Bayesians still believe in an unknown

‘true’ model, as in the frequentist approach. However, rather than aiming

9Minimization requires that the same series of random draws is used for each iteration
of the simulated model, in order to insulate from the stochastic component of the model.
Lacking this, the minimization algorithm might well get stuck in cycles. Many optimization
algorithms can be used, from simple grid search to genetic algorithms, etc –see Nocedal
and Wright (1999) for an excellent reference book on the topic.
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at identifying the ‘true’ values of the parameters (or a corresponding con-

fidence interval), they use the information contained in the data to update

the subjective beliefs about them. On the other hand, subjective Bayesians

do not believe in such true models and think only in terms of the predictive

distribution of a future observation.

For frequentists (and classical Bayesians), parameters are assumed to be

fixed (at least within a group or condition) and inference is based on the sam-

ple space of hypothetical outcomes that might be observed by replicating the

experiment many times. For subjective Bayesians, on the other hand, pa-

rameters are treated as random quantities, along with the data, and inference

is based on posterior distributions.

9.2.4 Consistency

An important feature that is sought after when choosing an estimation method

is consistency. This property states that as the sample size increases indef-

initely, the estimates converge in probability to the true value of the pa-

rameters, assuming the model is correctly specified: the distribution of the

estimates becomes more and more concentrated, so that the probability of

the estimator being arbitrarily close to the true value converges to one. From

a classical Bayesian perspective, consistency means that the updated knowl-

edge becomes more and more accurate and precise as data are collected

indefinitely.10

As such, consistency can be evaluated with respect to different dimen-

sions: consistency in size means that the estimates converge to their true

value as the observed population grows bigger; consistency in time means

10Consistency is important to subjective Bayesians too, for whom it is equivalent to
intersubjective agreement, meaning that two Bayesian should ultimately have very close
predictive distributions, as the number of observations grows indefinitely.
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that the estimates converge to their true value as the length of the observation

period increases; consistency in replications means that the estimates con-

verge to their true value as more occurrences of the same stochastic process

are observed. With reference to an abstract observations space, consistency

in size (cross-sectional) refers to the height, consistency in time (longitudinal)

refers to the length, consistency in replications refers to the width.

In order to obtain consistency, some conditions have to be met.11 With-

out providing all the details, the basic requirements are (i) that the statistics

used identify the parameters of interest (that is, there is a one-to-one rela-

tionship between the theoretical values of the statistics and the values of the

parameters), and (ii) that the simulated values of the statistics converge to

their theoretical values.

9.2.5 Calibration vs. estimation

As we have seen, taking a model to the data is always done in terms of some

summary statistics which are computed in the data and obtained from the

model, be they some specific data points, cross-sectional averages, longitu-

dinal averages, estimated coefficients of some meta-model which is superim-

posed both to the real data and to the simulated data . These statistics are

fixed in the data, and are possibly dependent on the structural parameters,

the initial conditions and the random seed in the model.

The constraints placed on the statistics used for bringing the model to the

data is what distinguish estimation for calibration. When doing estimation,

we are concerned with the properties of the estimators, and in particular we

care about consistency. With calibration, these issues get overlooked. In

11See Grazzini and Richiardi (2015) for a thorough discussion of the issues involved in
estimating AB models.
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a sense, we could say that estimation is nothing else than more conscious

calibration.

For instance, given that the output of interest is a time series, a natural

criteria would be to compare the two paths yt(θ) (simulated) and yR,t (real),

where θ? is the true value of the parameter θ governing the real and model

DGP. Indeed, this is the essence of the history-friendly approach to calibra-

tion, but it does not guarantee consistency. To see why, consider that this

path estimator is

θ̂ = arg min
θ

T∑
t=1

[yt(θ)− yR,t]2 (9.1)

where we assume for simplicity that both the real and artificial time series

are observed for T periods.

Under the usual regularity conditions, the estimator tends asymptotically

to the solution θ̂∞ of the limit problem:

θ̂∞ = arg min
θ

lim
T→∞

1

T

T∑
t=1

[yt(θ)− yR,t]2

= arg min
θ
E[y(θ)− yR]2 (9.2)

= arg min
θ
{V (y) + V (yR) + [E(y)− E(yR)]2}

Consistency requires θ̂∞ = θ?, a condition that is not satisfied in general.

For instance, suppose that y is exponentially distributed, with f(y) =
1

θ
e−

1
θ
y,

for y > 0. Then E(y) = θ, V (y) = θ2, and

θ̂∞ = arg min
θ

[θ2 + θ∗2 + (θ − θ∗)2] = θ∗/2 6= θ∗ (9.3)

The reason why the path estimator is inconsistent is that by targeting the
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idiosyncrasies in the data, it goes after the noise, as well as after the signal.

If the noise is highly skewed (as in the case of the exponential distribution

of the example), this results in wrong inference. The problem is exacerbated

if deviations from expected values are big (again, this is the case of the

exponential distribution), whenever the weighting procedure in the distance

measure is not linear in the difference between simulated and real data (in

our example, the loss function is quadratic in the prediction errors). By

appropriately constructing the likelihood of observing the data, rather than

simply taking the distance between the real and simulated the data, the

problem is solved (see section 9.4): sometimes, the devil is in the details.

This example illustrates the difference between estimation and calibra-

tion. Comparing the real and simulated paths is a convenient way to calibrate

a model, but not to estimate it.

Also, the common approach of comparing real and simulated distributions

at a given point in time is in general inconsistent. To see why, let us consider

a simple example. Let yt be some aggregate statistics computed on the

state of the simulated system, in a transient or long run equilibrium, say the

unemployment rate. Assume that the mechanics of the model implies, for a

given value of the parameters θ, a probability of being unemployed for any

individual worker equal to u(θ). Given that being employed/unemployed is

a Bernoulli random variable, its variance is equal to σ2
u = u(θ)(1− u(θ)).

By the properties of the sample mean (the Central Limit Theorem), in

large populations of size N the expected value of the unemployment rate

at time t is normally distributed with mean EN(y) = u, and variance equal

to VN(y) = σ2
u

N
. (In small samples, the unemployment rate follows a bino-

mial distribution with mean u and variance σ2
u.) In other terms, given the

stochastic elements of the model, the unemployment rate at time t is a ran-
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dom variable, with different realizations in different periods and in different

simulation runs. If we want y to be representative of the model output, so

that we can use it as a summary measure for comparison with the real out-

put, we must therefore choose N high enough. Alternatively, if the model is

ergodic, we can use the average of the unemployment rate over M simulation

runs, ȳM , which is equivalent to using the unemployment rate of a single run

with M ·N agents.

In this simple case, focusing on the state of the system at one specific point

in time t poses no problems, as the employment status shows no persistence,

hence the unemployment rate bears no memory whatsoever of past values.

More in general however, it could be the case that even if the system is at a

long run equilibrium, the distribution of y is not constant over time. Indeed,

(weak) stationarity is defined as the distribution of yt having a constant

mean and variance, and an autocorrelation structure that depends only on

the number of the lags and not on t. Hence, the unconditional mean is

constant, but the mean of the distribution of y at time t conditional on the

past realizations yt−1, yt−2, · · · is not constant.12 In this case, focusing on a

specific period t might introduce an idiosyncrasy.

Suppose for instance that the unemployment rate displays some degree

of persistence, that is Cov(yt, yt+h) 6= 0. This implies that the observed

unemployment rate at any time t, even if we assume that the real world is

in the long-run equilibrium, is influenced by the past unemployment rate:

the conditional mean and variance of the distribution –conditional on the

past realizations– are different from the unconditional values. If we match

the simulated unemployment rate with the observed rate, we get inconsistent

estimates for the structural parameters θ. If we increase the sample size of

12In addition, given the definition of stationarity, moments other than the first and the
second could be time variant.
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the simulated population, or increase the number of simulation runs, our

estimate of the theoretical unemployment rate u(θ) will become more and

more precise, but the value of θ matching the observed unemployment rate

will converge to something different from the real, unobserved parameter of

the rwDGP. This is, in essence, the problem of many indirect calibration

exercises, indeed of all calibration exercises which involve matching cross-

sectional moments.13 Even when the model is correctly specified, they lead

to inconsistent estimates of the parameters of interest.14

To correctly characterise the system then one has to compute an average

over many periods, ȳ, where the length of the observation period is deter-

mined in order to get rid of the autocorrelation structure in the statistics of

interest. This turns out to be a crucial difference between calibration and

estimation.

9.3 Simulated Minimum Distance

9.3.1 The method of simulated moments

A solution, to properly characterise both the model output and the real data,

rests on considering longitudinal means of the selected statistics, in our ex-

ample the mean of the unemployment rate. Rather than seeking consistency

in sample size, consistency in time is achieved: by increasing the length of the

observation period, both for the real and the simulated data, the estimates

become more and more precise and they converge toward the ‘true’ value of

the parameters.

This is the method of simulated moments (MSM). With the usual nota-

13A common example is the exponent of the Pareto distribution of firm size.
14True, one has often to live with incorrectly specified models, for which consistency is

not even an issue. Still, focusing on cross-sectional statistics is sub-optimal.
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tion, the moment estimator is:

θ̂ = arg min
θ

[µ∗(θ)− µR]′W−1[µ∗(θ)− µR] (9.4)

where W is a positive definite matrix of weights.

More generally in the MSM, as in the simulated general method of mo-

ments, different order of moments of the time series of interest are used,

and then weighted to take into account their uncertainty.15 The intuition

behind this is to allow parameters estimated with a higher degree of uncer-

tainty to count less, in the final measure of distance between the real and

artificial data (Winker et al. 2007). Having different weights (or no weights

at all) impinges on the efficiency of the estimates, not on their consistency.

If the number of moments is equal to the number of structural parameters

to be estimated, the model is just-identified. The minimized distance, for

the estimated values of the parameters, is therefore 0 in the limit (as the

sample size grows bigger), supposing the model is correctly specified. If the

number of moments is higher than the number of parameters the model is

over-identified and the minimized distance is always positive. If it is lower it

is under-identified.

However, consistency in time is conceptually attainable only at a long

run equilibrium, where the regularities that we exploit for estimation remain

stable indefinitely. By contrast, in a transient equilibrium any regularity will

eventually dissolve, and looking for an asymptotic behavior as the observa-

tion period grows larger becomes meaningless. Consistency in sample size

can be achieved in a transient equilibrium if the individual observations are

15We stress again that while the uncertainty regarding the simulated moments can be
reduced by increasing the number of simulation runs, the uncertainty in the estimation of
the real, population moment on the basis of real sample data cannot be avoided.
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Figure 9.1: Example plot of Weibull hazard functions

independent, so that any autocorrelation structure wipes out in the aggre-

gate, for large sample sizes. Consistency in replications can also be achieved

in a transient equilibrium if reality itself offers many instances of the pro-

cess, so that the idiosyncrasies of some specific trajectories are balanced by

opposite idiosyncrasies of other trajectories.

As an example, let us focus for simplicity on a situation which can be

described analytically, and suppose the rwDGP is such that individuals exit

a given state (say, unemployment), at time t, at a rate

h(t) = pλtp−1 (9.5)

This is a Weibull duration model, and the survival function is

S = exp(−λtp) (9.6)

with λ as a scale factor. The hazard rate, for different values of the parameter

p, is depicted in figure 9.1.

Let us assume that the ‘true’ value of the parameter p is p? = 2.16 Suppose

16This implies positive duration dependence: the hazard rate (linearly) increases with
the elapsed duration. We assume for simplicity that we observe all durations.
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that we have a model for this process, that happens to be correct, i.e. well

specified. We want to estimate the parameter p of our model.17

If the model is well specified, the theoretical mean time to failure (MTTF)

is:18

E[Ti] =
1

λ1/p
Γ

(
1 +

1

p

)
. (9.7)

Note that this simple model has only one long run equilibrium: sooner

or later, everybody exit the state. As such, the long run equilibrium carries

no information on which estimation can be performed. On the other hand,

the MTTF is computed in the adjustment process, and therefore defines a

transient equilibrium, that is an equilibrium that will eventually disappear

(the MTTF is not defined anymore once everybody has exited the state.) The

relationship between the value of the parameter and the summary measure

is stable (more formally, the MTTF is ergodic) and can be exploited for

estimation. Consistency can be obtained in our case both over time, as

individual hazards are independent of each other, and over replications, if

the process is commonly observed in the real data.

Equation 9.7 is a moment condition. As an estimate for E[Ti] we take

the average observed time to failure, T̄R. Since in general the expression for

the theoretical mean on the r.h.s. is not known, or it cannot be inverted in

order to get an estimate for p, the MSM prescribes to simulate it. Hence,

the moment condition becomes

E[Ti(p)− T̄R] = 0 (9.8)

17Here we consider for simplicity a model that leads to a (well known) closed form
solution. The model would therefore be better estimated by applying the appropriate
(Weibull) duration model technique. The ideas exemplified here however also apply, as
discussed in the text, to more complex models, possibly involving more parameters.

18Failure being, in our example, not a bad thing at all as it implies finding a job and
exiting unemployment.
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Figure 9.2: Mean time to failure for Weibull model, λ = 1. Simulation over 1,000 individ-
uals.

which implies

p̂ = argmin|T̄ (p)− T̄R| (9.9)

However, the choice of the MTTF as our summary statistics is not a good

one. The reason is that the moment used for estimation does not identify the

parameter: more than one value of p can lead to the same MTTF. Figure 9.2

exemplifies this. The intuition is that very high values of p (low values of 1/p

in the graph) imply a very small exit probability for small durations; however,

the hazard rate increases quickly, so that very long durations are also very

unlikely. On the other hand, somewhat lower values of p imply a higher

probability of observing very short durations, but also a higher probability

of observing very long durations. The two effects, for appropriate values of

p, counterbalance perfectly, so that the mean is the same.

The second order moment σ2
T , on the other hand, is monotonic in p (figure

9.3).

The latter moment is then used for estimation. To give more weight to
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Figure 9.3: Standard deviation of time to failure for Weibull model, λ = 1. Simulation
over 1,000 individuals.

‘big’ mistakes, the following summary statistics is used:

p̂ = argmin[σ2
T (p)− σ2

T,R]2 (9.10)

The estimation procedure is tested by means of a Montecarlo experiment.

Pseudo-true data are extracted from a Weibull distribution with p? = 2,

and the variance of time to failure is recorded. Then, the Weibull model is

simulated for different values of the parameter p, until the distance between

the pseudo-true and the simulated variance of time to failure is minimized.19

The iterated call to the simulation model all share the same pseudo-random

numbers, which are different from those used to extract the pseudo-true

observations.

This procedure is repeated –with different pseudo-random numbers for

the pseudo-true and the simulated data– 100 times, in order to compute

the mean and the standard deviation of the estimates. The results, for a

simulated population of 10 to 10,000 individuals, are reported in table 9.1.

The fact that the estimates are always centred around the true value 0.5

19The Brent algorithm is used for minimization.
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Population size 10 50 100 500 1,000 5,000 10,000
Mean of estimated coeff. 0.543 0.507 0.500 0.499 0.498 0.499 0.499
Var of estimated coeff. 0.03870 0.00919 0.00397 0.00071 0.00034 0.00007 0.00003

Table 9.1: Montecarlo results for the estimation of a Weibull model by MSM. The correct
value of the parameter is 1/p? = 0.5.

shows that the estimation procedure is unbiased. This is because the moment

function (the standard deviation of the time to failure) is approximately

linear around the true value of the parameter 1/p = 09.520 Consistency (in

size) is shown by the reduction in the variability of the estimated coefficients,

as the sample size increases: when the population size doubles, the variance

halves.

The distribution of the estimator is asymptotically normal. Hence, confi-

dence intervals can be constructed from the standard deviation of the (boot-

strapped) estimated coefficients.

Finally, at the risk of being redundant, let us stress that obtaining con-

sistent estimates of the parameters in a transient equilibrium was possible

only because individual observations were independent, in our example (con-

sistency in size); moreover, reality offered potentially infinite number of oc-

casions in which the process could be observed (consistency in replications).

How would estimation in a long run equilibrium look like? In the example,

as we have already discussed, the long run equilibrium (everybody exits the

state) carries no information on the value of the parameter, so it cannot

be exploited for estimation. But suppose individuals can get fired, when

employed, at a rate δ. Independently from the initial conditions, after a few

periods the system reaches a steady state where the expected unemployment

20With non-linear moments we get a small sample bias, of predictable direction (which
depends on the curvature of the moment). The bias decreases as the sample size (number
of agents) increases. See Grazzini et al. (2012).
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rate is a function of p and δ.21 We now have two parameters to estimate, and

estimation can be performed exploiting both the moment condition in the

transitory equilibrium (the MTTF) and the moment condition in the long

run equilibrium (the unemployment rate).

Indirect inference

In the II method, the basic idea is to use the coefficients of an auxiliary

model, estimated both on the real and on the simulated data, to describe the

data, that is as summary statistics on the original model. Hence, the method

prescribes the following steps:

1. simulate the model for a candidate parameters vector θi and obtain

artificial data;

2. estimate the parameters β of a (possibly misspecified) auxiliary model

yt = f(β, zt), where mathbfz are the explanatory variables;

3. change the structural parameters θ of the original model until the dis-

tance between the estimates of the auxiliary model using real and ar-

tificial data is minimized:

θ̂ = arg min
θ

[β̂(θ)− β̂R]′W−1[β̂(θ)− β̂R] (9.11)

where W is a positive definite matrix of weights.

Note that MSM can be thought of as an instance of II, where the meta-

model is just a constant: yt = µ + ut. Indeed, the auxiliary model can be

overly simple and misspecified; however, the estimates are more efficient if

21For instance, with p = 2, δ = .1 and a scale factor λ = .2 the equilibrium unemploy-
ment rate is about 15.3%.
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Population size 10 50 100 500 1,000 5,000 10,000
Mean of estimated coeff. 0.298 0.421 0.436 0.489 0.463 0.475 0.459
Var of estimated coeff. 0.07344 0.05805 0.05874 0.02262 0.01596 0.00877 0.00508

Table 9.2: Montecarlo results for the estimation of a Weibull model by II, with an expo-
nential auxiliary model. The correct value of the parameter is 1/p? = 0.5.

it is a good statistical description of the data, that is a ‘bona fide’ reduced

form version of the model.22

As in the method of simulated moments, if the number of the parameters

of the auxiliary model is equal to the number of parameters in the original

model the original model is just-identified, and the distance between the

estimated coefficients on the real and on the simulated data, if the model is

correctly specified, goes in the limit to zero. If the number of parameters in

the auxiliary model is bigger than the number of parameters in the original

model, the original model is over-identified, and the distance between the

estimated coefficients remain positive. If the number of parameters in the

auxiliary model is smaller than the number of parameters in the original

model, the original model is under-identified.

In the Weibull example of the previous section, it could be tempting to

opt for a very simple auxiliary model in the form of an exponential model.

Exponential models are particular cases of the Weibull models, with p = 1.

This implies a constant hazard rate. Inference in this case is theoretically

possible by comparing the scaling factor λ in the pseudo-true and in the

simulated data. However, a Montecarlo experiment similar to the one already

described shows that the exponential model is too poor a description of the

Weibull model, for p? = 2: the estimation procedure is not able to recover

the pseudo-true value (table 9.2).

22The properties of II methods, however, crucially depend on a correct specification of
the structural model. Some semiparametric methods have been proposed that make II
more robust to the structural model specification (Dridi and Renault, 2000).
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Figure 9.4: Example plot of Weibull hazard functions

The log-logistic specification appears to be a better choice for our auxil-

iary model. In the log-logistic model, the hazard and the survival functions

are respectively

h(t) =
λ1/γt1/γ−1

γ[1 + (λt)1/γ]2
(9.12)

S(t) = [1 + (λt)1/γ]−1 (9.13)

Figure 9.4 depicts the shape of the hazard rate of the log-logistic model,

for different values of the parameter γ. As a proxy for the Weibull, it imme-

diately appears more apt than the exponential.

In the estimation procedure, the γ coefficients for the auxiliary model es-

timated on the (pseudo-)real and the simulated data are compared, and used

to infer the true value of the parameter b, in the (correctly specified) origi-

nal Weibull model. The Montecarlo experiment confirms that the choice is

correct: although the log-logistic model is misspecified, the estimated param-

eters for p are centered around the true value, with a variance that declines

at the usual rate with sample size (table 9.3).23

23Note that consistency in sample size is attainable, in this example, because obser-
vations are independent. Note also that the efficiency of the MSM estimates and the II
estimates, as measured by the variance of the estimates, is similar.
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Population size 10 50 100 500 1,000 5,000 10,000
Mean of estimated coeff. 0.523 0.497 0.495 0.502 0.499 0.499 0.500
Var of estimated coeff. 0.03901 0.00627 0.00367 0.00071 0.00038 0.00009 0.00004

Table 9.3: Montecarlo results for the estimation of a Weibull model by II, with a log-logistic
auxiliary model. The correct value of the parameter is 0.5.

While the usual strategy, as followed in the example above, is to choose

a simple auxiliary model, with a number of parameters comparable to that

of the structural model, and whose estimation is relatively straightforward,

another approach is to introduce an auxiliary model with a large number

of parameters, providing a good description of the real DGP. The idea is to

gain in asymptotic efficiency. However, with large auxiliary models indirect

inference can be very computationally demanding, as the summary statistics

β̃(θ) have to be evaluated for each value of θ appearing in the numerical

optimization algorithm. This has led to the development of a variant to

II, the so-called Efficient Method of Moments, which makes use of a score

generator to define the matching conditions.24

9.3.2 Ergodicity and an application to a simple AB

model

In the sections above we have used, to highlight the mechanics of the es-

timation procedure, a simple analytical model. We now apply the Method

of Simulated Moments to a simple AB model, Thomas Schelling’s Segrega-

tion model (Schelling, 1969).25 This application is also used to illustrate the

effects of non-ergodic behaviour, and suggest a way to take this into account.

The model considers an idealised interaction between individuals having

to choose where to live, on a finite grid. Individuals are initially located

24Gallant (1996).
25For further examples of estimation of AB models by Simulated Minimum Distance,

see Grazzini and Richiardi (2015).
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at random on the grid, with one cell being occupied at most by one agent.

Because cell has eight adjacent cells, individuals can have at most eight imme-

diate neighbours.26 There are two types of individuals, say black and white.

Individuals are characterised by a tolerance level, that is the minimum frac-

tion of same-colour neighbours they can accept. If the composition of their

immediate neighbourhood does not satisfy this condition, individuals become

unsatisfied and they search for another location (empty cell) where the share

of same-colour neighbours is above the threshold. For simplicity, an homoge-

neous tolerance level is assumed. As an example, suppose the tolerance level

is 30%, that is, individuals want to have at least 30% of their neighbours of

the same colour as they are. A black individual with eight neighbours (no

empty cells around him) would move away if less than three of his neighbours

are black. Then model shows that even when the thresholds are pretty low

(corresponding to high levels of tolerance), the equilibrium outcome where

everybody is happy and nobody is willing to move is highly segregated, with

the formation of ‘ghettoes’ possibly surrounded by empty locations. This is

because of two externalities that are in place. When a black individual moves

out because there are too many white individuals around him, he affects the

composition of his original neighbourhood, making other black people more

likely to become unsatisfied (there is one black individual less around). At

the same time, when he settles down to a new location with a high enough

presence of black people, he makes white people in the area more likely to

become unsatisfied, as there is one more black individual around. Because

initial locations are random, even with homogeneous tolerance thresholds

—and even if the threshold is low (high tolerance)— there will be some in-

dividuals who happen to be unhappy of their location. They then move out,

26To avoid boundary effects, it is supposed that cells on one edge of the grid are adjacent
to cells on the other edge (so that the grid is effectively a torus).
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and this triggers a chain reaction that leads to highly segregated outcomes.

The model is clearly very stylized, and nobody would think of taking it

seriously to the data. However, for the sake of our argument let us assume

that this is a good-enough description of some real world situation. We

observe the size of the city, the density of houses, and where individuals live,

and we want to make inference about their tolerance threshold. We assume

that the real world is in equilibrium, that is, every observed individual is

happy about his or her location and does not want to move. We also abstract

from demographic processes, job mobility, house prices and other factors that

might affect location choices: the population is fixed and only neighbourhood

composition matters. For each individual we compute the fraction of same-

colour neighbours, and we characterise the system with the average fraction

of same-colour neighbours, a measure of segregation.

Note that, given there are enough empty cells so that movers can find a

new suitable location, the model always settles down to a situation where

everybody is happy, and nobody wants to move. Such an equilibrium is an

absorbing state of the model. Because no further relocations take place in

the absorbing state, the level of segregation (average share of same-colour

neighbours, or similarity) does not vary.

Also, note that, with a finite grid size, the outcome depends on the initial

(random) location of agents. For the same tolerance threshold, different

levels of segregation can be obtained depending on the initial conditions,

which are in turn determined by the random seed. Because the final level

of segregation of each run is constant (it has a degenerate distribution with

0 variance), there is no chance that the outcomes of two different runs can

be thought to be drawn from the same theoretical distribution, unless they

exactly coincide. If we obtain a level of similarity of 68.2% in one run, and
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Figure 9.5: Evolution of segregation in the Schelling model, different random seeds. The
vertical axis measure the average share of neighbours of the same colour (similarity).
Tolerance threshold is 0.3. Grid size is 15x15. Density is 0.9.

of 69.8% in another run, we must treat those two numbers as irreducibly

different. Said differently, the model is non-ergodic, and no statistical test is

needed to confirm this. Figure 9.5 exemplifies.

Due to its non-ergodic nature, rather than having one long run equilib-

rium (absorbing state), the model has a distribution of long run equilibria

(figure 9.6).27

However, as the grid size grows, the different outcomes get closer and

closer: the effects of the initial conditions (random seed) matter less and

less, and the distribution of equilibrium segregation levels shrinks. In the

limit, the model becomes ergodic, with only one equilibrium, for given values

of the parameters.

Here, to illustrate the point about non-ergodicity, we consider a small

grid size. We assume that we observe data coming from one real ‘village’

composed of 15x15=225 houses, inhabited by approximately 200 individuals

(density is 0.9). The level of segregation in this hypothetical village is 0.7.

27In general, the distribution of long run equilibria needs not to be normal.
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Figure 9.6: Distribution of equilibrium segregation levels in the Schelling model, different
random seeds. The horizontal axis measure the average share of neighbours of the same
colour (similarity), in equilibium. Tolerance threshold is 0.3. Grid size is 15x15. Density
is 0.9. 10,000 runs are performed; those where an equilibrium is not reached after 250
interations are discarded. Normal density is superimposed.

We wish to estimate how tolerant its inhabitants are.

We first fix the random seed. Because of the limited number of neigh-

bours one individual can have, the individual responsiveness to changes in

the tolerance threshold is a step function (figure 9.7).

The accuracy of the estimates cannot go beyond the distance between

those steps. Optimisation is therefore easily achieved by a simple grid search:

the model is simulated for all values of the parameter in the range [0,1],

with an interval equal to 0.01 (which is big enough to discriminate between

different steps). Figure 9.8 shows how our summary statistics µ∗(θ) —or

moment function— responds to changes in the value of the parameter θ, the

tolerance threshold.28

The moment is monotonic in the parameter: as we have seen, with only

one parameter this is a sufficient condition for identification.29 Note that

28Because the level of segregation is constant in the stationary state, we do not actually
need to compute a longitudinal average to estimate the theoretical moment: we can simply
look at the level of segregation that occurs at the first point in simulated time where
everybody is happy.

29See also Grazzini and Richiardi (2015).
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Figure 9.7: Individual choices in the Schelling model: Minimum fraction of same-colour
neighbourhood wanted for different levels of tolerance. In the limit, for an infinitely large
neighbourhood, the function would be a straight 45o line.

Figure 9.8: The effects of tolerance on segregation in the Schelling model.
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so far we have only looked at the model, in order to construct the moment

function µ∗(θ). We now compare this moment function with the observed

value mD, which we assume to be 70%. By inverting the moment function

at the observed value, we get our estimate of the parameter. In our case, a

linear interpolation between the two values of the parameters, which give a

level of segregation respectively immediately below and immediately above

70%, gives our point estimate of 0.289. Because there is no variation in the

steady state (by assumption), there is no sampling error, and the theoretical

moment (given the random seed) is estimated with precision: consequently,

the standard error of the estimate is 0.

On the contrary, if there were some stochastic factor that exogenously

forced relocation, like birth and death, we would have obtained a stationary

state where the level of segregation fluctuates around the long term mean

µ∗. We would then need to estimate the moments, both in the real and

in the simulated data. Such an estimate is nothing else that the sample

mean m, computed in the stationary state. The Central Limit Theorem

tells us that the sample mean is asymptotically normally distributed with

mean E[m] = µ∗ and standard deviation σm =
σ√
n

, where σ is the standard

deviation of the underlying statistics (the level of segregation in our case),

and n is the number of periods of observation. The simulated moment µ∗(θ)

can then be computed, for any θ, to any desired degree of accuracy, given

that we can simulate an arbitrarily large number of periods in the steady

state. The real moment µD however can only be estimated in the available

data. Due to this sampling error, our estimates for θ are also subject to

uncertainty. To obtain the standard error of the estimates, we can simply

bootstrap the observed moment from its estimated distribution (a normal

distribution with mean mD and variance σ2
m). The simulated moments are
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then inverted, giving a distribution of estimates. The standard deviation of

this distribution is the standard error of the estimates.

Until now, we have kept the random seed fixed. However, we have seen

that for finite city sizes, the model is non-ergodic, so that different levels of

segregation are obtained for the same value of the parameter, due to different

initial conditions. A simple way to take non-ergodicity into account is to re-

peat the estimation for different random seeds. This gives us a distribution of

estimates, even in the simple case of constant segregation in the steady state.

The amplitude of this distribution measures the uncertainty that originates

from the non-ergodic nature of the model: we do not know what random

seed God used to produce the real data, and whether the real data are a low

draw (like run #1 in figure 9.5) or a high draw (like run #3). Note that this

uncertainty is different from sampling error: even if we enlarge the period of

observation, we cannot learn about the random seed used to produce the real

data. Hence, the uncertainty coming from non-ergodicity does not vanishes

over time.

To illustrate the issue, we construct the theoretical moments for 10,000

different random seeds, and invert them at the observed level of segregation

to obtain a distribution of estimates. This is depicted in figure 9.9. The

distribution is multimodal, which might look at first surprising, given the

beautiful normal distribution of figure 9.6. However, figure 9.6 depicts the

distribution of segregation levels that can be obtained for a given level of

tolerance, while figure 9.9 relates to the inverse problem, the distribution of

tolerance levels that are consistent with a given level of segregation. The

reason for its multimodal nature can be understood by a closer inspection of

figure 9.7. The spikes in the distribution of estimates result from different

possible combinations of tolerance level and neighbourhood composition of
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Figure 9.9: Distribution of estimates in the Schelling model. 10,000 random seeds are
tested; the parameter space is regularly sampled on the interval [0,1] at 0.01 intervals.
The assumed observed level of segregation is 70%.

individuals with different number of neighbors.30 If we considered larger

neighborhoods (for instance by taking into account also second neighbors,

that is individuals living two cells away), the spikes would get closer, and for

large enough neighborhoods we would get a nice normal distribution.

What matters for our argument, however, is that in presence of non-

ergodicity, the distribution estimates for different random seeds is our best

assessment of the unknown level of tolerance in the population.31

30In the range of values of the tolerance threshold which are relevant for the exercise
(that is, leading to a segregation level around 70%), individuals with exactly 8 neighbours
change their behaviour only as the required number of same-colour neighbours passes
25% (below, they require two neighbors of the same colour; above, they require three
neighbours of the same colour) or 37.5% (below, three same-colour neighbours, above,
four same-colour neighbors). Individuals with exactly 7 neighbors change their behaviour
only at 28.6% (from two to three same-colour neighbors) or 42.9% (from three to four).
Individuals with exactly 6 neighbors change their behavior only at 33.3% (from two to
three same-colour neighbors). Individuals with exactly 5 neighbors change their behavior
only at 20% (from one to two same-colour neighbors) or 40% (from two to three). Given the
assumed density (0.9), there are very few individuals with 4 neighbours, and it practically
never happens that there are individuals with less than 4 neighbors.

31With sampling error, each estimate would carry its own (bootstrapped) standard
error.
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9.4 Bayesian estimation

The fundamental equation for Bayesian methods is Bayes theorem:

p
(
θ|YR

)
∝ L

(
θ; YR

)
p (θ) (9.14)

where p (θ) is the prior distribution of the parameters, L
(
θ; YR

)
≡ p

(
YR|θ

)
is the likelihood of observing the data YR ≡

{
yRt
}

, t = 1, · · · , T given the

value of the parameters, and p
(
θ|YR

)
is the posterior distribution, that is

the updated distribution once the information coming from the observed data

is properly considered.

Bayesians give a prior distribution of the parameters as an input to the

estimation process, and get back a posterior distribution: knowledge gets

updated by the information contained in the data. The prior distribution

typically comes from other studies or subjective evaluations. A uniform dis-

tribution in the allowed range of the parameters is often used as a way to

introduce “uninformative” priors, though not such a thing as an uninfor-

mative prior actually exists (Bernardo, 1997). What matters, the prior is a

distribution, which through application of Bayes theorem produces another

distribution as an output.

The difference with SMD techniques can be evaluated by comparing the

Bayesian approach with Maximum Likelihood (ML), an instance of SMD

methods which entails maximising the likelihood L
(
θ; YR

)
with respect

to θ: (i) in the Bayesian approach, there is no maximisation involved; (ii)

rather than obtaining a point estimate for the parameters (plus an estimate

for the standard error which, if the distribution of the estimator is known,

at least asymptotically, allows computation of confidence intervals) we get a
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distribution, (iii) prior knowledge can be incorporated.32

Sampling the posterior distribution p
(
θ|YR

)
involves two computation-

ally intensive steps: (i), for given values of θ, obtaining an estimate for the

likelihood L , (ii) iterating over different values of θ. In the next section we

elaborate on the first issue, while in section 9.4.2 we discuss the latter.

9.4.1 Estimating the likelihood

Estimation of the likelihood (the probability of observing the data, given the

current values of the parameters) can be done, when its analytical derivation

is not feasible, by repeatedly sampling from the model output. For instance,

in a long-run equilibrium, the outcome fluctuates around a stationary level

µ(θ)∗ = E[yt(θ)|t > T̄ ]. If we collect the artificial data produced by the

model in such a long-run equilibrium, we can construct a probability dis-

tribution around µ∗, and therefore evaluate the density at each observed

data point yRt . If the outcomes y(θ) were discrete, we would only have to

count the frequency of occurrence of each observed value yRt . With contin-

uous y(θ), the likelihood has to be estimated either non-parametrically or

parametrically, under appropriate distributional assumptions. A traditional

non-parametric method is kernel density estimation (KDE), which basically

produces histogram-smoothing: the artificial data are grouped in bins (the

histogram), and then a weighted moving average of the frequency of each bin

is computed.33 The approximation bias introduced by KDE can be reduced

by using a large number of very small bins, but then the variance in the es-

32We have not considered ML in our review of SMD methods as obtaining an estimate
of the likelihood can be computationally heavy, as we shall see. For the same reason, we
will not dwell into this problem here, and we will focus on likelihood-free approximate
Bayesian methods instead.

33More formally, kernel density estimation (KDE), given a simulated time series y(θ) ≡
{ys}, s = 1 · · ·S, approximates the density f(yRt ,θ), for each observed data point yRt ,
with:
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timate of the density grows. To see this, think of estimating the probability

density function (PDF) when the data comes from any standard distribution,

like an exponential or a Gaussian. We can approximate the true PDF f(x) to

arbitrary accuracy by a piecewise-constant density (that is, by constructing

an histogram), but, for a fixed set of bins, we can only come so close to the

true, continuous density.

The main problem with KDE is however its computational cost. A

(faster) alternative is to assume a parametric distribution for the density,

around µ∗(θ). Imposing additional information about the distribution of the

simulation output can help generate better estimates from a limited number

of simulation runs. On the other hand, those estimates may increase the bias

if the assumed distribution does not conform to the true density of the model

output. Such an assumption can of course be tested in the artificial data, for

specific values of θ, and should be tested in the relevant range (i.e. where

the estimated coefficients lie). Use of parametric methods leads to syntetic

likelihood or pseudo-likelihood estimation (Wood, 2010; Hartig et al., 2011).

For instance, Grazzini et al. (2015) estimate a stock market model with

one behavioural parameter determining how traders react to a difference be-

tween the target price and the current price pit, and assume a Gaussian

distribution of the price level around its long-run stationary level. Under

this assumption, they derive a close-form expression for the likelihood func-

tion. Figure 9.1 shows that the assumption is violated at the estimated value

of the parameter, given that prices are much more concentrated around the

f̃(yRt |θ) =
1

Sh

S∑
s=1

K

√∑K
k=1

∑S
s=1

(
ySks − yRkt

)2
h

(9.15)

where K is a kernel function that places greater weight on values yks that are closer to
yRkt, is symmetric around zero and integrates to one, and h is the bandwidth. Algorithms
for KDE are available in most statistical packages.
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Figure 9.1: Price distribution in the long-run stationary state at the pseudo-true value of
the coefficient. Source: Grazzini and Richiardi (2015).

theoretical equilibrium value. However, the shape of the distribution is sym-

metric and not too far from Gaussian, except for the spike at the theoretical

equilibrium. Monte Carlo experimentation with the new posterior suggests

that it performs very well, saving significant computational time.

The parametric and non-parametric methods discussed above use the out-

put variability that is predicted by the model, and use this information for

inference. However, it is possible that the model shows much less variability

than the data. This is due to fundamental specification errors (the model

is only a poor approximation of the real process, so that the mean model

predictions do not fit to the data), simplification errors (the model is a good

approximation of the real process, but there are additional stochastic pro-

cesses that have acted on the data and are not included in the model) or

measurement errors (there is uncertainty about the data). While the first

type of errors calls for a re-specification of the model, the latter types could

in principle be dealt with by including additional processes that explain this

variability within the model. “However, particularly, when those processes

are not of interest for the scientific question asked, it is simpler and more
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parsimonious to express this unexplained variability outside the stochastic

simulation. One way to do this is adding an external error model with a

tractable likelihood on top of the results of the stochastic simulation.” (Har-

tig et al., 2011). Again, the validity of such a strategy depends on the quality

of the assumption about the distribution of these external errors, given the

model and the data. This assumption cannot be tested per se, as the vari-

ability in the real data comes both from the explained components (i.e. the

model) and from the unexplained ones (the external errors), the external

errors being defined as a residual.

The two parametric strategies (modelling the variability of model outcome

and modelling external errors that might affect the real data, in the stationary

state) are often explored separately. For instance, most studies that use the

augmentation by external errors approach then treat the model outcome

as deterministic, in the stationary state, whilst most studies that employ a

synthetic likelihood do not consider external errors. However, it is in principle

possible to combine the two approaches together, and explicit distributional

assumptions for both the model outcomes and the external errors. It is

also possible to be agnostic about the origin of the variability (whether the

model or the external errors) and consider a single parametric distribution of

the data around the steady state.34 Moreover, for most inferential purposes

the amplitude of the distribution does not matter, as the variance-covariance

matrix is integrated out of the approximated likelihood function (see Grazzini

et al., 2015).

34Given that the data does not allow to disentangle model errors from external errors,
these two approaches are equivalent.
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9.4.2 Sampling the posterior distribution

Application of the Bayes theorem, once the likelihood is known, allows to get

a density for the posterior distribution, at one given value of θ. However,

to recover the whole shape of the posterior distribution, many values have

to be sampled. In simple models, exploration of the parameters space can

be accomplished by ‘brute force’ grid exploration: the parameters space is

sampled at regular (small) intervals. For instance, if there are two parameters

that can potentially vary continuously between 0 and 1, and we set the value

of the step to .1, we have 11 values to consider for each parameter, and their

combination gives 121 points to sample: by discretising the parameters, we

have reduced the size of the parameters space from R2 to 121 points.

Such a systematic grid search, however, is highly inefficient, as it involves

evaluating the density of the posterior distribution at many points where it

is practically zero, while more likely values of θ, where a finer search might

be valuable, are sampled with the same probability. Multi-level grid search,

where the grid is explored at smaller intervals in ranges of the parameter

space on the bases of the results of previous, looser, grid explorations, can of

course be devised. However, as soon as the number of parameters increases,

the computational limits of this approach become evident.

There are four main classes of efficient sampling schemes, to obtain sam-

ples from a function of θ, the target distribution (the posterior, in our case),

which is unknown analytically but can be evaluated point-wise for each θ:

(i) rejection sampling, (ii) importance sampling, (iii) Markov chain Monte

Carlo, and (iv) Sequential Monte Carlo. Here we provide only an intuition

of how they work, drawing extensively from the excellent survey by Hartig

et al. (2011).35

35The entries marked with a ‘*’ are excerpt from Hartig et al. (2011), where we have

324



Rejection sampling.∗ The simplest possibility of generating a distribu-

tion that approximates L (θ) is to sample random parameters θ and accept

those proportionally to their (point-wise approximated) value of L (θ). This

approach can be slightly improved by importance sampling or stratified sam-

pling methods such as the Latin hypercube design, but rejection approaches

encounter computational limitations when the dimensionality of the param-

eter space becomes larger than typically 10-15 parameters.

Importance sampling. The intuition behind importance sampling is to

to study the distribution L (θ) = p(θ|y) while sampling from another, sim-

pler distribution q(θ) (called importance distribution). This technique was

born as a variance reduction technique, aimed at increasing the likelihood

to sample from an ‘important’ but small region by sampling from a different

distribution that overweights the important region (hence the name). Having

oversampled the important region, we have to adjust our estimate somehow

to account for having sampled from this other distribution. This is done by

re-weighting the sampled values by the adjustment factor p(θ)(q(θ)). Impor-

tance sampling and rejection sampling are similar in as much both distort

a sample from one distribution in order to sample from another. They also

share the limitation that they do not work well in high dimensions.

Markov chain Monte Carlo (MCMC).∗∗ MCMC sampling is a process

that filters proposed values for θ to arrive at a sample of values drawn from

the desired distribution. MCMC algorithms construct a Markov chain of pa-

rameter values (θ1,θn), where the next parameter combination θi+1 is chosen

by proposing a random move conditional on the last parameter combination

θi, and accepting conditional on the ratio of L (θi+1)/L (θi). There are

a number of MCMC samplers, the most popular of which is the Metropo-

replaced φ in their notation with θ, in order to maintain consistency. The entries marked
with a ‘**’ are based on Hartig et al. (2011), appropriately integrated.
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lis–Hastings algorithm. In its simplest form, the random-walk Metropolis-

Hastings, in each period a candidate θc ∼ N
(
θ(s),V

)
is drawn, given the

current value θ(s). The candidate is accepted with probability

min

1,
p (θc|yR)

p
(
θ(s)|yR

)
 (9.16)

in which case we set θ(s+1) = θc; else, we set θ(s+1) = θ(s) and we repeat the

previous candidate.

Given that certain conditions are met (see, e.g. Andrieu et al., 2003),

the Markov chain of parameter values will eventually converge to the target

distribution L (θ). The advantage of an MCMC is that the time needed to

obtain acceptable convergence is typically much shorter than for rejection

sampling, because the sampling effort is concentrated in the areas of high

likelihood or posterior density.

Sequential Monte Carlo methods (SMC).∗ Particle filters or sequential

Monte Carlo methods (SMCs) also try to concentrate the sampling effort in

the areas of high likelihood or posterior density based on previous samples.

Unlike MCMCs, however, each step of the algorithm contains not a single θ,

but N parameter combinations θi (particles), that are assigned weights ωi

proportional to their likelihood or posterior value L (θi) (see Arulampalam

et al., 2002). When starting with a random sample of parameters, many

particles may be assigned close to zero weights, meaning that they carry

little information for the inference (degeneracy). To avoid this, a resampling

step is usually added where a new set of particles is created based on the

current weight distribution [...]. The traditional motivation for a particle

filter is to include new data in each filter step, but the filter may also be used

to work on a fixed dataset or to subsequently add independent subsets of the

326



data.

9.4.3 Approximate Bayesian computation

As we have seen in section 9.4.1, obtaining a non-parametric estimate of the

likelihood can be computationally heavy. Turning to parametric estimates,

under the assumption of a fixed distributional form of the variable of interest

around a long-term stationary state predicted by the model —where the

variability is produced either by model uncertainty or external errors— can

sometimes be too restrictive. Originating from population genetics (Tavaré

et al., 1997; Fu and Li, 1997), where the task of estimating the likelihood

of the observed changes in DNA is impervious, a new set of methods have

appeared in the last fifteen years to produce approximations of the posterior

distributions without relying on the likelihood. These methods are labelled

‘likelihood-free’ methods, and the best known class is approximate Bayesian

computation (ABC).36

In standard Bayesian methods, it is the likelihood function that provides

the fit of the model with the data —describing how plausible a particular pa-

rameter set θ. The likelihood is however often computationally impractical to

evaluate. The basic idea of ABC is to replace the evaluation of the likelihood

with a 0-1 indicator, describing whether the model outcome is close enough

to the observed data. To allow such an assessment, the model outcome and

the data must first be summarised. Then, a distance between the simulated

and the real data is computed. The model is assumed to be close enough to

the data if the distance falls within the admitted tolerance. As such, there

are three key ingredients in ABC: (i) the selection of summary statistics, (ii)

the definition of a distance measure, (iii) the definition of a tolerance thresh-

36See Marin et al. (2011); Turner and Zandt (2012).
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old. The choice of a distance measure is usually the least controversial point

(the Euclidean distance or weighted Euclidean distance, where the weights

are given by the inverse of the standard deviation of each summary statistics,

is generally used). The choice of a tolerance threshold, as we shall see, deter-

mines the trade-off between sampling error and approximation error, given

computing time. The choice of summary statistics is the most challenging,

and we will discuss it in greater details.

The basic ABC algorithm works as follows:

1. a candidate vector θi is drawn from a prior distribution;

2. a simulation is run with parameters vector θi, obtaining simulated data

from the model density p(y|θi);

3. the candidate vector is either retained or dismissed depending on whether

the distance between the summary statistics computed on the artificial

data S(y(θ)) and summary statistics computed on the real data S(yR)

is within or outside the admitted tolerance h: d(S,SR) ≤ h.

This is repeated N times; the retained values of the parameters define an

empirical approximated posterior distribution. KDE can then be applied to

smooth out the resulting histogram, and obtain an estimate of the theoretical

approximated posterior. Approximation error refers to the fact that the

posterior is approximated; sampling error refers to the fact that we learn

about the approximated posterior from a limited set of data.

It is easy to see where the approximation error comes from. While the

true posterior distribution is p(θ|y = yR), in ABC we get p(θ|S(y) ≈ S(yR)).

If we set the tolerance threshold h = 0, and our statistics were sufficient

summary statistics37, we would get back to standard Bayesian inference,

37A summary statistics is said to be sufficient if “no other statistic that can be calculated
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and sample from the exact posterior distribution. However —and this is

the whole point— because of the complexity of the underlying model the

likelihood of observing the real data is tiny everywhere, so that acceptances

are impossible, or at least very rare. When h is too small, the distribution

of accepted values of θ is closer to the true posterior, and the approximation

error is smaller; however, the number of acceptances is usually too small

to obtain a precise estimate of the (approximated) posterior distribution:

the sampling error increases. On the other hand, when h is too large, the

precision of the estimate improves because we have more accepted values

(the sampling error goes down), but the approximation error gets bigger. In

other words, we obtain a better estimate of a worse object.

An alternative to choosing h in advance is to specify the number of ac-

ceptances k required (e.g. k = 500): then, h is chosen (after the distance for

every draw is computed) in order to achieve that number of acceptances. Fi-

nally, note that the tradeoff between sampling error and approximation error

is for a given number of draws (hence, a given computing time). Drawing

more candidates allows to reduce the approximation error (by decreasing h)

without increasing the sampling error. Stated more formally, ABC converges

to true posterior as h→ 0, N →∞.

The choice of summary statistics is at the same time the weak point of

ABC and a great source of flexibility. For instance, by choosing as summary

statistics the moments µ(y), or the coefficients β of an appropriate auxiliary

model, it allows to embed the method of simulated moments and indirect

inference in a Bayesian setting, incorporating prior information. Also, an

appropriate choice of the summary statistics allows to make conditional fore-

casts about the evolution of the real world. Suppose an extreme case where

from the same sample provides any additional information as to the value of the parameter”
(Fisher, 1922). Sufficient statistics satisfy p(θ|S(yR)) = p(θ|yR).
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we only condition on the state of the system at time t: we wish to project

the likely evolution of a system given yt. We can then simply set our sum-

mary statistics S(y) = yR,t: the ABC algorithm will retain any simulated

trajectory that passes for yt, producing not only a (quite poor, in this case)

approximation of the posterior, but also conditional projections about future

states.38

Any condition can in principle be used as a summary statistics: of course,

the lower the informational content of the condition, the poorer the approx-

imation (and the bigger the dispersion of the projections). However, there

is also a drawback in increasing the informational content of the summary

statistics, and it comes again from the trade-off between sampling error and

approximation error. As Beaumont et al. (2002, p. 2026) put it, “A cru-

cial limitation of the [...] method is that only a small number of summary

statistics can usually be handled. Otherwise, either acceptance rates become

prohibitively low or the tolerance [...] must be increased, which can distort

the approximation.” This is because the asymptotic rate of converge of ABC

to the true posterior distribution, as h → 0, N → ∞, worsens with dim(S).

The problem of choosing appropriate low dimensional summary statistics

that are informative about θ is an open issue in ABC. “The insidious is-

sue is that it is rarely possible to verify either sufficiency or insufficiency.

Furthermore, if they are insufficient, it is usually not possible to determine

how badly they have distorted results. Said another way, you know you are

probably making errors, but you don’t know how large they are” (Holmes,

38The case when it is possible to kill two birds (inference and conditional statements)
with one stone is of course quite a lucky one. More in general, when the condition in
the conditional statement is too poor to allow for good inference, we should keep the
two problems separate: first, get a good approximation of the posterior (by selecting
appropriate summary statistics); then, sample from the estimated posterior and select the
trajectories that fulfil the condition.
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2015).

The topic is an active area of research. Recent years have seen the devel-

opment of techniques that provide guidance in the selection of the summary

statistics (Fearnhead and Prangle, 2012, see e.g.). Also, post-processing of

the results can improve the quality of the approximation by correcting the

distribution of θ by the difference between the observed and simulated sum-

mary statistics (Beaumont et al., 2002). Finally, new methods have appeared

that require no summary statistics, external error terms, or tolerance thresh-

olds, at a computational cost (Turner and Sederberg, 2013).

Two final notes on ABC concern efficiency.

The standard scheme for ABC is, as we have seen, rejection sampling.

Candidates are drawn from the prior distribution, and only those that ‘per-

form well’ are retained. This is not very efficient, especially if the prior

distribution differs significantly from the posterior. However, it is possible to

employ ABC with more efficient sampling schemes (see Sisson et al., 2016).

For instance, rather than sampling from the prior one could sample from an

importance distribution q(θ). Candidate are then accepted if d(S, SR) ≤ h),

with a weight p(θ)(q(θ)). SMC methods can then be employed to adaptively

refine both the threshold and the importance distribution. MCMC methods

can also be employed, where new candidates depend on the current value of

θ and are accepted with a modified Metropolis-Hastings rule.

Efficiency can also be improved in an ABC setting by assigning a con-

tinuation probability to each simulation. The idea is to stop prematurely

simulations that are likely to end up in a rejection, and has originated the

lazy ABC approach (Prangle, 2014).
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9.4.4 ABC estimation of the Segregation model

As an illustration of the ABC approach, we estimate the Schelling model.

As in section 9.3.2, we assume to observe a segregation level of 70% (the

average share of same-colour neighbours). The parameter to estimate is the

individual (homogeneous) tolerance level, that is the minimum share of same-

colour neighbours that a person is willing to accept before deciding to move

out of the current location. Our prior is a uniform distribution between 0 and

1. We then follow the simple rejection algorithm discussed in section 9.4.3:

we perform random sampling from the prior distribution, run the simulation

with the sampled value of the parameter until an equilibrium configuration

is obtained where nobody wants to move, compute the distance d between

the observed level of segregation (70%) and the simulated one, and retain

only the values of the parameters where d ≤ h, with different thresholds h.

When sampling from the prior distribution, we do not need to keep the

random seed constant. Note that we could indeed fix the random seed: we

would then obtain a posterior distribution reflecting the uncertainty net of

non-ergodicity.39 Then we could repeat, as with SMD, the estimation ex-

ercise many times for different random seeds, and obtain a distribution of

distributions. Comparing the variance of the posterior distributions obtained

with fixed seeds, with the variance of the overall posterior distribution would

permit to disentangle the uncertainty coming from the limited information

contained in the data, plus the imprecise information underpinning our pri-

ors, from the uncertainty coming from non-ergodicity.

But disentangling these sources of uncertainty is not really relevant for

39In the Schelling model, because the long-run stationary state is just a constant value
for the segregation level, for h low enough we would simply get a uniform posterior be-
tween the two values which give a level of segregation respectively immediately below and
immediately above the observed level of 70% —see figure 9.7.
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Bayesians. This is because the main object of interest for Bayesians —the

posterior— is already a distribution, which reflects the intrinsic uncertainty

about the value of the parameter; for subjective Bayesians, such things as

‘true’ values of the parameters simply do not exist. Non-ergodicity however

still matters for interpreting and using the estimates: when simulating a non-

ergodic model, we should realize that multiple statistical equilibria exist, for

the same values of the parameters. This might be important for prediction

and for policy analysis, as discussed in section 9.2.

Figure 9.2 depicts the posteriors obtained in the Schelling model, for

different levels of h. The prior for the individual tolerance threshold is a

uniform distribution between 0 and 0.45. Over 2 million draws are taken

from the prior. With h = 10 percentage points, the shape of the posterior

is detectable, but the distribution stretches over a wide range of values. De-

creasing the value of h to 5 percentage points reduces the range of admitted

values, a sign that the approximation improves. However, decreasing h fur-

ther seems to provide no additional benefits, at the cost of reducing sample

size.

9.5 Conclusions

Estimation of AB models has been so far confined to a few, relatively simple,

cases. This is for sure bound to change, as the field gets more mature, and

the challenge of empirical validation is taken seriously. Basically, the main

difference between estimation of AB models and more standard applications

lies in the higher computational complexity of AB models. This means that

likelihood-based methods are in general impractical, unless very few parame-

ters are involved. Likelihood-free methods like approximate Bayesian compu-
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h = 10 ppt. (706,675 obs.) h = 5 ppt. (375810 obs.)

Simulated segregation level between 60% and 80% Simulated segregation level between 65% and 75%

h = 1 ppt. (75,847 obs.) h = .1 ppt. (7543 obs.)

Simulated segregation level between 69% and 71% Simulated segregation level between 69.9% and 70.1%

Figure 9.2: Posterior distributions in the Schelling model. 2,300,000 draws from a Uniform
prior in (0,0.45).
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tation, which embed simulated minimum distance techniques in a Bayesian

framework, seem therefore promising, coupled with the use of efficient Monte

Carlo sampling.
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Chapter 10

Epilogue

The economic crisis the world has experienced since 2007, which is still on-

going in some parts of the globe, has been also a crisis of the economic

profession. ”Over the past three decades, economists have largely developed

and come to rely on models that disregard key factors—including hetero-

geneity of decision rules, revisions of forecasting strategies, and changes in

the social context—that drive outcomes in asset and other markets. It is

obvious, even to the casual observer that these models fail to account for the

actual evolution of the real-world economy.... In our hour of greatest need,

societies around the world are left to grope in the dark without a theory”

(Colander, 2009).

This predicament was not new. Back in 1995 Frank Hahn and Robert

Solow fiercefully argued against the New Classical basic methodological prin-

ciple according to which ”the only appropriate micro model is Walrasian...

based exclusively on inter-temporal utility maximization subject to budget

and technological constraints....[This model] proposes that the actual econ-

omy can be read as it is... approximating the infinite time discounted utility

maximizing program of a single immortal representative agent.... There is

337



simply no possibility of coordination failures....Of course that is the economy

of Dr. Pangloss and it bears little relation to the world” (Hahn, 1995, p.2).

Since then, some developments of economic thought have gone in the right di-

rection but overall, their criticisms have gone largely unnoticed. The straight

jacket of axiomatic Walrasian microfoundations has limited the scope of the

research for alternatives.

Walrasian micro-foundations should be considered as a wrong answer to

a right research question, the most stimulating question since the very be-

ginning of economic thought: How does a completely decentralized economy

composed of myriads of self-interested agents manages to coordinate individ-

ual actions?

Agent Based Models provide a promising tentative answer to this ques-

tion. There is still a long way to go but the path has been traced. These

Elements present and discuss the basic toolkit for researchers interested in

building ABM.

If the reader arrives so far in this book, we will be happy. If, from now

on, it is we who will follow the reader’s progress, we will be blissfully happy.
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