13 research outputs found

    Ergodic Control and Polyhedral approaches to PageRank Optimization

    Full text link
    We study a general class of PageRank optimization problems which consist in finding an optimal outlink strategy for a web site subject to design constraints. We consider both a continuous problem, in which one can choose the intensity of a link, and a discrete one, in which in each page, there are obligatory links, facultative links and forbidden links. We show that the continuous problem, as well as its discrete variant when there are no constraints coupling different pages, can both be modeled by constrained Markov decision processes with ergodic reward, in which the webmaster determines the transition probabilities of websurfers. Although the number of actions turns out to be exponential, we show that an associated polytope of transition measures has a concise representation, from which we deduce that the continuous problem is solvable in polynomial time, and that the same is true for the discrete problem when there are no coupling constraints. We also provide efficient algorithms, adapted to very large networks. Then, we investigate the qualitative features of optimal outlink strategies, and identify in particular assumptions under which there exists a "master" page to which all controlled pages should point. We report numerical results on fragments of the real web graph.Comment: 39 page

    PageRank optimization applied to spam detection

    Full text link
    We give a new link spam detection and PageRank demotion algorithm called MaxRank. Like TrustRank and AntiTrustRank, it starts with a seed of hand-picked trusted and spam pages. We define the MaxRank of a page as the frequency of visit of this page by a random surfer minimizing an average cost per time unit. On a given page, the random surfer selects a set of hyperlinks and clicks with uniform probability on any of these hyperlinks. The cost function penalizes spam pages and hyperlink removals. The goal is to determine a hyperlink deletion policy that minimizes this score. The MaxRank is interpreted as a modified PageRank vector, used to sort web pages instead of the usual PageRank vector. The bias vector of this ergodic control problem, which is unique up to an additive constant, is a measure of the "spamicity" of each page, used to detect spam pages. We give a scalable algorithm for MaxRank computation that allowed us to perform experimental results on the WEBSPAM-UK2007 dataset. We show that our algorithm outperforms both TrustRank and AntiTrustRank for spam and nonspam page detection.Comment: 8 pages, 6 figure

    Ergodic Randomized Algorithms and Dynamics over Networks

    Full text link
    Algorithms and dynamics over networks often involve randomization, and randomization may result in oscillating dynamics which fail to converge in a deterministic sense. In this paper, we observe this undesired feature in three applications, in which the dynamics is the randomized asynchronous counterpart of a well-behaved synchronous one. These three applications are network localization, PageRank computation, and opinion dynamics. Motivated by their formal similarity, we show the following general fact, under the assumptions of independence across time and linearities of the updates: if the expected dynamics is stable and converges to the same limit of the original synchronous dynamics, then the oscillations are ergodic and the desired limit can be locally recovered via time-averaging.Comment: 11 pages; submitted for publication. revised version with fixed technical flaw and updated reference

    Controlling the Katz-Bonacich Centrality in Social Network: Application to gossip in Online Social Networks

    Get PDF
    International audienceRecent papers studied the control of spectral centrality measures of a network by manipulating the topology of the network. We extend these works by focusing on a specific spectral centrality measure, the Katz-Bonacich centrality. The optimization of the Katz-Bonacich centrality using a topological control is called the Katz-Bonacich optimization problem. We first prove that this problem is equivalent to a linear optimization problem. Thus, in the context of large graphs, we can use state of the art algorithms. We provide a specific applications of the Katz-Bonacich centrality minimization problem based on the minimization of gossip propagation and make some experiments on real networks

    PageRank Optimization by Edge Selection

    Get PDF
    The importance of a node in a directed graph can be measured by its PageRank. The PageRank of a node is used in a number of application contexts - including ranking websites - and can be interpreted as the average portion of time spent at the node by an infinite random walk. We consider the problem of maximizing the PageRank of a node by selecting some of the edges from a set of edges that are under our control. By applying results from Markov decision theory, we show that an optimal solution to this problem can be found in polynomial time. Our core solution results in a linear programming formulation, but we also provide an alternative greedy algorithm, a variant of policy iteration, which runs in polynomial time, as well. Finally, we show that, under the slight modification for which we are given mutually exclusive pairs of edges, the problem of PageRank optimization becomes NP-hard.Comment: 30 pages, 3 figure
    corecore