20 research outputs found

    Locally Encodable and Decodable Codes for Distributed Storage Systems

    Full text link
    We consider the locality of encoding and decoding operations in distributed storage systems (DSS), and propose a new class of codes, called locally encodable and decodable codes (LEDC), that provides a higher degree of operational locality compared to currently known codes. For a given locality structure, we derive an upper bound on the global distance and demonstrate the existence of an optimal LEDC for sufficiently large field size. In addition, we also construct two families of optimal LEDC for fields with size linear in code length.Comment: 7 page

    Convertible Codes: New Class of Codes for Efficient Conversion of Coded Data in Distributed Storage

    Get PDF
    Erasure codes are typically used in large-scale distributed storage systems to provide durability of data in the face of failures. In this setting, a set of k blocks to be stored is encoded using an [n, k] code to generate n blocks that are then stored on different storage nodes. A recent work by Kadekodi et al. [Kadekodi et al., 2019] shows that the failure rate of storage devices vary significantly over time, and that changing the rate of the code (via a change in the parameters n and k) in response to such variations provides significant reduction in storage space requirement. However, the resource overhead of realizing such a change in the code rate on already encoded data in traditional codes is prohibitively high. Motivated by this application, in this work we first present a new framework to formalize the notion of code conversion - the process of converting data encoded with an [n^I, k^I] code into data encoded with an [n^F, k^F] code while maintaining desired decodability properties, such as the maximum-distance-separable (MDS) property. We then introduce convertible codes, a new class of code pairs that allow for code conversions in a resource-efficient manner. For an important parameter regime (which we call the merge regime) along with the widely used linearity and MDS decodability constraint, we prove tight bounds on the number of nodes accessed during code conversion. In particular, our achievability result is an explicit construction of MDS convertible codes that are optimal for all parameter values in the merge regime albeit with a high field size. We then present explicit low-field-size constructions of optimal MDS convertible codes for a broad range of parameters in the merge regime. Our results thus show that it is indeed possible to achieve code conversions with significantly lesser resources as compared to the default approach of re-encoding

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    AG codes achieve list decoding capacity over contant-sized fields

    Full text link
    The recently-emerging field of higher order MDS codes has sought to unify a number of concepts in coding theory. Such areas captured by higher order MDS codes include maximally recoverable (MR) tensor codes, codes with optimal list-decoding guarantees, and codes with constrained generator matrices (as in the GM-MDS theorem). By proving these equivalences, Brakensiek-Gopi-Makam showed the existence of optimally list-decodable Reed-Solomon codes over exponential sized fields. Building on this, recent breakthroughs by Guo-Zhang and Alrabiah-Guruswami-Li have shown that randomly punctured Reed-Solomon codes achieve list-decoding capacity (which is a relaxation of optimal list-decodability) over linear size fields. We extend these works by developing a formal theory of relaxed higher order MDS codes. In particular, we show that there are two inequivalent relaxations which we call lower and upper relaxations. The lower relaxation is equivalent to relaxed optimal list-decodable codes and the upper relaxation is equivalent to relaxed MR tensor codes with a single parity check per column. We then generalize the techniques of GZ and AGL to show that both these relaxations can be constructed over constant size fields by randomly puncturing suitable algebraic-geometric codes. For this, we crucially use the generalized GM-MDS theorem for polynomial codes recently proved by Brakensiek-Dhar-Gopi. We obtain the following corollaries from our main result. First, randomly punctured AG codes of rate RR achieve list-decoding capacity with list size O(1/Ï”)O(1/\epsilon) and field size exp⁥(O(1/Ï”2))\exp(O(1/\epsilon^2)). Prior to this work, AG codes were not even known to achieve list-decoding capacity. Second, by randomly puncturing AG codes, we can construct relaxed MR tensor codes with a single parity check per column over constant-sized fields, whereas (non-relaxed) MR tensor codes require exponential field size.Comment: 38 page

    Exploiting Rateless Codes in Cloud Storage Systems

    Get PDF

    Exploiting Rateless Codes in Cloud Storage Systems

    Get PDF
    devices (virtual disks) that can be directly accessed and used as if they were raw physical disks. In this paper we devise ENIGMA, an architecture for the back-end of BLCS systems able to provide adequate levels of access and transfer performance, availability, integrity, and confidentiality, for the data it stores. ENIGMA exploits LT rateless codes to store fragments of sectors on storage nodes organized in clusters. We quantitatively evaluate how the various ENIGMA system parameters affect the performance, availability, integrity, and confidentiality of virtual disks. These evaluations are carried out by using both analytical modeling (for availability, integrity, and confidentiality) and discrete event simulation (for performance), and by considering a set of realistic operational scenarios. Our results indicate that it is possible to simultaneously achieve all the objectives set forth for BLCS systems by using ENIGMA, and that a careful choice of the various system parameters is crucial to achieve a good compromise among them. Moreover, they also show that LT coding-based BLCS systems outperform traditional BLCS systems in all the aspects mentioned before
    corecore